Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(9): 107677, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151728

RESUMO

The tricarboxylic acid (TCA) cycle plays a crucial role in mitochondrial ATP production in the healthy heart. However, in heart failure, the TCA cycle becomes dysregulated. Understanding the mechanism by which TCA cycle genes are transcribed in the healthy heart is an important prerequisite to understanding how these genes become dysregulated in the failing heart. PPARγ coactivator 1α (PGC-1α) is a transcriptional coactivator that broadly induces genes involved in mitochondrial ATP production. PGC-1α potentiates its effects through the coactivation of coupled transcription factors, such as estrogen-related receptor (ERR), nuclear respiratory factor 1 (Nrf1), GA-binding protein-a (Gabpa), and Yin Yang 1 (YY1). We hypothesized that PGC-1α plays an essential role in the transcription of TCA cycle genes. Thus, utilizing localization peaks of PGC-1α to TCA cycle gene promoters would allow the identification of coupled transcription factors. PGC-1α potentiated the transcription of 13 out of 14 TCA cycle genes, partly through ERR, Nrf1, Gabpa, and YY1. ChIP-sequencing showed PGC-1α localization peaks in TCA cycle gene promoters. Transcription factors with binding elements that were found proximal to PGC-1α peak localization were generally essential for the transcription of the gene. These transcription factor binding elements were well conserved between mice and humans. Among the four transcription factors, ERR and Gabpa played a major role in potentiating transcription when compared to Nrf1 and YY1. These transcription factor-dependent PGC-1α recruitment was verified with Idh3a, Idh3g, and Sdha promoters with DNA binding assay. Taken together, this study clarifies the mechanism by which TCA cycle genes are transcribed, which could be useful in understanding how those genes are dysregulated in pathological conditions.

2.
J Biol Chem ; 300(10): 107746, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236875

RESUMO

Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases. Cardiolipin, the signature phospholipid of the mitochondrion, affects proper cristae morphology, bioenergetic functions, and metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in tafazzin are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impacts metabolic flux through the TCA cycle and associated yeast pathways. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a WT strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through twelve metabolites. Several of the metabolites were specific to yeast pathways including branched chain amino acids and fusel alcohol synthesis. While most metabolites showed similar kinetics among the different strains, mevalonate concentrations were significantly increased in Δtaz1 mitochondria. Additionally, the kinetic profiles of α-ketoglutarate, as well as NAD+ and NADH measured in separate experiments, displayed significantly lower concentrations for Δtaz1 and Δcrd1 mitochondria at most time points. Taken together, the results show how cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.

3.
Cell Mol Life Sci ; 81(1): 340, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120696

RESUMO

Copper is a trace element essential for numerous biological activities, whereas the mitochondria serve as both major sites of intracellular copper utilization and copper reservoir. Here, we investigated the impact of mitochondrial copper overload on the tricarboxylic acid cycle, renal senescence and fibrosis. We found that copper ion levels are significantly elevated in the mitochondria in fibrotic kidney tissues, which are accompanied by reduced pyruvate dehydrogenase (PDH) activity, mitochondrial dysfunction, cellular senescence and renal fibrosis. Conversely, lowering mitochondrial copper levels effectively restore PDH enzyme activity, improve mitochondrial function, mitigate cellular senescence and renal fibrosis. Mechanically, we found that mitochondrial copper could bind directly to lipoylated dihydrolipoamide acetyltransferase (DLAT), the E2 component of the PDH complex, thereby changing the interaction between the subunits of lipoylated DLAT, inducing lipoylated DLAT protein dimerization, and ultimately inhibiting PDH enzyme activity. Collectively, our study indicates that mitochondrial copper overload could inhibit PDH activity, subsequently leading to mitochondrial dysfunction, cellular senescence and renal fibrosis. Reducing mitochondrial copper overload might therefore serve as a strategy to rescue renal fibrosis.


Assuntos
Senescência Celular , Cobre , Fibrose , Rim , Mitocôndrias , Complexo Piruvato Desidrogenase , Cobre/metabolismo , Mitocôndrias/metabolismo , Fibrose/metabolismo , Animais , Complexo Piruvato Desidrogenase/metabolismo , Rim/metabolismo , Rim/patologia , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Ciclo do Ácido Cítrico
4.
J Proteome Res ; 23(8): 3025-3040, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566450

RESUMO

Despite the recent and increasing knowledge surrounding COVID-19 infection, the underlying mechanisms of the persistence of symptoms for a long time after the acute infection are still not completely understood. Here, a multiplatform mass spectrometry-based approach was used for metabolomic and lipidomic profiling of human plasma samples from Long COVID patients (n = 40) to reveal mitochondrial dysfunction when compared with individuals fully recovered from acute mild COVID-19 (n = 40). Untargeted metabolomic analysis using CE-ESI(+/-)-TOF-MS and GC-Q-MS was performed. Additionally, a lipidomic analysis using LC-ESI(+/-)-QTOF-MS based on an in-house library revealed 447 lipid species identified with a high confidence annotation level. The integration of complementary analytical platforms has allowed a comprehensive metabolic and lipidomic characterization of plasma alterations in Long COVID disease that found 46 relevant metabolites which allowed to discriminate between Long COVID and fully recovered patients. We report specific metabolites altered in Long COVID, mainly related to a decrease in the amino acid metabolism and ceramide plasma levels and an increase in the tricarboxylic acid (TCA) cycle, reinforcing the evidence of an impaired mitochondrial function. The most relevant alterations shown in this study will help to better understand the insights of Long COVID syndrome by providing a deeper knowledge of the metabolomic basis of the pathology.


Assuntos
COVID-19 , Lipidômica , Metabolômica , Mitocôndrias , SARS-CoV-2 , Humanos , COVID-19/sangue , COVID-19/virologia , COVID-19/metabolismo , Metabolômica/métodos , Mitocôndrias/metabolismo , Lipidômica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Espectrometria de Massas/métodos , Síndrome de COVID-19 Pós-Aguda , Metaboloma , Adulto , Ciclo do Ácido Cítrico , Ceramidas/sangue , Ceramidas/metabolismo
5.
J Appl Microbiol ; 133(3): 1660-1675, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35702895

RESUMO

AIMS: The work aimed to understand the important changes during glucose metabolism in Saccharomyces cerevisiae under acidified sodium nitrite (ac.NaNO2 ) mediated nitrosative stress. METHODS AND RESULTS: Confocal microscopy and fluorescence-activated cell sorting analysis were performed to investigate the generation of reactive nitrogen and oxygen species, and redox homeostasis under nitrosative stress was also characterized. Quantitative PCR analysis revealed that the expression of ADH genes was upregulated under such condition, whereas the ACO2 gene was downregulated. Some of the enzymes of the tricarboxylic acid cycle were partially inhibited, whereas malate metabolism and alcoholic fermentation were increased under nitrosative stress. Kinetics of ethanol production was also characterized. A network analysis was conducted to validate our findings. In the presence of ac.NaNO2 , in vitro protein tyrosine nitration formation was checked by western blotting using pure alcohol dehydrogenase and aconitase. CONCLUSIONS: Alcoholic fermentation rate was increased under stress condition and this altered metabolism might be conjoined with the defence machinery to overcome the nitrosative stress. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first work of this kind where the role of metabolism under nitrosative stress has been characterized in S. cerevisiae and it will provide a base to develop an alternative method of industrial ethanol production.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Estresse Nitrosativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Nitrito de Sódio/metabolismo , Nitrito de Sódio/farmacologia
6.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806730

RESUMO

Depending on their tissue of origin, genetic and epigenetic marks and microenvironmental influences, cancer cells cover a broad range of metabolic activities that fluctuate over time and space. At the core of most metabolic pathways, mitochondria are essential organelles that participate in energy and biomass production, act as metabolic sensors, control cancer cell death, and initiate signaling pathways related to cancer cell migration, invasion, metastasis and resistance to treatments. While some mitochondrial modifications provide aggressive advantages to cancer cells, others are detrimental. This comprehensive review summarizes the current knowledge about mitochondrial transfers that can occur between cancer and nonmalignant cells. Among different mechanisms comprising gap junctions and cell-cell fusion, tunneling nanotubes are increasingly recognized as a main intercellular platform for unidirectional and bidirectional mitochondrial exchanges. Understanding their structure and functionality is an important task expected to generate new anticancer approaches aimed at interfering with gains of functions (e.g., cancer cell proliferation, migration, invasion, metastasis and chemoresistance) or damaged mitochondria elimination associated with mitochondrial transfer.


Assuntos
Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Transporte Biológico , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Ciclo do Ácido Cítrico , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético , Humanos , Redes e Vias Metabólicas , Microtúbulos/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral
7.
New Phytol ; 228(1): 56-69, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32415853

RESUMO

Leaf respiration in the dark (Rdark ) is often measured at a single time during the day, with hot-acclimation lowering Rdark at a common measuring temperature. However, it is unclear whether the diel cycle influences the extent of thermal acclimation of Rdark , or how temperature and time of day interact to influence respiratory metabolites. To examine these issues, we grew rice under 25°C : 20°C, 30°C : 25°C and 40°C : 35°C day : night cycles, measuring Rdark and changes in metabolites at five time points spanning a single 24-h period. Rdark differed among the treatments and with time of day. However, there was no significant interaction between time and growth temperature, indicating that the diel cycle does not alter thermal acclimation of Rdark . Amino acids were highly responsive to the diel cycle and growth temperature, and many were negatively correlated with carbohydrates and with organic acids of the tricarboxylic acid (TCA) cycle. Organic TCA intermediates were significantly altered by the diel cycle irrespective of growth temperature, which we attributed to light-dependent regulatory control of TCA enzyme activities. Collectively, our study shows that environmental disruption of the balance between respiratory substrate supply and demand is corrected for by shifts in TCA-dependent metabolites.


Assuntos
Oryza , Dióxido de Carbono , Respiração Celular , Fotossíntese , Folhas de Planta , Taxa Respiratória , Temperatura
8.
J Dairy Sci ; 103(12): 11439-11448, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33222856

RESUMO

Nutritional interventions, either by controlling dietary energy (DE) or supplementing rumen-protected choline (RPC) or both, may mitigate negative postpartum metabolic health outcomes. A companion paper previously reported the effects of DE density and RPC supplementation on production and health outcomes. The objective of this study was to examine the effects of DE and RPC supplementation on the expression of hepatic oxidative, gluconeogenic, and lipid transport genes during the periparturient period. At 47 ± 6 d relative to calving (DRTC), 93 multiparous Holstein cows were randomly assigned in groups to dietary treatments in a 2 × 2 factorial of (1) excess energy (EXE) without RPC supplementation (1.63 Mcal of NEL/kg of dry matter; EXE-RPC); (2) maintenance energy (MNE) without RPC supplementation (1.40 Mcal of NEL/kg dry matter; MNE-RPC); (3) EXE with RPC supplementation (EXE+RPC); and (4) MNE with RPC supplementation (MNE+RPC). To achieve the objective of this research, liver biopsy samples were collected at -14, +7, +14, and +21 DRTC and analyzed for mRNA expression (n = 16/treatment). The interaction of DE × RPC decreased glucose-6-phosphatase and increased peroxisome proliferator-activated receptor α in MNE+RPC cows. Expression of cytosolic phosphoenolpyruvate carboxykinase was altered by the interaction of dietary treatments with reduced expression in EXE+RPC cows. A dietary treatment interaction was detected for expression of pyruvate carboxylase although means were not separated. Dietary treatment interactions did not alter expression of carnitine palmitoyltransferase 1A or microsomal triglyceride transfer protein. The 3-way interaction of DE × RPC × DRTC affected expression of carnitine palmitoyltransferase 1A, glucose-6-phosphatase, and peroxisome proliferator-activated receptor α and tended to affect cytosolic phosphoenolpyruvate carboxykinase. Despite previously reported independent effects of DE and RPC on production variables, treatments interacted to influence hepatic metabolism through altered gene expression.


Assuntos
Bovinos/genética , Colina/administração & dosagem , Ingestão de Energia/fisiologia , Gluconeogênese/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Animais , Bovinos/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Feminino , Expressão Gênica/fisiologia , Glucose-6-Fosfatase/metabolismo , Lactação/efeitos dos fármacos , Leite/metabolismo , Período Periparto/efeitos dos fármacos , Gravidez , Cuidado Pré-Natal , Rúmen/metabolismo
9.
Int J Mol Sci ; 21(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575796

RESUMO

Mitochondria are essential cellular components that ensure physiological metabolic functions. They provide energy in the form of adenosine triphosphate (ATP) through the electron transport chain (ETC). They also constitute a metabolic hub in which metabolites are used and processed, notably through the tricarboxylic acid (TCA) cycle. These newly generated metabolites have the capacity to feed other cellular metabolic pathways; modify cellular functions; and, ultimately, generate specific phenotypes. Mitochondria also provide intracellular signaling cues through reactive oxygen species (ROS) production. As expected with such a central cellular role, mitochondrial dysfunctions have been linked to many different diseases. The origins of some of these diseases could be pinpointed to specific mutations in both mitochondrial- and nuclear-encoded genes. In addition to their impressive intracellular tasks, mitochondria also provide intercellular signaling as they can be exchanged between cells, with resulting effects ranging from repair of damaged cells to strengthened progression and chemo-resistance of cancer cells. Several therapeutic options can now be envisioned to rescue mitochondria-defective cells. They include gene therapy for both mitochondrial and nuclear defective genes. Transferring exogenous mitochondria to target cells is also a whole new area of investigation. Finally, supplementing targeted metabolites, possibly through microbiota transplantation, appears as another therapeutic approach full of promises.


Assuntos
Doenças Metabólicas/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Ciclo do Ácido Cítrico , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Redes e Vias Metabólicas , Metabolômica , Espécies Reativas de Oxigênio/metabolismo
10.
Biochim Biophys Acta ; 1857(6): 810-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26946085

RESUMO

Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance.


Assuntos
Nucleotídeos de Adenina/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Malato Desidrogenase/metabolismo , Proteínas Mitocondriais/metabolismo , Nucleotídeos de Adenina/metabolismo , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biocatálise/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Immunoblotting , Malato Desidrogenase/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Oxirredução , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
J Exp Bot ; 66(19): 5769-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26139821

RESUMO

Dissimilation of carbon sources during plant respiration in support of metabolic processes results in the continuous release of CO2. The carbon isotopic composition of leaf dark-respired CO2 (i.e. δ (13) C R ) shows daily enrichments up to 14.8‰ under different environmental conditions. However, the reasons for this (13)C enrichment in leaf dark-respired CO2 are not fully understood, since daily changes in δ(13)C of putative leaf respiratory carbon sources (δ (13) C RS ) are not yet clear. Thus, we exposed potato plants (Solanum tuberosum) to different temperature and soil moisture treatments. We determined δ (13) C R with an in-tube incubation technique and δ (13) C RS with compound-specific isotope analysis during a daily cycle. The highest δ (13) C RS values were found in the organic acid malate under different environmental conditions, showing less negative values compared to δ (13) C R (up to 5.2‰) and compared to δ (13) C RS of soluble carbohydrates, citrate and starch (up to 8.8‰). Moreover, linear relationships between δ (13) C R and δ (13) C RS among different putative carbon sources were strongest for malate during daytime (r(2)=0.69, P≤0.001) and nighttime (r(2)=0.36, P≤0.001) under all environmental conditions. A multiple linear regression analysis revealed δ (13) C RS of malate as the most important carbon source influencing δ (13) C R . Thus, our results strongly indicate malate as a key carbon source of (13)C enriched dark-respired CO2 in potato plants, probably driven by an anapleurotic flux replenishing intermediates of the Krebs cycle.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Solanum tuberosum/metabolismo , Ácidos/metabolismo , Metabolismo dos Carboidratos , Isótopos de Carbono/análise , Compostos Orgânicos/metabolismo , Solo/química , Amido/metabolismo , Temperatura
12.
J Biol Chem ; 288(50): 36116-28, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24194525

RESUMO

The tricarboxylic acid cycle (TCA cycle) is a central metabolic pathway that provides energy, reducing potential, and biosynthetic intermediates. In Staphylococcus aureus, TCA cycle activity is controlled by several regulators (e.g. CcpA, CodY, and RpiRc) in response to the availability of sugars, amino acids, and environmental stress. Developing a bioinformatic search for additional carbon catabolite-responsive regulators in S. aureus, we identified a LysR-type regulator, catabolite control protein E (CcpE), with homology to the Bacillus subtilis CcpC regulator. Inactivation of ccpE in S. aureus strain Newman revealed that CcpE is a positive transcriptional effector of the first two enzymes of the TCA cycle, aconitase (citB) and to a lesser extent citrate synthase (citZ). Consistent with the transcriptional data, aconitase activity dramatically decreased in the ccpE mutant relative to the wild-type strain. The effect of ccpE inactivation on citB transcription and the lesser effect on citZ transcription were also reflected in electrophoretic mobility shift assays where CcpE bound to the citB promoter but not the citZ promoter. Metabolomic studies showed that inactivation of ccpE resulted in increased intracellular concentrations of acetate, citrate, lactate, and alanine, consistent with a redirection of carbon away from the TCA cycle. Taken together, our data suggest that CcpE is a major direct positive regulator of the TCA cycle gene citB.


Assuntos
Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico/genética , Proteínas Repressoras/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Deleção de Genes , Loci Gênicos/genética , Metaboloma , Dados de Sequência Molecular , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Staphylococcus aureus/crescimento & desenvolvimento
13.
J Biol Chem ; 288(34): 24293-301, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836905

RESUMO

Respiratory processes often use quinone oxidoreduction to generate a transmembrane proton gradient, making the 2H(+)/2e(-) quinone chemistry important for ATP synthesis. There are a variety of quinones used as electron carriers between bioenergetic proteins, and some respiratory proteins can functionally interact with more than one quinone type. In the case of complex II homologs, which couple quinone chemistry to the interconversion of succinate and fumarate, the redox potentials of the biologically available ubiquinone and menaquinone aid in driving the chemical reaction in one direction. In the complex II homolog quinol:fumarate reductase, it has been demonstrated that menaquinol oxidation requires at least one proton shuttle, but many of the remaining mechanistic details of menaquinol oxidation are not fully understood, and little is known about ubiquinone reduction. In the current study, structural and computational studies suggest that the sequential removal of the two menaquinol protons may be accompanied by a rotation of the naphthoquinone ring to optimize the interaction with a second proton shuttling pathway. However, kinetic measurements of site-specific mutations of quinol:fumarate reductase variants show that ubiquinone reduction does not use the same pathway. Computational docking of ubiquinone followed by mutagenesis instead suggested redundant proton shuttles lining the ubiquinone-binding site or from direct transfer from solvent. These data show that the quinone-binding site provides an environment that allows multiple amino acid residues to participate in quinone oxidoreduction. This suggests that the quinone-binding site in complex II is inherently plastic and can robustly interact with different types of quinones.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Simulação de Acoplamento Molecular , Oxirredutases/química , Ubiquinona/química , Domínio Catalítico , Cinética , Relação Estrutura-Atividade
14.
J Biol Chem ; 288(51): 36338-50, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24163372

RESUMO

The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a "PDH-like" enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage.


Assuntos
Acetilcoenzima A/biossíntese , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Acetato-CoA Ligase/metabolismo , Animais , Anopheles/parasitologia , Ciclo do Ácido Cítrico , Ácidos Graxos/metabolismo , Cinética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Complexo Piruvato Desidrogenase/metabolismo
15.
J Biol Chem ; 288(22): 15760-70, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23589281

RESUMO

Succinic semialdehyde dehydrogenase (SSADH) from cyanobacterium Synechococcus differs from other SSADHs in the γ-aminobutyrate shunt. Synechococcus SSADH (SySSADH) is a TCA cycle enzyme and completes a 2-oxoglutarate dehydrogenase-deficient cyanobacterial TCA cycle through a detour metabolic pathway. SySSADH produces succinate in an NADP(+)-dependent manner with a single cysteine acting as the catalytic residue in the catalytic loop. Crystal structures of SySSADH were determined in their apo form, as a binary complex with NADP(+) and as a ternary complex with succinic semialdehyde and NADPH, providing details about the catalytic mechanism by revealing a covalent adduct of a cofactor with the catalytic cysteine in the binary complex and a proposed thiohemiacetal intermediate in the ternary complex. Further analyses showed that SySSADH is an oxidation-sensitive enzyme and that the formation of the NADP-cysteine adduct is a kinetically preferred event that protects the catalytic cysteine from H2O2-dependent oxidative stress. These structural and functional features of SySSADH provide a molecular basis for cofactor-dependent oxidation protection in 1-Cys SSADH, which is unique relative to other 2-Cys SSADHs employing a redox-dependent formation of a disulfide bridge.


Assuntos
Proteínas de Bactérias/química , NADP/química , Succinato-Semialdeído Desidrogenase/química , Synechococcus/enzimologia , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Cinética , NADP/metabolismo , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos da radiação , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Succinato-Semialdeído Desidrogenase/metabolismo
16.
J Biol Chem ; 288(27): 19739-49, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23689508

RESUMO

Preservation of bioenergetic homeostasis during the transition from the carbohydrate-laden fetal diet to the high fat, low carbohydrate neonatal diet requires inductions of hepatic fatty acid oxidation, gluconeogenesis, and ketogenesis. Mice with loss-of-function mutation in the extrahepatic mitochondrial enzyme CoA transferase (succinyl-CoA:3-oxoacid CoA transferase, SCOT, encoded by nuclear Oxct1) cannot terminally oxidize ketone bodies and develop lethal hyperketonemic hypoglycemia within 48 h of birth. Here we use this model to demonstrate that loss of ketone body oxidation, an exclusively extrahepatic process, disrupts hepatic intermediary metabolic homeostasis after high fat mother's milk is ingested. Livers of SCOT-knock-out (SCOT-KO) neonates induce the expression of the genes encoding peroxisome proliferator-activated receptor γ co-activator-1a (PGC-1α), phosphoenolpyruvate carboxykinase (PEPCK), pyruvate carboxylase, and glucose-6-phosphatase, and the neonate's pools of gluconeogenic alanine and lactate are each diminished by 50%. NMR-based quantitative fate mapping of (13)C-labeled substrates revealed that livers of SCOT-KO newborn mice synthesize glucose from exogenously administered pyruvate. However, the contribution of exogenous pyruvate to the tricarboxylic acid cycle as acetyl-CoA is increased in SCOT-KO livers and is associated with diminished terminal oxidation of fatty acids. After mother's milk provokes hyperketonemia, livers of SCOT-KO mice diminish de novo hepatic ß-hydroxybutyrate synthesis by 90%. Disruption of ß-hydroxybutyrate production increases hepatic NAD(+)/NADH ratios 3-fold, oxidizing redox potential in liver but not skeletal muscle. Together, these results indicate that peripheral ketone body oxidation prevents hypoglycemia and supports hepatic metabolic homeostasis, which is critical for the maintenance of glycemia during the adaptation to birth.


Assuntos
Coenzima A-Transferases , Gluconeogênese , Glucose/biossíntese , Hipoglicemia/metabolismo , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Ácido 3-Hidroxibutírico/biossíntese , Ácido 3-Hidroxibutírico/genética , Animais , Animais Recém-Nascidos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Feminino , Glucose/genética , Hipoglicemia/genética , Corpos Cetônicos/genética , Fígado/patologia , Camundongos , Camundongos Knockout , NAD/genética , NAD/metabolismo , Oxirredução , Parto , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ácido Pirúvico/farmacologia , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição
17.
Redox Biol ; 71: 103118, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490069

RESUMO

The induction of ferroptosis is promising for cancer therapy. However, the mechanisms enabling cancer cells to evade ferroptosis, particularly in low-cystine environments, remain elusive. Our study delves into the intricate regulatory mechanisms of Activating transcription factor 3 (ATF3) on Cystathionine ß-synthase (CBS) under cystine deprivation stress, conferring resistance to ferroptosis in colorectal cancer (CRC) cells. Additionally, our findings establish a positively correlation between this signaling axis and CRC progression, suggesting its potential as a therapeutic target. Mechanistically, ATF3 positively regulates CBS to resist ferroptosis under cystine deprivation stress. In contrast, the suppression of CBS sensitizes CRC cells to ferroptosis through targeting the mitochondrial tricarboxylic acid (TCA) cycle. Notably, our study highlights that the ATF3-CBS signaling axis enhances ferroptosis-based CRC cancer therapy. Collectively, the findings reveal that the ATF3-CBS signaling axis is the primary feedback pathway in ferroptosis, and blocking this axis could be a potential therapeutic approach for colorectal cancer.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Cistationina beta-Sintase/metabolismo , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Ferroptose/genética , Cistina , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167312, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38901649

RESUMO

Epithelial ovarian cancer (EOC) is highly lethal due to its unique metastatic characteristics. EOC spheroids enter a non-proliferative state, with hypoxic cores and reduced oncogenic signaling, all of which contribute to tumour dormancy during metastasis. We investigated the metabolomic states of EOC cells progressing through the three steps to metastasis. Metabolomes of adherent, spheroid, and re-adherent cells were validated by isotopic metabolic flux analysis and mitochondrial functional assays to identify metabolic pathways that were previously unknown to promote EOC metastasis. Although spheroids were thought to exist in a dormant state, metabolomic analysis revealed an unexpected upregulation of energy production pathways in spheroids, accompanied by increased abundance of tricarboxylic acid (TCA) cycle and electron transport chain proteins. Tracing of 13C-labelled glucose and glutamine showed increased pyruvate carboxylation and decreased glutamine anaplerosis in spheroids. Increased reductive carboxylation suggests spheroids adjust redox homeostasis by shuttling cytosolic NADPH into mitochondria via isocitrate dehydrogenase. Indeed, we observed spheroids have increased respiratory capacity and mitochondrial ATP production. Relative to adherent cells, spheroids reduced serine consumption and metabolism, processes which were reversed upon spheroid re-adherence. The data reveal a distinct metabolism in EOC spheroids that enhances energy production by the mitochondria while maintaining a dormant state with respect to growth and proliferation. The findings advance our understanding of EOC metastasis and identify the TCA cycle and mitochondrional activity as novel targets to disrupt EOC metastasis, providing new approaches to treat advanced disease.


Assuntos
Carcinoma Epitelial do Ovário , Ciclo do Ácido Cítrico , Mitocôndrias , Metástase Neoplásica , Neoplasias Ovarianas , Esferoides Celulares , Humanos , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Feminino , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Linhagem Celular Tumoral , Glutamina/metabolismo , Metabolismo Energético , