Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 204(2): 299-308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38175448

RESUMO

BACKGROUND: Thymidine kinase 1 (TK1) plays a pivotal role in DNA synthesis and cellular proliferation. TK1 has been studied as a prognostic marker and as an early indicator of treatment response in human epidermal growth factor 2 (HER2)-negative early and metastatic breast cancer (BC). However, the prognostic and predictive value of serial TK1 activity in HER2-positive BC remains unknown. METHODS: In the PREDIX HER2 trial, 197 HER2-positive BC patients were randomized to neoadjuvant trastuzumab, pertuzumab, and docetaxel (DPH) or trastuzumab emtansine (T-DM1), followed by surgery and adjuvant epirubicin and cyclophosphamide. Serum samples were prospectively collected from all participants at multiple timepoints: at baseline, after cycle 1, 2, 4, and 6, at end of adjuvant therapy, annually for a total period of 5 years and/or at the time of recurrence. The associations of sTK1 activity with baseline characteristics, pathologic complete response (pCR), event-free survival (EFS), and disease-free survival (DFS) were evaluated. RESULTS: No association was detected between baseline sTK1 levels and all the baseline clinicopathologic characteristics. An increase of TK1 activity from baseline to cycle 2 was seen in all cases. sTK1 level at baseline, after 2 and 4 cycles was not associated with pCR status. After a median follow-up of 58 months, 23 patients had EFS events. There was no significant effect between baseline or cycle 2 sTK1 activity and time to event. A non-significant trend was noted among patents with residual disease (non-pCR) and high sTK1 activity at the end of treatment visit, indicating a potentially worse long-term prognosis. CONCLUSION: sTK1 activity increased following neoadjuvant therapy for HER2-positive BC but was not associated with patient outcomes or treatment benefit. However, the post-surgery prognostic value in patients that have not attained pCR warrants further investigation. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02568839. Registered on 6 October 2015.


Assuntos
Neoplasias da Mama , Timidina Quinase , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Terapia Neoadjuvante , Suécia , Receptor ErbB-2/metabolismo , Biomarcadores Tumorais/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Trastuzumab , Ado-Trastuzumab Emtansina
2.
Microb Pathog ; 186: 106486, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056601

RESUMO

In this study, we investigated the potential in vitro anti-HSV-1 activities of the Cassiopea andromeda jellyfish tentacle extract (TE) and its fractions, as well as computational work on the thymidine kinase (TK) inhibitory activity of the identified secondary metabolites. The LD50, secondary metabolite identification, preparative and analytical chromatography, and in silico TK assessment were performed using the Spearman-Karber, GC-MS, silica gel column chromatography, RP-HPLC, LC-MS, and docking methods, respectively. The antiviral activity of TE and the two purified compounds Ca2 and Ca7 against HSV-1 in Vero cells was evaluated by MTT and RT-PCR assays. The LD50 (IV, mouse) values of TE, Ca2, and Ca7 were 104.0 ± 4, 5120 ± 14, and 197.0 ± 7 (µg/kg), respectively. They exhibited extremely effective antiviral activity against HSV-1. The CC50 and MNTD of TE, Ca2, and Ca7 were (125, 62.5), (25, 12.5), and (50, 3.125) µg/ml, respectively. GC-MS analysis of the tentacle extract revealed seven structurally distinct chemical compositions. Four of the seven compounds had a steroid structure. According to the docking results, all compounds showed binding affinity to the active sites of both thymidine kinase chains. Among them, the steroid compound Pregn-5-ene-3,11-dione, 17,20:20,21 bis [methylenebis(oxy)]-, cyclic 3-(1,2-ethane diyl acetal) (Ca2) exhibited the highest affinity for both enzyme chains, surpassing that of standard acyclovir. In silico data confirmed the experimental results. We conclude that the oxosteroid Ca2 may act as a potent agent against HSV-1.


Assuntos
Venenos de Cnidários , Herpesvirus Humano 1 , Chlorocebus aethiops , Animais , Camundongos , Antivirais/farmacologia , Antivirais/química , Células Vero , Timidina Quinase/genética , Timidina Quinase/química , Venenos de Cnidários/farmacologia , Esteroides/farmacologia
3.
Oncology ; 102(1): 17-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37673047

RESUMO

INTRODUCTION: Ovarian cancer is the eighth most common cause of cancer death in women. One of the major concerns is almost two-thirds of cases are typically diagnosed in the late stage as the symptoms are unspecific in the early stage of ovarian cancer. It is known that the combination of TK1 protein with CA 125 or HE4 showed better performance than either of them alone. That is why, the aim of the study was to investigate whether the TK1-specific activity (TK1 SA) could function as a complement marker for early-stage diagnosis of ovarian cancer. METHODS: The study included a set of 198 sera consisting of 134 patients with ovarian tumors (72 benign and 62 malignant) and 64 healthy age-matched controls. The TK1 SA was determined using TK1 activity by TK-Liaison and TK1 protein by AroCell TK 210 ELISA. Further, CA 125, HE4, as well as risk of ovarian malignancy algorithm index were also determined in the same set of clinical samples. RESULTS: The TK1 SA was significantly different between healthy compared to ovarian cancer patients (p < 0.0001). Strikingly, TK1 SA has higher sensitivity (55%) compared to other biomarkers in the detection of benign ovarian tumors. Further, the highest sensitivity was achieved by the combination of TK1 SA with CA 125 and HE4 for the detection of benign tumors as well as malignant ovarian tumors (72.2% and 88.7%). In addition, TK1 SA could significantly differentiate FIGO stage I/II from stage III/IV malignancies (p = 0.026). Follow-up of patients after surgery and chemotherapy showed a significant difference compared to TK1 SA at the time of diagnosis. CONCLUSIONS: These results indicate that TK1 SA is a promising blood-based biomarker that could complement CA 125 and HE4 for the detection of early stages of ovarian cancer.


Assuntos
Relevância Clínica , Neoplasias Ovarianas , Feminino , Humanos , Algoritmos , Biomarcadores Tumorais/metabolismo , Antígeno Ca-125 , Neoplasias Ovarianas/patologia
4.
Mikrochim Acta ; 191(7): 390, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871953

RESUMO

A precisely designed dual-color biosensor has realized a visual assessment of thymidine kinase 1 (TK1) mRNA in both living cells and cell lysates. The oligonucleotide probe is constructed by hybridizing the antisense strand of the target and two recognition sequences, in which FAM serves as the donor and TAMRA as the acceptor. Once interacting with the target, two recognition strands are replaced, and then the antisense complementary sequence forms a more stable double-stranded structure. Due to the increasing spatial distance between two dyes, the FRET is attenuated, leading to a rapid recovery of FAM fluorescence and a reduction of TAMRA fluorescence. A discernible color response from orange to green could be observed by the naked eye, with a limit of detection (LOD) of 0.38 nM and 5.22 nM for spectrometer- and smartphone-based assays, respectively. The proposed ratiometric method transcends previous reports in its capacities in visualizing TK1 expression toward reliable nucleic acid biomarker analysis, which might establish a general strategy for ratiometric biosensing via strand displacement.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Limite de Detecção , RNA Mensageiro , Timidina Quinase , Timidina Quinase/genética , Humanos , Transferência Ressonante de Energia de Fluorescência/métodos , RNA Mensageiro/análise , RNA Mensageiro/genética , Corantes Fluorescentes/química , Técnicas Biossensoriais/métodos , Hibridização de Ácido Nucleico , Fluorometria/métodos , Biomarcadores/análise
5.
J Biol Chem ; 298(6): 102028, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568200

RESUMO

Giardiasis is a diarrheal disease caused by the unicellular parasite Giardia intestinalis, for which metronidazole is the main treatment option. The parasite is dependent on exogenous deoxyribonucleosides for DNA replication and thus is also potentially vulnerable to deoxyribonucleoside analogs. Here, we characterized the G. intestinalis thymidine kinase, a divergent member of the thymidine kinase 1 family that consists of two weakly homologous parts within one polypeptide. We found that the recombinantly expressed enzyme is monomeric, with 100-fold higher catalytic efficiency for thymidine compared to its second-best substrate, deoxyuridine, and is furthermore subject to feedback inhibition by dTTP. This efficient substrate discrimination is in line with the lack of thymidylate synthase and dUTPase in the parasite, which makes deoxy-UMP a dead-end product that is potentially harmful if converted to deoxy-UTP. We also found that the antiretroviral drug azidothymidine (AZT) was an equally good substrate as thymidine and was active against WT as well as metronidazole-resistant G. intestinalis trophozoites. This drug inhibited DNA synthesis in the parasite and efficiently decreased cyst production in vitro, which suggests that it could reduce infectivity. AZT also showed a good effect in G. intestinalis-infected gerbils, reducing both the number of trophozoites in the small intestine and the number of viable cysts in the stool. Taken together, these results suggest that the absolute dependency of the parasite on thymidine kinase for its DNA synthesis can be exploited by AZT, which has promise as a future medication effective against metronidazole-refractory giardiasis.


Assuntos
Replicação do DNA , Giardia lamblia , Proteínas de Protozoários , Timidina Quinase , Zidovudina , Animais , Descoberta de Drogas , Gerbillinae , Giardia lamblia/enzimologia , Giardia lamblia/genética , Giardíase/tratamento farmacológico , Metronidazol/uso terapêutico , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Timidina , Timidina Quinase/antagonistas & inibidores , Timidina Quinase/genética , Zidovudina/farmacologia
6.
Kidney Int ; 103(1): 144-155, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273656

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) involves the development and persistent growth of fluid filled kidney cysts. In a recent study, we showed that ADPKD kidney cyst epithelial cells can stimulate the proliferation and differentiation of peri-cystic myofibroblasts. Although dense myofibroblast populations are often found surrounding kidney cysts, their role in cyst enlargement or fibrosis in ADPKD is unclear. To clarify this, we examined the effect of myofibroblast depletion in the Pkd1RC/RC (RC/RC) mouse model of ADPKD. RC/RC;αSMAtk mice that use the ganciclovir-thymidine kinase system to selectively deplete α-smooth muscle actin expressing myofibroblasts were generated. Ganciclovir treatment for four weeks depleted myofibroblasts, reduced kidney fibrosis and preserved kidney function in these mice. Importantly, myofibroblast depletion significantly reduced cyst growth and cyst epithelial cell proliferation in RC/RC;αSMAtk mouse kidneys. Similar ganciclovir treatment did not alter cyst growth or fibrosis in wild-type or RC/RC littermates. In vitro, co-culture with myofibroblasts from the kidneys of patients with ADPKD increased 3D microcyst growth of human ADPKD cyst epithelial cells. Treatment with conditioned culture media from ADPKD kidney myofibroblasts increased microcyst growth and cell proliferation of ADPKD cyst epithelial cells. Further examination of ADPKD myofibroblast conditioned media showed high levels of protease inhibitors including PAI1, TIMP1 and 2, NGAL and TFPI-2, and treatment with recombinant PAI1 and TIMP1 increased ADPKD cyst epithelial cell proliferation in vitro. Thus, our findings show that myofibroblasts directly promote cyst epithelial cell proliferation, cyst growth and fibrosis in ADPKD kidneys, and their targeting could be a novel therapeutic strategy to treat PKD.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Humanos , Camundongos , Animais , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Miofibroblastos , Células Cultivadas , Rim/patologia , Proliferação de Células , Fibrose , Cistos/tratamento farmacológico , Cistos/patologia , Células Epiteliais/patologia
7.
Funct Integr Genomics ; 23(4): 301, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715794

RESUMO

Thymidine kinase 1 (TK1) level is an independent survival prognostic factor for both premalignant and malignant cervical pathologies. Herein, this study sought to probe the impacts of TK1 on cervical cancer (CC) progression and its underlying mechanism. Transcription factor Dp-1 (TFDP1) and TK1 expression was assessed using qRT-PCR in CC cell lines. After ectopic expression and knockdown experiments, cell counting kit-8 and colony formation assays were adopted to measure cell proliferation, western blot to examine the expression of epithelial-mesenchymal transition (EMT)-related proteins, and Transwell assays to assess cell invasion and migration. The binding of TFDP1 to TK1 was predicted by bioinformatic sites and verified by chromatin immunoprecipitation and dual-luciferase reporter assays. Tumor xenograft experiments in nude mice were performed to validate the influence of TFDP1/TK1 on CC progression in vivo. CC cells had high TK1 and TFDP1 expression. TFDP1 or TK1 knockdown restrained CC cell EMT, invasion, migration, and proliferation. TFDP1 facilitated TK1 expression in CC via transcription. Overexpression of TK1 counteracted the suppressive impacts of TFDP1 knockdown on CC cell malignant behaviors. Moreover, TFDP1 knockdown depressed CC growth in vivo by downregulating TK1. TFDP1 knockdown restricted proliferation and EMT in CC by downregulating TK1 expression.


Assuntos
Neoplasias do Colo do Útero , Humanos , Animais , Camundongos , Feminino , Neoplasias do Colo do Útero/genética , Fator de Transcrição DP1 , Transição Epitelial-Mesenquimal , Camundongos Nus , Proliferação de Células
8.
Cerebellum ; 22(1): 70-84, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35084690

RESUMO

Spinocerebellar ataxia type 31 (SCA31), an autosomal-dominant neurodegenerative disorder characterized by progressive cerebellar ataxia with Purkinje cell degeneration, is caused by a heterozygous 2.5-3.8 kilobase penta-nucleotide repeat of (TTCCA)n in intron 11 of the thymidine kinase 2 (TK2) gene. TK2 is an essential mitochondrial pyrimidine-deoxyribonucleoside kinase. Bi-allelic loss-of-function mutations of TK2 lead to mitochondrial DNA depletion syndrome (MDS) in humans through severe (~ 70%) reduction of mitochondrial electron-transport-chain activity, and tk2 knockout mice show Purkinje cell degeneration and ataxia through severe mitochondrial cytochrome-c oxidase subunit I (COX I) protein reduction. To clarify whether TK2 function is altered in SCA31, we investigated TK2 and COX I expression in human postmortem SCA31 cerebellum. We confirmed that canonical TK2 mRNA is transcribed from exons far upstream of the repeat site, and demonstrated that an extended version of TK2 mRNA ("TK2-EXT"), transcribed from exons spanning the repeat site, is expressed in human cerebellum. While canonical TK2 was conserved among vertebrates, TK2-EXT was specific to primates. Reverse transcription-PCR demonstrated that both TK2 mRNAs were preserved in SCA31 cerebella compared with control cerebella. The TK2 proteins, assessed with three different antibodies including our original polyclonal antibody against TK2-EXT, were detected as ~ 26 kilodalton proteins on western blot; their levels were similar in SCA31 and control cerebella. COX I protein level was preserved in SCA31 compared to nuclear DNA-encoded protein. We conclude that the expression and function of TK2 are preserved in SCA31, suggesting a mechanism distinct from that of MDS.


Assuntos
Rubiaceae , Ataxias Espinocerebelares , Animais , Camundongos , Humanos , Proteínas Mitocondriais , Ataxias Espinocerebelares/genética , Células de Purkinje , Nucleotídeos , RNA Mensageiro , Rubiaceae/genética
9.
Virol J ; 20(1): 66, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046316

RESUMO

BACKGROUND: Cyprinid herpesvirus 2 (CyHV-2) is a pathogenic fish virus belonging to family Alloherpesviridae. The CyHV-2 gene encoding thymidine kinase (TK) is an important virulence-associated factor. Therefore, we aimed to investigate the biological function of open reading frame 55 (ORF55) in viral replication. METHODS: Purified CyHV-2 ORF55 protein was obtained by prokaryotic expression, and the interacting peptide was screened out using phage display. Host interacting proteins were then predicted and validated. RESULTS: ORF55 was efficiently expressed in the prokaryotic expression system. Protein and peptide interaction prediction and dot-blot overlay assay confirmed that peptides identified by phage display could interact with the ORF55 protein. Comparing the peptides to the National Center for Biotechnology Information database revealed four potential interacting proteins. Reverse transcription quantitative PCR results demonstrated high expression of an actin-binding Rho-activating protein in the latter stages of virus-infected cells, and molecular docking, cell transfection and coimmunoprecipitation experiments confirmed that it interacted with the ORF55 protein. CONCLUSION: During viral infection, the ORF55 protein exerts its biological function through interactions with host proteins. The specific mechanisms remain to be further explored.


Assuntos
Bacteriófagos , Carpas , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Fases de Leitura Aberta , Simulação de Acoplamento Molecular , Herpesviridae/genética , Bacteriófagos/genética
10.
Biomarkers ; 28(3): 313-322, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36647745

RESUMO

BACKGROUND: Some patients with metastatic breast cancer (MBC) stay on endocrine therapy (ET) for years and others progress quickly. Serum thymidine kinase activity (TKa), an indicator of cell-proliferation, is a potential biomarker for monitoring ET and predicting MBC outcome. We have previously reported TKa as being prognostic in MBC in SWOG S0226. Here, new data on progression within 30/60 days post sampling, with a new, FDA approved version of DiviTum®TKa highlighting differences vs. a Research Use Only version is reported. METHODS: 1,546 serum samples from 454 patients were assessed, collected at baseline and at 4 subsequent timepoints during treatment. A new predefined cut-off tested the ability to predict disease progression. A new measuring unit, DuA (DiviTum® unit of Activity) is adopted. RESULTS: A DiviTum®TKa score <250 DuA provides a much lower risk of progression within 30/60 days after blood draw, the negative predictive value (NPV) was 96.7% and 93.5%, respectively. Patients <250 DuA experienced significantly longer progression-free survival and overall survival, demonstrated at baseline and for all time intervals. CONCLUSIONS: DiviTum®TKa provides clinically meaningful information for patients with HR+ MBC. Low TKa levels provide such a high NPV for rapid progression that such patients might forego additional therapy added to single agent ET.Trial registration: NCT00075764.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica , Biomarcadores , Neoplasias da Mama/patologia , Prognóstico , Intervalo Livre de Progressão , Receptor ErbB-2/uso terapêutico , Timidina Quinase/uso terapêutico
11.
Mol Divers ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462851

RESUMO

The monkeypox spread has been announced a public health emergency of international concern (PHEIC) by the World Health Organization (WHO). Both monkeypox and smallpox viruses are placed in the genus Orthopoxvirus. Despite recommendations for the administration of smallpox drugs versus monkeypox, no specific drug for monkeypox has yet been introduced. A reliable and effective method against this outbreak can be the use of natural products. This study aimed for identification of natural flavonoid derivatives as potential thymidine kinase inhibitors, the main drug target of monkeypox virus. Thymidine kinase protein structure was predicted by homology modeling and the quality of generated model was evaluated. Then, the interaction between natural flavonoids and the modeled thymidine kinase was explored by molecular docking. Based on docking results, more than half of the flavonoids with higher docking scores compared to reference drug (ganciclovir) were exhibited better binding affinities toward the protein. In addition, stability of the top flavonoids including eupatorin, fisetin, rhamnetin and scutellarein, was confirmed by MD simulations and binding free energy calculations using MM/PBSA analysis. These selected compounds were also shown acceptable results for drug likeness and ADMET analysis. Therefore, the results of the study showed that these flavonoids could be considered as potential thymidine kinase inhibitors for use against monkeypox virus.

12.
Oral Dis ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37279074

RESUMO

Herpes Simplex Virus (HSV) type 1 (HSV-1) and type 2 (HSV-2) are among the most common human viral pathogens, affecting several billion people worldwide. Although in healthy patients clinical signs and symptoms of HSV infection are usually mild and self-limiting, HSV-infections in immunocompromised patients are frequently more aggressive, persistent, and even life-threatening. Acyclovir and its derivatives are the gold standard antiviral drugs for the prevention and treatment of HSV infections. Although the development of acyclovir resistance is a rather uncommon condition, it may be associated with serious complications, especially in immunocompromised patients. In this review, we aim to address the problem of drug resistant HSV infection and discuss the available alternative therapeutic interventions. All relative studies concerning alternative treatment modalities of acyclovir resistant HSV infection published in PubMed between 1989 to 2022 were reviewed. Long-term treatment and prophylaxis with antiviral agents predisposes to drug resistance, especially in immunocompromised patients. Cidofovir and foscarnet could serve as alternative treatments in these cases. Although rare, acyclovir resistance may be associated with severe complications. Hopefully, in the future, novel antiviral drugs and vaccines will be available in order to avoid the existing drug resistance.

13.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511481

RESUMO

Previous studies have found that Bifidobacterium infantis-mediated herpes simplex virus-TK/ganciclovir (BF-TK/GCV) reduces the expression of VEGF and CD146, implying tumor metastasis inhibition. However, the mechanism by which BF-TK/GCV inhibits tumor metastasis is not fully studied. Here, we comprehensively identified and quantified protein expression profiling for the first time in gastric cancer (GC) cells MKN-45 upon BF-TK/GCV treatment using quantitative proteomics. A total of 159 and 72 differential expression proteins (DEPs) were significantly changed in the BF-TK/GCV/BF-TK and BF-TK/GCV/BF/GCV comparative analysis. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis enriched some metastasis-related pathways such as gap junction and cell adhesion molecules pathways. Moreover, the transwell assay proved that BF-TK/GCV inhibited the invasion and migration of tumor cells. Furthermore, immunohistochemistry (IHC) demonstrated that BF-TK/GCV reduced the expression of HIF-1α, mTOR, NF-κB1-p105, VCAM1, MMP13, CXCL12, ATG16, and CEBPB, which were associated with tumor metastasis. In summary, BF-TK/GCV inhibited tumor metastasis, which deepened and expanded the understanding of the antitumor mechanism of BF-TK/GCV.


Assuntos
Ganciclovir , Neoplasias Gástricas , Camundongos , Animais , Ganciclovir/farmacologia , Ganciclovir/uso terapêutico , Simplexvirus/genética , Simplexvirus/metabolismo , Bifidobacterium longum subspecies infantis/metabolismo , Terapia Genética , Modelos Animais de Doenças , Neoplasias Gástricas/terapia , Timidina Quinase/genética , Antivirais/farmacologia
14.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982234

RESUMO

Thymidine kinase 1 (TK1) is an intracellular enzyme involved in DNA-precursor synthesis. Increased serum TK1 levels are used as a biomarker in various malignancies. We combined serum TK1 with PSA and evaluated its capacity to predict overall survival (OS) in 175 men with prostate cancer (PCa), detected by screening in 1988-1989 (n = 52) and during follow-up (median 22.6 years) (n = 123). TK1 was measured in frozen serum, age was stratified into four groups, and dates of PCa diagnosis and dates of death were obtained from Swedish population-based registries. The median concentration of TK1 and PSA was 0.25 and 3.8 ng/ml. TK1 was an independent variable of OS. In the multivariate analysis, PSA was not statistically significant in combination with age whereas the significance remained for TK1 + PSA. Measured once, TK1 + PSA predicted a difference of up to 10 years (depending on patient subgroup) in OS at a median of 9 years before PCa diagnosis. The TK1 concentration in 193 controls without malignancies did not differ from that of the PCa patients, hence TK1 was likely not released from incidental PCa. Thus, TK1 in the blood circulation may indicate the release of TK1 from sources other than cancers, nonetheless associated with OS.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Timidina Quinase , Biomarcadores
15.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203202

RESUMO

Uterine leiomyoma (UL) is a prevalent benign tumor in women that frequently gives rise to a multitude of reproductive complications. The use of suicide gene therapy has been proposed as a highly promising method for treating UL. To achieve successful gene therapy, it is essential to develop carriers that can efficiently transport nucleic acids into targeted cells and tissues. The instability of polyplexes in blood and other biological fluids is a crucial factor to consider when using non-viral carriers. In this study, we present serum-resistant and cRGD-modified DNA complexes for targeted delivery genes to UL cells. Ternary polyplexes were formed by incorporating cystine-cross-linked polyglutamic acid modified with histidine residues. We employed two techniques in the production of cross-linked polyanionic coating: matrix polymerization and oxidative polycondensation. In this study, we investigated the physicochemical properties of ternary DNA complexes, including the size and zeta-potential of the nanoparticles. Additionally, we evaluated cellular uptake, toxicity levels, transfection efficiency and specificity in vitro. The study involved introducing the HSV-TK gene into primary UL cells as a form of suicide gene therapy modeling. We have effectively employed ternary peptide-based complexes for gene delivery into the UL organtypic model. By implementing in situ suicide gene therapy, the increase in apoptosis genes expression was detected, providing conclusive evidence of apoptosis occurring in the transfected UL tissues. The results of the study strongly suggest that the developed ternary polyplexes show potential as a valuable tool in the implementation of suicide gene therapy for UL.


Assuntos
Leiomioma , Ácidos Nucleicos , Humanos , Feminino , DNA/genética , Leiomioma/genética , Leiomioma/terapia , Apoptose , Terapia Genética
16.
Molecules ; 28(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067446

RESUMO

A quantitative analysis of the relationship between the structure and inhibitory activity against the herpes simplex virus thymidine kinase (HSV-TK) was performed for the series of 5-ethyluridine, N2-guanine, and 6-oxopurines derivatives with pronounced anti-herpetic activity (IC50 = 0.09 ÷ 160,000 µmol/L) using the GUSAR 2019 software. On the basis of the MNA and QNA descriptors and whole-molecule descriptors using the self-consistent regression, 12 statistically significant consensus models for predicting numerical pIC50 values were constructed. These models demonstrated high predictive accuracy for the training and test sets. Molecular fragments of HSV-1 and HSV-2 TK inhibitors that enhance or diminish the anti-herpetic activity are considered. Virtual screening of the ChEMBL database using the developed QSAR models revealed 42 new effective HSV-1 and HSV-2 TK inhibitors. These compounds are promising for further research. The obtained data open up new opportunities for developing novel effective inhibitors of TK.


Assuntos
Herpesvirus Humano 1 , Relação Quantitativa Estrutura-Atividade , Guanina/química , Timidina Quinase , Herpesvirus Humano 2 , Simplexvirus , Antivirais/farmacologia
17.
Prostate ; 82(8): 911-916, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35294068

RESUMO

BACKGROUND: Thymidine kinase 1 (TK1) recycles DNA before cell division. We do not know if baseline blood concentrations of TK1 predict death in prostate cancer within 30 years. Our objective is to determine if there is an association between baseline levels of TK1 and future prostate cancer-specific mortality. METHODS: With a "proof of concept" approach, we performed a nested case-control study among 1782 individuals screened for prostate cancer between 1988 and 1989. The concentration of TK1 was measured in frozen serum from 330 men, 36 of whom have died of prostate cancer. The primary endpoint was prostate cancer-specific mortality and outcomes after 30 years were analyzed using logistic regression modeling odds ratios (Ors). RESULTS: The estimated OR (adjusted for age) for dying from prostate cancer among the men who had a TK1 value in the upper tertile was 2.39 (95% confidence interval 1.02-5.63). The corresponding OR, regardless of the cause of death, was 2.81 (1.24-6.34). CONCLUSIONS: High levels of TK1 predicts death in prostate cancer within 30 years of follow-up.


Assuntos
Neoplasias da Próstata , Timidina Quinase , Biomarcadores , Biomarcadores Tumorais , Estudos de Casos e Controles , Humanos , Masculino
18.
J Virol ; 95(24): e0139921, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34586865

RESUMO

Targeting host factors is a promising strategy to develop broad-spectrum antiviral drugs. Drugs targeting anti-apoptotic Bcl-2 family proteins that were originally developed as tumor suppressors have been reported to inhibit multiplication of different types of viruses. However, the mechanisms whereby Bcl-2 inhibitors exert their antiviral activity remain poorly understood. In this study, we have investigated the mechanisms by which obatoclax (OLX) and ABT-737 Bcl-2 inhibitors exhibited a potent antiviral activity against the mammarenavirus lymphocytic choriomeningitis virus (LCMV). OLX and ABT-737 potent anti-LCMV activity was not associated with their proapoptotic properties but rather with their ability to induce cell arrest at the G0/G1 phase. OLX- and ABT-737-mediated inhibition of Bcl-2 correlated with reduced expression levels of thymidine kinase 1 (TK1), cyclin A2 (CCNA2), and cyclin B1 (CCNB1) cell cycle regulators. In addition, small interfering RNA (siRNA)-mediated knockdown of TK1, CCNA2, and CCNB1 resulted in reduced levels of LCMV multiplication. The antiviral activity exerted by Bcl-2 inhibitors correlated with reduced levels of viral RNA synthesis at early times of infection. Importantly, ABT-737 exhibited moderate efficacy in a mouse model of LCMV infection, and Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results suggest that Bcl-2 inhibitors, actively being explored as anticancer therapeutics, might be repositioned as broad-spectrum antivirals. IMPORTANCE Antiapoptotic Bcl-2 inhibitors have been shown to exert potent antiviral activities against various types of viruses via mechanisms that are currently poorly understood. This study has revealed that Bcl-2 inhibitors' mediation of cell cycle arrest at the G0/G1 phase, rather than their proapoptotic activity, plays a critical role in blocking mammarenavirus multiplication in cultured cells. In addition, we show that Bcl-2 inhibitor ABT-737 exhibited moderate antimammarenavirus activity in vivo and that Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results suggest that Bcl-2 inhibitors, actively being explored as anticancer therapeutics, might be repositioned as broad-spectrum antivirals.


Assuntos
Apoptose , Arenaviridae/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células A549 , Animais , Antivirais/farmacologia , Proteínas Reguladoras de Apoptose/farmacologia , Compostos de Bifenilo/farmacologia , COVID-19/virologia , Ciclo Celular , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/virologia , Chlorocebus aethiops , Ciclina A2/biossíntese , Ciclina B1/biossíntese , Fase G1 , Humanos , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Pirróis/farmacologia , Fase de Repouso do Ciclo Celular , SARS-CoV-2 , Sulfonamidas/farmacologia , Timidina Quinase/biossíntese , Células Vero
19.
BMC Neurosci ; 23(1): 19, 2022 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-35346037

RESUMO

BACKGROUND: Deoxythymidine triphosphate (dTTP) is an essential building block of DNA, and defects in enzymes involved in dTTP synthesis cause neurodegenerative disorders. For instance, mutations in DTYMK, the gene coding for thymidylate kinase (TMPK), cause severe microcephaly in human. However, the mechanism behind this is not well-understood. Here we used the zebrafish model and studied (i) TMPK, an enzyme required for both the de novo and the salvage pathways of dTTP synthesis, and (ii) thymidine kinases (TK) of the salvage pathway in order to understand their role in neuropathology. RESULTS: Our findings reveal that maternal-stored dNTPs are only sufficient for 6 cell division cycles, and the levels of dNTPs are inversely correlated to cell cycle length during early embryogenesis. TMPK and TK activities are prominent in the cytosol of embryos, larvae and adult fish and brain contains the highest TMPK activity. During early development, TMPK activity increased gradually from 6 hpf and a profound increase was observed at 72 hpf, and TMPK activity reached its maximal level at 96 hpf, and remained at high level until 144 hpf. The expression of dtymk encoded Dtymk protein correlated to its mRNA expression and neuronal development but not to the TMPK activity detected. However, despite the high TMPK activity detected at later stages of development, the Dtymk protein was undetectable. Furthermore, the TMPK enzyme detected at later stages showed similar biochemical properties as the Dtymk enzyme but was not recognized by the Dtymk specific antibody. CONCLUSIONS: Our results suggest that active dNTP synthesis in early embryogenesis is vital and that Dtymk is essential for neurodevelopment, which is supported by a recent study of dtymk knockout zebrafish with neurological disorder and lethal outcomes. Furthermore, there is a novel TMPK-like enzyme expressed at later stages of development.


Assuntos
Doenças Neurodegenerativas , Núcleosídeo-Fosfato Quinase , Peixe-Zebra , Animais , Mutação , Doenças Neurodegenerativas/genética , Núcleosídeo-Fosfato Quinase/genética , Fosforilação , Timidina Quinase/metabolismo , Peixe-Zebra/metabolismo
20.
Mol Ther ; 29(4): 1585-1601, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33333291

RESUMO

Suicide gene therapies provide a unique ability to target cancer cells selectively, often based on modification of viral tropism or transcriptional regulation of therapeutic gene expression. We designed a novel suicide gene therapy approach wherein the gene product (herpes simplex virus thymidine kinase or yeast cytosine deaminase) is phosphorylated and stabilized in expression by the extracellular signal-regulated kinase (ERK), which is overactive in numerous cancers with elevated expression or mutation of receptor tyrosine kinases or the GTPase RAS. In contrast to transcriptional strategies for selectivity, regulation of protein stability by ERK allows for high copy expression via constitutive viral promoters, while maintaining tumor selectivity in contexts of elevated ERK activity. Thus, our approach turns a signaling pathway often coopted by cancer cells for survival into a lethal disadvantage in the presence of a chimeric protein and prodrug, as highlighted by a series of in vitro and in vivo examples explored here.


Assuntos
Citosina Desaminase/genética , Genes Transgênicos Suicidas/genética , Terapia Genética , Neoplasias/terapia , Timidina Quinase/genética , Animais , Citosina Desaminase/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Vetores Genéticos/genética , Xenoenxertos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Simplexvirus/enzimologia , Timidina Quinase/farmacologia , Células Tumorais Cultivadas , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA