Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17018, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37937464

RESUMO

Blooms of microalgal red tides and macroalgae (e.g., green and golden tides caused by Ulva and Sargassum) have caused widespread problems around China in recent years, but there is uncertainty around what triggers these blooms and how they interact. Here, we use 30 years of monitoring data to help answer these questions, focusing on the four main species of microalgae Prorocentrum donghaiense, Karenia mikimotoi, Noctiluca scintillans, and Skeletonema costatum) associated with red tides in the region. The frequency of red tides increased from 1991 to 2003 and then decreased until 2020, with S. costatum red tides exhibiting the highest rate of decrease. Green tides started to occur around China in 1999 and the frequency of green tides has since been on the increase. Golden tides were first reported to occur around China in 2012. The frequency of macroalgal blooms has a negative linear relationship with the frequency and coverage of red tides around China, and a positive correlation with total nitrogen and phosphorus loads as well as with atmospheric CO2 and sea surface temperature (SST). Increased outbreaks of macroalgal blooms are very likely due to worsening levels of eutrophication, combined with rising CO2 and SST, which contribute to the reduced frequency of red tides. The increasing grazing rate of microzooplankton also results in the decline in areas affected by red tides. This study shows a clear shift of algal blooms from microalgae to macroalgae around China over the past 30 years driven by the combination of eutrophication, climate change, and grazing stress, indicating a fundamental change in coastal systems in the region.


Assuntos
Dinoflagellida , Microalgas , Alga Marinha , Mudança Climática , Dióxido de Carbono , Eutrofização , China
2.
Eur Child Adolesc Psychiatry ; 33(8): 2767-2780, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38228758

RESUMO

Irritability is a common, impairing, and potentially multifaceted manifestation of psychopathology. We designed The Irritability and Dysregulation of Emotion Scale (TIDES-13) to determine whether various expressions of irritability in children and youth form multiple subdimensions with distinct correlates. We administered parent-report (n = 3875, mean age = 8.9) and youth self-report (n = 579, mean age = 15.1) versions of TIDES-13 in a population and community-based sample. We conducted exploratory/confirmatory factor analyses and regression analyses to examine the dimensionality of TIDES-13 and the associations of the scale with age, gender, anxiety, depression, ODD, ADHD traits, and the Affective Reactivity Index (ARI). A higher-order model with a global irritability dimension and four subdimensions, including proneness to anger (PA), internalized negative emotional reactivity (iNER), externalized negative emotional reactivity (eNER), and reactive aggression (RA), showed good to excellent fit in both parent-report and self-report. The global irritability dimension showed excellent internal reliability (⍵Total; parent-report = 0.97, ⍵Total; self-report = 0.95), explained a majority of the item variance (⍵Hierarchical; parent-report = 0.94, ⍵Hierarchical; self-report = 0.90), and was moderately correlated with the ARI (rparent = 0.68, rself = 0.77). Subdimensions PA, eNER, and RA were negatively associated with age in males, whereas iNER was positively associated with age in females. Traits of ODD and ADHD were associated primarily with the global irritability dimension, whereas iNER was strongly associated with anxiety and depression traits over and above the global irritability dimension. Our results support a unidimensional interpretation of irritability in a population sample. However, limited evidence of specific behavioral, age, and sex correlates with particular irritability subdimensions may warrant further investigation.


Assuntos
Humor Irritável , Psicometria , Autorrelato , Humanos , Humor Irritável/fisiologia , Masculino , Feminino , Criança , Adolescente , Reprodutibilidade dos Testes , Escalas de Graduação Psiquiátrica , Análise Fatorial , Pais/psicologia , Ansiedade/psicologia , Depressão/psicologia , Depressão/diagnóstico , Emoções/fisiologia
3.
Sensors (Basel) ; 24(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474892

RESUMO

This paper describes the design and optimization of a smart algorithm based on artificial intelligence to increase the accuracy of an ocean water current meter. The main purpose of water current meters is to obtain the fundamental frequency of the ocean waves and currents. The limiting factor in those underwater applications is power consumption and that is the reason to use only ultra-low power microcontrollers. On the other hand, nowadays extraction algorithms assume that the processed signal is defined in a fixed bandwidth. In our approach, belonging to the edge computing research area, we use a deep neural network to determine the narrow bandwidth for filtering the fundamental frequency of the ocean waves and currents on board instruments. The proposed solution is implemented on an 8 MHz ARM Cortex-M0+ microcontroller without a floating point unit requiring only 9.54 ms in the worst case based on a deep neural network solution. Compared to a greedy algorithm in terms of computational effort, our worst-case approach is 1.81 times faster than a fast Fourier transform with a length of 32 samples. The proposed solution is 2.33 times better when an artificial neural network approach is adopted.

