RESUMO
Thiosemicarbazones are biologically active substances whose structural formula is formed by an azomethine, an hydrazine, and a thioamide fragments, to generate a R2C=N-NR-C(=S)-NR2 backbone. These compounds often act as ligands to generate highly stable metal-organic complexes. In certain experimental conditions, however, thiosemicarbazones undergo reactions leading to the cleavage of the chain. Sometimes, the breakage involves desulfurization processes. The present work summarizes the different chemical factors that influence the desulfurization reactions of thiosemicarbazones, such as pH, the presence of oxidant reactants or the establishment of redox processes as those electrochemically induced, the effects of the solvent, the temperature, and the electromagnetic radiation. Many of these reactions require coordination of thiosemicarbazones to metal ions, even those present in the intracellular environment. The nature of the products generated in these reactions, their detection in vivo and in vitro, together with the relevance for the biological activity of these compounds, mainly as antineoplastic agents, is discussed.
Assuntos
Antineoplásicos , Complexos de Coordenação , Tiossemicarbazonas , Metais , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Oxirredução , Tiossemicarbazonas/química , Íons , Antineoplásicos/farmacologia , Antineoplásicos/químicaRESUMO
To overcome the limitations of traditional platinum (Pt)-based drugs and further improve the targeting ability and therapeutic efficacy in vivo, we proposed to design a human serum albumin (HSA)-Pt agent complex nanoparticle (NP) for cancer treatment by multimodal action against the tumor microenvironment. We not only synthesized a series of Pt(II) di-2-pyridone thiosemicarbazone compounds and obtained a Pt(II) agent [Pt(Dp44mT)Cl] with significant anticancer activity but also successfully constructed a novel HSA-Pt(Dp44mT) complex nanoparticle delivery system. The structure of the HSA-Pt(Dp44mT) complex revealed that Pt(Dp44mT)Cl binds to the IIA subdomain of HSA and coordinates with His-242. The HSA-His242-Pt-Dp44mT NPs had an obvious effect on the inhibition of tumor growth, which was superior to that of Dp44mT and Pt(Dp44mT)Cl, and they had almost no toxicity. In addition, the HSA-His242-Pt-Dp44mT NPs were found to kill cancer cells by inducing apoptosis, autophagy, and inhibiting angiogenesis.
Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Albumina Sérica Humana/química , Platina , Microambiente Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/química , Linhagem Celular TumoralRESUMO
The misuse and overdose of antimicrobial medicines are fostering the emergence of novel drug-resistant pathogens, providing negative repercussions not only on the global healthcare system due to the rise of long-term or chronic patients and inefficient therapies but also on the world trade, productivity, and, in short, to the global economic growth. In view of these scenarios, novel action plans to constrain this antibacterial resistance are needed. Thus, given the proven antiproliferative tumoral and microbial features of thiosemicarbazone (TSCN) ligands, we have here synthesized a novel effective antibacterial copper-thiosemicarbazone complex, demonstrating both its solubility profile and complex stability under physiological conditions, along with their safety and antibacterial activity in contact with human cellular nature and two most predominant bacterial strains, respectively. A significant growth inhibition (17% after 20 h) is evidenced over time, paving the way toward an effective antibacterial therapy based on these copper-TSCN complexes.
Assuntos
Anti-Infecciosos , Complexos de Coordenação , Compostos Organometálicos , Tiossemicarbazonas , Humanos , Cobre/farmacologia , Tiossemicarbazonas/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Complexos de Coordenação/farmacologiaRESUMO
Malaria, a relentless and ancient adversary, continues to cast its shadow over vast swathes of the globe, afflicting millions of people and have a heavy toll on human health and well-being. Despite substantial progress in the fight against this parasitic disease in recent decades, malaria still persists as a substantial global health concern, especially in some specific region which have limited resources and vulnerable populations. Thus, to ascertain an combating agent for malaria and its associated dysfunction, 4-(4-ethylphenyl)-3-thiosemicarbazide and benzaldehydes based two new thiosemicarbazone ligands (1-2) and their cobalt(II), nickel(II), copper(II), zinc(II) metal complexes (3-10) were synthesized in the present research work. The synthesized compounds were comprehensive characterized through spectral and physical investigations, demonstrating octahedral stereochemistry of the complexes. Further, the antimalarial and antioxidant potential of the compounds (1-10) were analyzed by micro assay and DPPH assay protocols, respectively, to examine the therapeutic aspect of the compounds. The performed biological evaluations revealed that the complexes are more efficient in controlling infectious ailment in comparison of ligands. The complexes (5), (6), (10) shows significant efficiency for malarial and oxidant dysfunctions whereas Zn(II) complex (6) exhibit highest potency with 1.02 ± 0.07 and 2.28 ± 0.05 µM IC50 value. Furthermore, to support the highest antimalarial potency of the (3-6) complexes and their associated ligand (1), the computational studies like molecular docking, DFT, MESP and ADMET analysis were executed which were supported the biological efficacy of the complex (6) by providing numerous parameters like binding interaction electronegativity, electrophilicity, HOMO value and electron density.
Assuntos
Antimaláricos , Complexos de Coordenação , Malária , Tiossemicarbazonas , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Antioxidantes/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Ligantes , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Zinco/química , Cobre/química , QuelantesRESUMO
Coumarin and coumarin-thiosemicarbazone hybrids were synthesized and characterized by various techniques such as FT-IR, 1H NMR, 13C NMR, MALDI-TOF-MS spectroscopy, and single crystal X-Ray diffractometer (XRD). The photochemical and photophysical properties of the compounds, such as solvatochromism, solubility, and chemical reactivity, were analyzed using UV-vis spectroscopy in different solvents. Due to the potential biological activities of the synthesized compounds, their binding affinity and mechanisms with calf thymus DNA (ct-DNA) and bovine hemoglobin (BHb) were determined using several useful spectrophotometric and theoretical approaches such as UV-vis absorption and fluorescence spectroscopy, molecular docking, and density functional theory (DFT). The experimental results showed that the compounds exhibited strong binding interactions with DNA and BHb. Additionally, the compounds demonstrated predominantly binding modes, such as intercalation and groove binding with DNA and π-π stacking interactions with BHb.To better understand the thermodynamics of these interactions, quenching constants, binding constants, and Gibbs free energy changes (ΔG°) were calculated. Molecular docking and DFT results supported the experimental data regarding the binding affinity and mechanisms of the compounds to DNA and BHb. Overall, this comprehensive study on coumarin and coumarin-thiosemicarbazone hybrids provides valuable insights into their interaction mechanisms with critical biomolecules, highlighting their potential in therapeutic applications as multifunctional agents.
RESUMO
A series of novel modifications were performed at the N(4) position of 5-hydroxyisatin thiosemicarbazone (TSC). The structure-activity approach is applied to design and synthesize derivatives by condensing thiosemicarbazides with 5-hydroxy isatin. The TSCs were characterized by various spectroscopic techniques viz. FTIR, 1H NMR, 13C NMR, UV-Vis, HRMS data, CHN elemental analysis, and single crystal X-ray diffraction. Biological evaluation of the synthesized compounds revealed the anticancer potency of the TSC analogues against breast cancer (MD-AMD-231, MCF-7), lung cancer (A549, NCI-H460), prostate cancer (PC3), and skin cancer (A431). The molecules, L2, L3, and L6 showed activity in the micromolar range (IC50; 0.19-2.19 µM). L6 exhibited the highest potency against skin cancer A431 cell line, with an IC50 of 0.19 µM compared to 1.8 µM with triapine and showed low toxicity against PNT-2 cells with an SI index of >100 µM. The mechanistic study revealed that L6 inhibited cancer cell proliferation, colony formation, and 3-dimensional spheroid formation by targeting the Ras/MAPK axis. It induced DNA damage and impaired DNA damage repair machinery, which led to the accumulation of DSB. Also, it lowered the ERK1/2 expression, which affected the caspase 3 activity and showed higher binding affinity compared to the FDA-approved drug Lenalidomide in molecular docking studies. Our findings demonstrated the possible future anticancer drug potency of L6 in the skin cancer A431 cells.
RESUMO
Targeting DNA repair, like PARP-1 and TOPO-I, shows promise in cancer therapy. However, resistance to single agents requires complex and costly combination strategies with significant side effects. Thus, there's an urgent need for single agents with dual inhibition. Current dual inhibitors focusing on the C-4 position of the phthalazinone core for PARP inhibition often have high molecular weights. Clinical use of PARP inhibitors is limited by hematological and other toxicities from concurrent PARP-2 inhibition. They're mainly effective in gynecological cancers, despite high PARP-1 and TOPO-I expression in various cancers. Moreover, their efficacy is limited to BRCA1-expressing breast cancer. In this study, we synthesized 27 dual inhibitors for PARP-1 and TOPO-I with molecular weights below 500 g/mol through hybridizing a phthalazinone core with a thiosemicarbazone linker. Among these, 6c demonstrated exceptional broad spectrum and potency against the NCI 60 cancer cell lines, with GI50 values from 1.65 to 5.63 µM. Notably, 6c exposed the highest PARP-1 inhibition (IC50 = 32.2 ± 3.26 nM) and a selectivity over PARP-2 (IC50 = 2844 ± 111 nM). Furthermore, 6c's inhibition of TOPO-I (IC50 = 46.2 ± 3.3 nM) surpassed the control camptothecin by eleven-fold. Mechanistically, 6c disrupted the cell cycle at the S phase, induced apoptosis, and displayed a favorable safety profile against normal cells. Compound 6c induced PARP trapping and synthetic lethality and showed high efficacy on BRCA1-expressing cell lines. So, decreasing the likelihood of cancer cell resistance to chemotherapy. Drug-likeness predictions and molecular modeling were also performed.
RESUMO
Diabetes mellitus type 2 (T2DM) can be managed by targeting dipeptidyl peptidase-4 (DPP-4), an enzyme that breaks down and deactivates peptides such as GIP and GLP-1. In this context, a new series of 2-(2-substituted hydrazineyl)thiazole derivatives 4, 5, 6, 8, 10, and 11 conjugated with the 2-hydroxy-5-(pyrrolidin-1-ylsulfonyl)benzylidene fragment were designed and synthesized. The virtual screening of the designed derivatives inside DPP-4 demonstrated good to moderate activity, with binding affinity ranging from -6.86 to -5.36 kcal/mol compared to Sitagliptin (S=-5.58 kcal/mol). These results encourage us to evaluate DPP-4 using in-vitro fluorescence-based assay. The in-vitro results exhibited inhibitory percentage (IP) values ranging from 40.66 to 75.62 % in comparison to Sitagliptin (IP=63.14 %) at 100 µM. Subsequently, the IC50 values were determined, and the 5-aryl thiazole derivatives 10 and 11 revealed strong potent IC50 values 2.75 ± 0.27 and 2.51 ± 0.27 µM, respectively, compared to Sitagliptin (3.32 ± 0.22 µM). The SAR study exhibited the importance of the substituents on the thiazole scaffold, especially with the hydrophobic fragment at C5 of the thiazole, which has a role in the activity. Compounds 10 and 11 were further assessed toward α-glucosidase and α-amylase enzymes and give promising results. Compound 10 showed good activity against α-glucosidase with IC50 value of 3.02 ± 0.23 µM compared to Acarbose 3.05 ± 0.22 µM and (11 = 3.34 ± 0.10 µM). On the other hand, for α-amylase, compound 11 was found to be most effective with IC50 value of 2.91 ± 0.23 µM compared to compound 10 = 3.30 ± 0.16 µM and Acarbose (2.99 ± 0.21 µM) indicating that these derivatives could reduce glucose by more than one target. The most active derivatives 10 and 11 attracted great interest as candidates for oral bioavailability and safe toxicity profiles compared to positive controls. The in-silico docking simulation was performed to understand the binding interactions inside the DPP-4, α-glucosidase, and α-amylase pockets, and it was found to be promising antidiabetic agents through a number of interactions.
Assuntos
Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV , Desenho de Fármacos , Hipoglicemiantes , Simulação de Acoplamento Molecular , Sulfonamidas , Tiazóis , alfa-Amilases , alfa-Glucosidases , Dipeptidil Peptidase 4/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , alfa-Glucosidases/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/síntese química , Humanos , Relação Estrutura-Atividade , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Estrutura Molecular , Relação Dose-Resposta a DrogaRESUMO
In this study, firstly, bis(thiosemicarbazone) ligand [L: 2,2'-(2-(2-(4-methoxyphenyl)hydrazineylidene)cyclohexane-1,3-diylidene)bis(hydrazine-1-carbothioamide)] was synthesized by the condensation reaction of thiosemicarbazide and ketone compound (2-(2-(4-methoxyphenyl)hydrazone)cyclohexane-1,3-dione). The metal complexes were synthesized by the reaction of obtained ligand (L) with CuCl2·2H2O, NiCl2·6H2O, CoCl2·6H2O, and MnCl2·4H2O salts. The structures of synthesized ligand and their complexes were characterized using elemental analysis, IR, UV-Vis, 1H-NMR spectra, 13C-NMR spectra, magnetic susceptibility, mass spectra (LC-MS), thermogravimetry analysis-differential thermal analysis (TGA-DTA), and differential scanning calorimetry techniques. According to the results of the analysis, square plane geometry was suggested for Cu and Co complexes. However, the structures of Ni and Mn complexes were in agreement with octahedral geometry. Molecular docking analysis and pharmacological potential of the compound were evaluated to determine the inhibitory potential against acetylcholinesterase (AChE) and Glutathione-S-transferases (GST) enzymes. The compound exhibited strong binding/docking indices of - 5.708 and - 5.928 kcal/mol for the respective receptors. In addition, L-Ni(II) complex was found to be the most effective inhibitor for AChE enzyme with a Ki value of 0.519. However, with a Ki value of 1.119, L-Cu(II) complex was also found to be an effective inhibitor for the GST enzyme.
RESUMO
Reactions between sodium tetrachloropalladate and 2- (or 4-) substituted 4-phenyl-3-thiosemicarbazone ligands (HLR), with various electron-donating and electron-withdrawing substituents (R = OCH3, NO2, and Cl), afford square-planar complexes of the general formula [Pd(LR)2]. Ground-state geometry optimization and the vibrational analysis of cis- and trans-isomers of the complexes were carried out to get an insight into the stereochemistry of the complexes. Natural bond orbital analysis was used to analyze how the nature of the substituent affects the natural charge of the metal center, the type of hybridization, and the strength of the M-N and M-S bonds. Using spectrophotometry, the stability of the complexes, and their DNA binding abilities were assessed. The Pd(II) complexes showed moderate cytotoxicity against MCF-7 and Caco-2â cell lines, two of the assessed malignant cell lines, resulting in all known cell death types, including early apoptotic bodies and late apoptotic vacuoles as well as evident necrotic bodies.
Assuntos
Antineoplásicos , Complexos de Coordenação , Paládio , Tiossemicarbazonas , Humanos , Paládio/química , Paládio/farmacologia , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Ligantes , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Células MCF-7 , Estrutura Molecular , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Relação Estrutura-Atividade , DNA/química , DNA/metabolismo , DNA/efeitos dos fármacosRESUMO
Indole-3-carbaldehyde based novel ligand (E)-2-((1-benzyl-1H-indol-3-yl)methylene)-N-methylhydrazine-1-carbothioamide (MBIHC) and its metal complexes [(MBIHC)2FeCl2]Cl(C1), [(MBIHC-)2Co] (C2), [(MBIHC-)2Ni] (C3), and [(MBIHC-)2Cu] (C4) have been synthesized. All synthesized compounds have been characterized by various spectroanalytical techniques. The structure of MBIHC was confirmed by single-crystal X-ray data. The geometry of metal complexes was determined by spectroscopic and computational studies. In the case of iron complex, ligand MBIHC coordinated to the metal ion in bidentate mode (via nitrogen, sulphur donor atoms) while in the case of cobalt, nickel, and copper complexes ligand act as a tridentate ligand (via nitrogen, sulphur, carbene donor atoms). In vitro, antifungal and antibacterial studies of ligand and metal complexes were assayed against C. albicans, C. glabrata, E. coli, and K. pneumoniae pathogens. In antifungal activity, complex C1 exhibited a greater inhibition zone than the other compounds for the both examined fungi C. albicans (24±0.32â mm) and C. glabrata (20±0.16â mm). However, the antifungal activities of complex C2 has shown better activity against both E. coli (25±0.24â mm) and K. pneumoniae (16±0.80â mm) pathogens than the other examined compound. Complex C2 has found even better than the benchmark drug Ampiciline in case of E. coli. Further, the DFT calculations and molecular docking studies also validate the experimental bioactivity results of examined compounds.
RESUMO
Metal complexes have gained significant attention as potential anti-cancer agents. The anti-cancer activity of [Co(phen)2(MeATSC)](NO3)3â¢1.5H2Oâ¢C2H5OH 1 (where phen = 1,10-phenanthroline and MeATSC = 9-anthraldehyde-N(4)-methylthiosemicarbazone) and [Cu(acetylethTSC)Cl]Clâ¢0.25C2H5OH 2 (where acetylethTSC = (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide) was investigated by analyzing DNA cleavage activity. The cytotoxic effect was analyzed using CCK-8 viability assay. The activities of caspase 3/7, 9, and 1, reactive oxygen species (ROS) production, cell cycle arrest, and mitochondrial function were further analyzed to study the cell death mechanisms. Complex 2 induced a significant increase in nicked DNA. The IC50 values of complex 1 were 17.59 µM and 61.26 µM in cancer and non-cancer cells, respectively. The IC50 values of complex 2 were 5.63 and 12.19 µM for cancer and non-cancer cells, respectively. Complex 1 induced an increase in ROS levels, mitochondrial dysfunction, and activated caspases 3/7, 9, and 1, which indicated the induction of intrinsic apoptotic pathway and pyroptosis. Complex 2 induced cell cycle arrest in the S phase, ROS generation, and caspase 3/7 activation. Thus, complex 1 induced cell death in the breast cancer cell line via activation of oxidative stress which induced apoptosis and pyroptosis while complex 2 induced cell cycle arrest through the induction of DNA cleavage.
RESUMO
Diabetes is a serious metabolic disorder affecting individuals of all age groups and prevails globally due to the failure of previous treatments. This study aims to address the most prevalent form of type 2 diabetes mellitus (T2DM) by reporting on the design, synthesis, and in vitro as well as in silico evaluation of chromone-based thiosemicarbazones as potential α-glucosidase inhibitors. In vitro experiments showed that the tested compounds were significantly more potent than the standard acarbose, with the lead compound 3n exhibiting an IC50 value of 0.40 ± 0.02 µM, ~2183-fold higher than acarbose having an IC50 of 873.34 ± 1.67 µM. A kinetic mechanism analysis demonstrated that compound 3n exhibited reversible inhibition of α-glucosidase. To gain deeper insights, in silico molecular docking, pharmacokinetics, and molecular dynamics simulations were conducted for the investigation of the interactions, orientation, stability, and conformation of the synthesized compounds within the active pocket of α-glucosidase.
Assuntos
Cromonas , Diabetes Mellitus Tipo 2 , Desenho de Fármacos , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Simulação de Acoplamento Molecular , Tiossemicarbazonas , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Cromonas/farmacologia , Cromonas/síntese química , Cromonas/química , Relação Estrutura-Atividade , alfa-Glucosidases/metabolismo , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Tiossemicarbazonas/síntese química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estrutura Molecular , Humanos , Simulação de Dinâmica Molecular , Simulação por Computador , Relação Dose-Resposta a DrogaRESUMO
Iron plays a crucial role in various metabolic processes. However, the impact of 5-aminolevulinic acid (ALA) in combination with iron chelators on iron metabolism and the efficacy of ALA-photodynamic therapy (PDT) remain inadequately understood. This study aimed to examine the effect of thiosemicarbazone derivatives during ALA treatment on specific genes related to iron metabolism, with a particular emphasis on mitochondrial iron metabolism genes. In our study, we observed differences depending on the cell line studied. For the HCT116 and MCF-7 cell lines, in most cases, the decrease in the expression of selected targets correlated with the increase in protoporphyrin IX (PPIX) concentration and the observed photodynamic effect, aligning with existing literature data. The Hs683 cell line showed a different gene expression pattern, previously not described in the literature. In this study, we collected an extensive analysis of the gene variation occurring after the application of novel thiosemicarbazone derivatives and presented versatile and effective compounds with great potential for use in ALA-PDT.
Assuntos
Ácido Aminolevulínico , Quelantes de Ferro , Ferro , Fotoquimioterapia , Tiossemicarbazonas , Humanos , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/química , Fotoquimioterapia/métodos , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Quelantes de Ferro/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Protoporfirinas/metabolismo , Protoporfirinas/química , Células MCF-7 , Células HCT116 , Linhagem Celular TumoralRESUMO
Thiosemicarbazones and their metal complexes have been studied for their biological activities against bacteria, cancer cells and protozoa. Short-term in vitro treatment with one gold (III) complex (C3) and its salicyl-thiosemicarbazone ligand (C4) selectively inhibited proliferation of T. gondii. Transmission Electron Microscopy (TEM) detected transient structural alterations in the parasitophorous vacuole membrane and the tachyzoite cytoplasm, but the mitochondrial membrane potential appeared unaffected by these compounds. Proteins potentially interacting with C3 and C4 were identified using differential affinity chromatography coupled with mass spectrometry (DAC-MS). Moreover, long-term in vitro treatment was performed to investigate parasitostatic or parasiticidal activity of the compounds. DAC-MS identified 50 ribosomal proteins binding both compounds, and continuous drug treatments for up to 6 days caused the loss of efficacy. Parasite tolerance to both compounds was, however, rapidly lost in their absence and regained shortly after re-exposure. Proteome analyses of six T. gondii ME49 clones adapted to C3 and C4 compared to the non-adapted wildtype revealed overexpression of ribosomal proteins, of two transmembrane proteins involved in exocytosis and of an alpha/beta hydrolase fold domain-containing protein. Results suggest that C3 and C4 may interfere with protein biosynthesis and that adaptation may be associated with the upregulated expression of tachyzoite transmembrane proteins and transporters, suggesting that the in vitro drug tolerance in T. gondii might be due to reversible, non-drug specific stress-responses mediated by phenotypic plasticity.
Assuntos
Proteínas Ribossômicas , Tiossemicarbazonas , Toxoplasma , Toxoplasma/efeitos dos fármacos , Toxoplasma/metabolismo , Tiossemicarbazonas/farmacologia , Proteínas Ribossômicas/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Adaptação Fisiológica/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Regulação para Cima/efeitos dos fármacos , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , AnimaisRESUMO
In this work, we report the synthesis of a new thiosemicarbazone-based drug of N'-(di(pyridin-2-yl)methylene)-4-(thiazol-2-yl)piperazine-1-carbothiohydrazide (HL) featuring a thiazole spectator for efficient coordination with Cu(II) to give [CuCl(L)]2 (1) and [Cu(NO3)(L)]2 (2). Both 1 and 2 exhibit dimeric structures ascribed to the presence of di-2-pyridylketone moieties that demonstrate dual functions of chelation and intermolecular bridging. HL, 1, and 2 are highly toxic against hepatocellular carcinoma cell lines Hep-G2, PLC/PRF/5, and HuH-7 with half maximal inhibitory concentration (IC50) values as low as 3.26 nmol/mL (HL), 2.18 nmol/mL (1), and 2.54 × 10-5 nmol/mL (2) for PLC/PRF/5. While the free ligand HL may elicit its anticancer effect via the sequestration of bio-relevant metal ions (i.e., Fe3+ and Cu2+), 1 and 2 are also capable of generating cytotoxic reactive oxygen species (ROS) to inhibit cancer cell proliferation. Our preliminary pharmacokinetic studies revealed that oral administration (per os, PO) of HL has a significantly longer half-life t1/2 of 21.61 ± 9.4 h, nearly doubled as compared with that of the intravenous (i.v.) administration of 11.88 ± 1.66 h, certifying HL as an effective chemotherapeutic drug via PO administration.
Assuntos
Antineoplásicos , Cobre , Tiazóis , Tiossemicarbazonas , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/farmacocinética , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Cobre/química , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/farmacocinética , Linhagem Celular Tumoral , Disponibilidade Biológica , Animais , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/farmacocinética , Administração Oral , Estrutura Molecular , Células Hep G2 , Espécies Reativas de Oxigênio/metabolismoRESUMO
The aim of this work is to explore a new library of coordination compounds for medicinal applications. Gallium is known for its various applications in this field. Presently, indium is not particularly important in medicine, but it shares a lot of chemical traits with its above-mentioned lighter companion, gallium, and is also used in radio imaging. These metals are combined with thiosemicarbazones, ligating compounds increasingly known for their biological and pharmaceutical applications. In particular, the few ligands chosen to interact with these hard metal ions share the ideal affinity for a high charge density. Therefore, in this work we describe the synthesis and the characterization of the resulting coordination compounds. The yields of the reactions vary from a minimum of 21% to a maximum of 82%, using a fast and easy procedure. Nuclear Magnetic Resonance (NMR) and Infra Red (IR) spectroscopy, mass spectrometry, elemental analysis, and X-ray Diffraction (XRD) confirm the formation of stable compounds in all cases and a ligand-to-metal 2:1 stoichiometry with both cations. In addition, we further investigated their chemical and biological characteristics, via UV-visible titrations, stability tests, and cytotoxicity and antibiotic assays. The results confirm a strong stability in all explored conditions, which suggests that these compounds are more suitable for radio imaging applications rather than for antitumoral or antimicrobic ones.
Assuntos
Complexos de Coordenação , Gálio , Tiossemicarbazonas , Gálio/farmacologia , Gálio/química , Índio/química , Tiossemicarbazonas/química , Ligantes , Espectroscopia de Ressonância Magnética , Complexos de Coordenação/químicaRESUMO
The eleven new copper(II) and nickel(II) coordination compounds [Cu(L)Br]2 (1), [Cu(L)Cl] (2), [Cu(L)NO3] (3), [Ni(L)Cl] (4), [Ni(HL)2](NO3)2 (5), and [Cu(A)(L)]NO3, where A is 1,10-phenanthroline (6), 2,2'-bipyridine (7), 3,4-dimethylpyridine (8), 3-methylpyridine (9), pyridine (10) and imidazole (11) were synthesized with 3-(morpholin-4-yl)propane-2,3-dione 4-allylthiosemicarbazone (HL). The new thiosemicarbazone was characterized by NMR and FTIR spectroscopy. All the coordination compounds were characterized by elemental analysis and FTIR spectroscopy. Also, the crystal structures of HL and complexes 1, 6, 7, and 11 were determined using single-crystal X-ray diffraction analysis. Complex 1 has a dimeric molecular structure with two bromide bridging ligands, while 6, 7, and 11 are ionic compounds and comprise monomeric complex cations. The studied complexes manifest antibacterial and antifungal activities and also have an antiradical activity that, in many cases, surpasses the activity of trolox, which is used as a standard antioxidant in medicine. Copper complexes 1-3 have very weak antiradical properties (IC50 > 100 µM), but nickel complexes 4-5 are strong antiradicals with IC50 values lower than that of trolox. The mixed ligand copper complexes with additional ligand of N-heteroaromatic base are superior to complexes without these additional ligands. They are 1.4-5 times more active than trolox.
Assuntos
Antibacterianos , Antifúngicos , Complexos de Coordenação , Cobre , Testes de Sensibilidade Microbiana , Níquel , Tiossemicarbazonas , Níquel/química , Cobre/química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/síntese química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Cristalografia por Raios X , Estrutura MolecularRESUMO
The reaction between 5-acetylbarbituric acid and 4-dimethylthiosemicarbazide or 4-hexamethyleneiminyl thiosemicarbazide produces 5-acetylbarbituric-4-dimethylthiosemicarbazone (H2AcbDM) and 5-acetylbarbituric-4N-hexamethyleneiminyl thiosemicarbazone (H2Acbhexim). Eight new complexes with different copper(II) salts have been prepared and characterized using elemental analysis, molar conductance, UV-Vis, ESI-HRMS, FT-IR, magnetic moment, EPR, and cyclic voltammetry. In addition, three-dimensional molecular structures of [Cu(HAcbDM)(H2O)2](NO3)·H2O (3a), [Cu(HAcbDM)(H2O)2]ClO4 (4), and [Cu(HAcbHexim)Cl] (6) were determined by single crystal X-ray crystallography, and an analysis of their supramolecular structure was carried out. The H-bonded assemblies were further studied energetically using DFT calculations and MEP surface and QTAIM analyses. In these complexes, the thiosemicarbazone coordinates to the metal ion in an ONS-tridentate manner, in the O-enolate/S-thione form. The electrochemical behavior of the thiosemicarbazones and their copper(II) complexes has been investigated at room temperature using the cyclic voltammetry technique in DMFA. The Cu(II)/Cu(I) redox system was found to be consistent with the quasi-reversible diffusion-controlled process.
RESUMO
This work describes the synthesis of eight new Pd(II) and Pt(II) complexes with the general formula [M(TSC)Cl], where TSC represents the 4N-monosubstituted thiosemicarbazone derived from 2-acetylpyridine N-oxide with the substituents CH3 (H4MLO), C2H5 (H4ELO), phenyl (H4PLO) and (CH3)2 (H4DMLO). These complexes have been characterized by elemental analysis, molar conductivity, IR spectroscopy, 1H, 13C, 195Pt and ESI-MS. The complexes exhibit a square planar geometry around the metallic center coordinated by a thiosemicarbazone molecule acting as a donor ONS-type pincer ligand and by a chloride, as confirmed by the molecular structures of the complexes, [Pd(4ELO)Cl] (3) and [Pd(4PLO)Cl] (5), determined by single-crystal X-ray diffraction. The 195Pt NMR spectra of the complexes of formulae [Pt(4PLO)Cl] (6) and [Pt(4DMLO)Cl] (8) in DMSO show a single signal at -2420.4 ppm, confirming the absence of solvolysis products. Complexes 3 and 5 have been tested as catalysts in the Suzuki-Miyaura cross-coupling reactions of aryl bromides with phenylboronic acid, with yields of between 50 and 90.