4.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338330

RESUMO

With the COVID-19 pandemic behind us, the U.S. Food and Drug Administration (FDA) has approved 55 new drugs in 2023, a figure consistent with the number authorized in the last five years (53 per year on average). Thus, 2023 marks the second-best yearly FDA harvest after 2018 (59 approvals) in all the series. Monoclonal antibodies (mAbs) continue to be the class of drugs with the most approvals, with an exceptional 12, a number that makes it the most outstanding year for this class. As in 2022, five proteins/enzymes have been approved in 2023. However, no antibody-drug conjugates (ADCs) have been released onto the market. With respect to TIDES (peptides and oligonucleotides), 2023 has proved a spectacular year, with a total of nine approvals, corresponding to five peptides and four oligonucleotides. Natural products continue to be the best source of inspiration for drug development, with 10 new products on the market. Three drugs in this year's harvest are pegylated, which may indicate the return of pegylation as a method to increase the half-lives of drugs after the withdrawal of peginesatide from the market in 2013. Following the trends in recent years, two bispecific drugs have been authorized in 2023. As in the preceding years, fluorine and/or N-aromatic heterocycles are present in most of the drugs. Herein, the 55 new drugs approved by the FDA in 2023 are analyzed exclusively on the basis of their chemical structure. They are classified as the following: biologics (antibodies, proteins/enzymes); TIDES (peptide and oligonucleotides); combined drugs; pegylated drugs; natural products; nitrogen aromatic heterocycles; fluorine-containing molecules; and other small molecules.


Assuntos
Produtos Biológicos , Aprovação de Drogas , Estados Unidos , Humanos , Flúor , Pandemias , Preparações Farmacêuticas/química , Indústria Farmacêutica , Peptídeos/uso terapêutico , Anticorpos Monoclonais , Produtos Biológicos/uso terapêutico , Produtos Biológicos/química , United States Food and Drug Administration , Oligonucleotídeos/uso terapêutico , Polietilenoglicóis
5.
Environ Sci Technol ; 57(1): 770-779, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36511764

RESUMO

Despite green tides (or macroalgal blooms) having multiple negative effects, it is thought that they have a positive effect on carbon sequestration, although this aspect is rarely studied. Here, during the world's largest green tide (caused by Ulva prolifera) in the Yellow Sea, the concentration of dissolved organic carbon (DOC) increased by 20-37% in intensive macroalgal areas, and thousands of new molecular formulas rich in CHNO and CHOS were introduced. The DOC molecular species derived from U. prolifera constituted ∼18% of the total DOC molecular species in the seawater of bloom area, indicating the profound effect that green tides have on shaping coastal DOC. In addition, 46% of the macroalgae-derived DOC was labile DOC (LDOC), which had only a short residence time due to rapid microbial utilization. The remaining 54% was recalcitrant DOC (RDOC) rich in humic-like substances, polycyclic aromatics, and highly aromatic compounds that resisted microbial degradation and therefore have the potential to play a role in long-term carbon sequestration. Notably, source analysis showed that in addition to the microbial carbon pump, macroalgae are also an important source of RDOC. The number of RDOC molecular species contributed by macroalgae even exceed (77 vs 23%) that contributed by microorganisms.


Assuntos
Matéria Orgânica Dissolvida , Ulva , Eutrofização , Sequestro de Carbono , Água do Mar , Substâncias Húmicas , China
6.
J Phycol ; 59(1): 167-178, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36371650

RESUMO

The generalized use of molecular identification tools indicated that multispecific green tides are more common than previously thought. Temporal successions between bloom-forming species on a seasonal basis were also revealed in different cold temperate estuaries, suggesting a key role of photoperiod and temperature controlling bloom development and composition. According to the Intergovernmental Panel on Climate Change, water temperatures are predicted to increase around 4°C by 2100 in Ireland, especially during late spring coinciding with early green tide development. Considering current and predicted temperatures, and photoperiods during bloom development, different eco-physiological experiments were developed. These experiments indicated that the growth of Ulva lacinulata was controlled by temperature, while U. compressa was unresponsive to the photoperiod and temperatures assayed. Considering a scenario of global warming for Irish waters, an earlier development of bloom is expected in the case of U. lacinulata. This could have significant consequences for biomass balance in Irish estuaries and the maximum accumulated biomass during peak bloom. The observed seasonal patterns and experiments also indicated that U. compressa may facilitate U. lacinulata development. When both species were co-cultivated, the culture performance showed intermediate responses to experimental treatments in comparison with monospecific cultures of both species.


Assuntos
Clorófitas , Ulva , Temperatura , Eutrofização , Água do Mar , China
7.
Environ Res ; 238(Pt 1): 117110, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37696322

RESUMO

Understanding the control mechanisms of carbon dioxide (CO2) emissions in intertidal wetland sediments is beneficial for the concern of global carbon biogeochemistry and climate change. Nevertheless, multiple controls on CO2 emissions from intertidal wetland sediments to the atmosphere still need to be clarified. This study investigated the effect of tidal action on CO2 emissions from salt marsh sediments covered by Spartina alterniflora in the Jiaozhou Bay wetland using the static chamber method combined with an infrared CO2 detector. The results showed that the CO2 emission fluxes from the sediment during ebb tides were higher than those during flood tides. The whole wetland sediment acted as a weak source of atmospheric CO2 (average flux: 24.44 ± 16.80 mg C m-2 h-1) compared to terrestrial soils and was affected by the cycle of seawater inundation and exposure. The tidal influence on vertical dissolved inorganic carbon (DIC) transport in the sediment was also quantitated using a two-end member mixing model. The surface sediment layer (5-15 cm) with maximum DIC concentration during ebb tides became the one with minimum DIC concentration during flood tides, indicating the DIC transport from the surface sediment to seawater. Furthermore, aerobic respiration by microorganisms was the primary process of CO2 production in the sediment according to 16 S rDNA sequencing analysis. This study revealed the strong impact of tidal action on CO2 emissions from the wetland sediment and provided insights into the source-sink pattern of CO2 and DIC at the land-ocean interface.


Assuntos
Dióxido de Carbono , Áreas Alagadas , Dióxido de Carbono/análise , Metano/análise , Água do Mar , Solo/química
8.
Sensors (Basel) ; 23(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37765828

RESUMO

Due to the regional differences between the North and South Yellow Sea, and under the influence of winter winds, the relative changes in the coastal current and the Yellow Sea warm current will lead to the instability of the front, which will lead to the cross-front transport of sediment. Therefore, the study of sediment exchange between the North and South Yellow Sea has become an indispensable part of the study of the Yellow Sea environment. In this study, the current field and sediment concentration in the southern part of Chengshantou, a representative area of the Yellow Sea, were observed in winter in order to analyze the sediment exchange process between the North Yellow Sea and the South Yellow Sea in winter. The observation results show that in the southern sea area of Chengshantou, in winter, the current velocity does not change with the water depth when it exceeds 15 m, and the tides are regular semi-diurnal tides. When the water depth is less than 15 m, the current direction changes clockwise with the increase in the water depth. The turbidity increases rapidly when the wind direction is offshore and the bottom residual current is onshore, which may cause the sediment transported offshore under the action of wind and ocean current to settle under the obstruction of the Yellow Sea warm current, resulting in the rise of bottom turbidity. This also indicates that the change in residual current direction at different water depths may also lead to an increase in suspended sediment concentration. Based on this, in the estuarine area, the relative change in the current direction between the wind current and the coastal current may also be the cause of the change in the maximum turbidity zone.

9.
Sensors (Basel) ; 23(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631597

RESUMO

In this study, we present the feasibility of using gravity measurements made with a small inertial navigation system (INS) during in situ experiments, and also mounted on an unmanned aerial vehicle (UAV), to recover local gravity field variations. The INS operated is the SPATIAL one developed by Advanced Navigation, which has three-axis accelerometers. When the temperature bias is corrected, these types of INS are powerful enough to present the periodic signal corresponding to the solid Earth tides. There is also a clear correlation with the data measured at different altitudes by a CG5 gravimeter. However, these data were recorded on static points, so we also studied the INS in a moving platform on a UAV. Because there are a lot of vibrations recorded by the INS (wind, motor, on-board computer), the GPS and accelerometric data need to be filtered extensively. Once the data are corrected so they do not show thermal bias and low-pass filtered, we take the second derivative of the altitude (GPS) data to find the radial accelerometry of the drone and compare it to the radial accelerometry measured directly by the INS, in order to isolate the accelerometric signal that is related to the area that is being studied and the altitude. With a high enough precision, this method could be used to obtain the gravity variations due to the topography and density variations in the ground.

10.
Sensors (Basel) ; 23(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37514843

RESUMO

Underwater sensor networks play a crucial role in collecting valuable data to monitor offshore aquaculture infrastructures. The number of deployed devices not only impacts the bandwidth for a highly constrained communication environment, but also the cost of the sensor network. On the other hand, industrial and literature current meters work as raw data loggers, and most of the calculations to determine the fundamental frequencies are performed offline on a desktop computer or in the cloud. Belonging to the edge computing research area, this paper presents an algorithm to extract the fundamental frequencies of water currents in an underwater sensor network deployed in offshore aquaculture infrastructures. The target sensor node is based on a commercial ultra-low-power microcontroller. The proposed fundamental frequency identification algorithm only requires the use of an integer arithmetic unit. Our approach exploits the mathematical properties of the finite impulse response (FIR) filtering in the integer domain. The design and implementation of the presented algorithm are discussed in detail in terms of FIR tuning/coefficient selection, memory usage and variable domain for its mathematical formulation aimed at reducing the computational effort required. The approach is validated using a shallow water current model and real-world raw data from an offshore aquaculture infrastructure. The extracted frequencies have a maximum error below a 4%.

11.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770706

RESUMO

While 2021 ended with the world engulfed in the COVID-19 Omicron wave, 2022 has ended in almost all countries, except China, with COVID-19 being likened to the flu. In this context, the U.S. Food and Drug Administration (FDA) has authorized only 37 new drugs this year compared to an average of 52 in the last four years. Thus 2022 is the second lowest harvest after 2016 in the last six years. This ranking may be transient and will be confirmed in the coming years. In this regard, the reduction in the number of drugs accepted by the FDA this year applies only to the so-called small molecules as there has been no variation in the respective numbers of biologics or TIDES (peptides and oligonucleotides). Monoclonal antibodies (mAbs) continue to be the class with the most drugs authorized (9), while proteins/enzymes (5) and an antibody-drug conjugate complete the biologics harvest. In 2022, five TIDES and seven drugs inspired by natural products have received the green light, thus showing the same tendency as in previous years. Finally, pharmaceutical agents with nitrogen aromatic heterocycles and/or fluorine atoms continue to be predominant among small molecules this year. Furthermore, three drugs have been approved for imaging, reinforcing the trend in recent years for this class of treatments. A keyword in 2022 is bispecificity since four drugs have this property (two mAbs, one protein, and one peptide). Herein, the 37 new drugs approved by the FDA in 2022 are analyzed. On the basis of chemical structure alone, these drugs are classified as the following: biologics (antibodies, antibody-drug conjugates, proteins/enzymes), TIDES (peptide and oligonucleotides), combined drugs, natural products; nitrogen aromatic heterocycles, fluorine-containing molecules, and other small molecules.


Assuntos
Produtos Biológicos , COVID-19 , Imunoconjugados , Estados Unidos , Humanos , Aprovação de Drogas , Flúor , Preparações Farmacêuticas/química , Anticorpos Monoclonais/química , Fatores Biológicos , Peptídeos/uso terapêutico , Produtos Biológicos/uso terapêutico , Produtos Biológicos/química , Indústria Farmacêutica , United States Food and Drug Administration , Oligonucleotídeos
12.
Geophys Res Lett ; 49(17): e2022GL100369, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36245895

RESUMO

The semidiurnal tidal spectrum in the F-region ionosphere obtained from hourly COSMIC-2 Global Ionospheric Specification (GIS) data assimilation is greatly (>50%) enhanced during the January 2021 Sudden Stratospheric Warming (SSW). Moreover, the semidiurnal migrating tidal response in topside electron densities closely follows the day-to-day changes of the 10 hPa, 60°N zonal wind from MERRA-2 during the SSW. The response is similar in the northern and southern crests of the Equatorial Ionization Anomaly (EIA) but persists toward higher magnetic latitudes and the EIA trough. A slight phase shift toward earlier local times is consistent with theoretical expectations of an E-region dynamo driving and agrees with semidiurnal tidal diagnostics of MIGHTI/ICON zonal winds at 105 km. COSMIC-2 GIS are the first data set to resolve the tidal weather of the ionosphere on a day-to-day basis and, therefore, provide a new perspective on space weather variability driven by lower and middle atmosphere dynamics.

13.
Sensors (Basel) ; 22(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35898017

RESUMO

This paper presents a tidal current meter that is based on the inertial acceleration principle for offshore infrastructures in deep water. Focusing on the marine installations of the aquaculture industry, we studied the forces of tides at a depth of 15 m by measuring the acceleration. In addition, we used a commercial MEMS triaxial accelerometer to record the acceleration values. A prototype of the tidal measurement unit was developed and tested at a real offshore aquaculture infrastructure in Gran Canaria, which is one of the Canary Islands in the Atlantic Ocean. The proposed tidal measurement unit was used as a recorder to assess the complexity of measuring the frequency of tidal currents in the short (10 min), medium (one day) and long term (one week). The acquired data were studied in detail, in both the time and frequency domains, to determine the frequency of the forces that were involved. Finally, the complexity of the frequency measurements from the captured data was analyzed in terms of sampling ratio and recording duration, from the point of view of using our proposed measurement unit as an ultra-low-power embedded system. The proposed device was tested for more than 180 days using a lithium-ion battery. This working period was three times greater than the best alternative in the literature because of the ultra-low-power design of the on-board embedded system. The measurement accuracy error was lower than 1% and the resolution was 0.01 cm/s for the 0.8 m/s velocity scale. This performance was similar to the best Doppler solution that was found in the literature.


Assuntos
Aquicultura , Água , Aceleração , Fontes de Energia Elétrica , Lítio
14.
J Environ Manage ; 303: 114258, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915304

RESUMO

Pelagic Sargassum, usually found at the Sargasso Sea and the Western portion of the North Atlantic and Gulf of Mexico, has been detected in many new locations through the tropical Atlantic. The huge biomass found from the African coast to the Caribbean was called the Great Atlantic Sargassum Belt and is responsible for the stranding of tons of algae on coastal regions. Despite the environmental, social, and economic impacts, sargassum is a valuable source for multiple uses at the industry, such as alginates, cosmetics, recycled paper and bioplastics, fertilizers, and as raw material for civil construction. This work presents a systematic literature review on the use of algae at the civil construction sector, with a focus on the valorization of the pelagic Sargassum spp. biomass, by identifying the potential applications related to the use of other algal species. The review considered other genera of marine algae and marine angiosperms, resulting in a total of 31 selected articles. The marine grass Posidonia oceanica was the most used species, found in eight published papers, followed by the red alga Kappaphycus alvarezii with four studies. Two articles were available on the use of pelagic Sargassum spp. (S. fluitans and S.natans) for construction materials (adobe and pavement), with potential good results. The literature presented results from the use of marine algae and sea grasses for particleboards, polymeric and cemented composites, adobe, pavement, facades, and roofs. This article provides a state-of-the-art review of algal application in the civil construction sector and points out the main directions for the potentialities on the insertion of the Sargassum spp. biomass into the production chain of the sector.


Assuntos
Materiais de Construção , Indústrias , Sargassum , Biomassa , Região do Caribe , Golfo do México
15.
Molecules ; 27(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35164339

RESUMO

Similar to last year, 2021 will be remembered for the COVID-19 pandemic. Although five vaccines have been approved by the two most important drug regulatory agencies, namely the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA), the pandemic has still not been brought under control. However, despite the context of a global pandemic, 2021 has been an excellent year with respect to drug approvals by the FDA. In 2021, 50 drugs have been authorized, making it the fourth-best year after 2018 (59 drugs) and 1996 and 2020 (53 each). Regarding biologics, 2021 has been the third-best year to date, with 14 approvals, and it has also witnessed the authorization of 36 small molecules. Of note, nine peptides, eight monoclonal antibodies, two antibody-drug conjugates, and two oligonucleotides have been approved this year. From them, five of the molecules are pegylated and three of them highly pegylated. The presence of nitrogen aromatic heterocycles and/or fluorine atoms are once again predominant among the so-called small molecules. This report analyzes the 50 new drugs approved in 2021 from a chemical perspective, as it did for those authorized in the previous five years. On the basis of chemical structure alone, the drugs that received approval in 2021 are classified as the following: biologics (antibodies, antibody-drug conjugates, enzymes, and pegylated proteins); TIDES (peptide and oligonucleotides); combined drugs; natural products; nitrogen aromatic heterocycles; fluorine-containing molecules; and other small molecules.


Assuntos
Aprovação de Drogas , Indústria Farmacêutica , United States Food and Drug Administration , Produtos Biológicos , Aprovação de Drogas/história , Aprovação de Drogas/estatística & dados numéricos , Indústria Farmacêutica/história , História do Século XXI , Humanos , Estados Unidos
16.
Bull Environ Contam Toxicol ; 109(6): 1037-1042, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36121466

RESUMO

Limited information exists on the occurrence of microplastics (MPs) in East African coastal waters. A 300 µm manta net was used to collect surface water from 8 sites in the regions Dar es Salaam (DES) and Zanzibar (ZZ) during low and high tides. DES had a higher (p < 0.05) abundance of MPs than ZZ. Fragments and fibers were the dominant MP types at all sites. The number of fibers was significantly higher (p = 0.002) in DES than in ZZ. MPs were more prevalent during high tide in both DES and ZZ. The MPs within the 2-5 mm size range were identified most often. White and blue MPs were the most common in study sites comprising 45% and 18% of the total MPs respectively. Three polymers polypropylene (PP) high-density polyethylene (HDPE) and low-density polyethylene (LDPE) were identified. The occurrence of MPs in nearshore waters of DES and ZZ is probably due to their proximity to industrial areas, poor solid waste management, and high population pressure.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Tanzânia , Poluentes Químicos da Água/análise , Polietileno , Monitoramento Ambiental
17.
J Anim Ecol ; 90(10): 2302-2314, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34121177

RESUMO

An animal's energy landscape considers the power requirements associated with residing in or moving through habitats. Within marine environments, these landscapes can be dynamic as water currents will influence animal power requirements and can change rapidly over diel and tidal cycles. In channels and along slopes with strong currents, updraft zones may reduce energy expenditure of negatively buoyant fishes that are also obligate swimmers. Despite marine predators often residing within high-current area, no study has investigated the potential role of the energetic landscape in driving such habitat selectivity. Over 500 grey reef sharks Carcharhinus amblyrhynchos reside in the southern channel of Fakarava Atoll, French Polynesia. We used diver observations, acoustic telemetry and biologging to show that sharks use regions of predicted updrafts and switch their core area of space use based on tidal state (incoming versus outgoing). During incoming tides, sharks form tight groups and display shuttling behaviour (moving to the front of the group and letting the current move them to the back) to maintain themselves in these potential updraft zones. During outgoing tides, group dispersion increases, swimming depths decrease and shuttling behaviours cease. These changes are likely due to shifts in the nature and location of the updraft zones, as well as turbulence during outgoing tides. Using a biomechanical model, we estimate that routine metabolic rates for sharks may be reduced by 10%-15% when in updraft zones. Grey reef sharks save energy using predicted updraft zones in channels and 'surfing the slope'. Analogous to birds using wind-driven updraft zones, negatively buoyant marine animals may use current-induced updraft zones to reduce energy expenditure. Updrafts should be incorporated into dynamic energy landscapes and may partially explain the distribution, behaviour and potentially abundance of marine predators.


Assuntos
Tubarões , Animais , Recifes de Corais , Ecossistema , Metabolismo Energético , Telemetria
18.
Geophys Res Lett ; 48(11): e2020GL090775, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34219828

RESUMO

Coastal boulder deposits (CBD) provide what are sometimes the only remaining signatures of wave inundation on rocky coastlines; in recent decades, CBD combined with initiation of motion (IoM) analyses have repeatedly been used as primary evidence to infer the existence of ancient tsunamis. However, IoM storm wave heights inferred by these studies have been shown to be highly inaccurate, bringing some inferences into question. This work develops a dimensionless framework to relate CBD properties with storm-wave hindcasts and measurements, producing data-driven relations between wave climate and boulder properties. We present an elevation-density-size-inland distance-wave height analysis for individual storm-transported boulders which delineates the dynamic space where storm-wave CBD occur. Testing these new relations against presumed tsunami CBD demonstrates that some fall well within the capabilities of storm events, suggesting that some previous studies might be fruitfully reexamined within the context of this new framework.

19.
Environ Res ; 196: 110381, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33130173

RESUMO

Coastal organisms (i.e. intertidal or upper subtidal species) live in between the terrestrial and aquatic realms, making them particularly vulnerable to climate change. In this context, intertidal organisms may suffer from the predicted sea level rise (increasing their submerged time) while subtidal organisms may suffer from anthropically-induced hypoxia and its consequences. Although there is some knowledge on how coastal organisms adapt to environmental changes, the biochemical and physiological consequences of prolonged submergence periods have not yet been well characterized. Thus, the present study aimed to assess the biochemical alterations experienced by intertidal organisms maintained always under tidal exposure (IT); intertidal organisms maintained submersed (IS); subtidal organisms maintained always submersed (SS); subtidal organisms under tidal exposure (ST). For this, Mytilus galloprovincialis specimens from contiguous intertidal and subtidal populations were exposed to the above mentioned conditions for twenty-eight days. Results indicated that both intertidal and subtidal mussels are adapted to the oxidative stress pressure caused by tidal and submerged conditions tested. Intertidal mussels did not seem to be negatively affected by submergence while ST specimens were energetically challenged by tidal exposure. Both IT and ST mussels consumed glycogen to fuel up mechanisms aiming to maintain redox homeostasis. Overall, both intertidal and subtidal populations were capable of coping with tidal exposure, although the strategies employed differed between them. These findings indicate that although IT mussels may not significantly suffer from the longer-term submergence, hypoxic events occurring in the context of global warming and other anthropogenic impacts may have consequences on both IT and ST populations. Altogether, it is important to highlight that tides may act as a confounding factor in experiments concerning coastal organisms, as it causes additional physiological and biochemical perturbations.


Assuntos
Mytilus , Adaptação Fisiológica , Animais , Mudança Climática , Estresse Oxidativo , Alimentos Marinhos
20.
J Environ Manage ; 283: 112013, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508553

RESUMO

Since long ago, pelagic Sargassum mats have been known to be abundant in the Sargasso Sea, where they provide habitat to diverse organisms. However, over the last few years, massive amounts of pelagic Sargassum have reached the coast of several countries in the Caribbean and West Africa, causing economic and environmental problems. Aiming for lessening the impacts of the blooms, governments and private companies remove the seaweeds from the shore, but this process results expensive. The valorization of this abundant biomass can render Sargassum tides into an economic opportunity and concurrently solve their associated environmental problems. Despite the diverse fields where algae have found applications and the relevance of this recurrent situation, Sargassum biomass remains without large scale applications. Therefore, this review aims to present the potential uses of these algae, identifying the limitations that must be assessed to effectively valorize this bioresource. Due to the constraints identified for each of the presented applications, it is concluded that a biorefinery approach should be developed to effectively valorize this abundant biomass. However, there is an urgent need for investigations focusing on holopelagic Sargassum to be able to truly valorize this seaweed.


Assuntos
Sargassum , Alga Marinha , África Ocidental , Biomassa , Região do Caribe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA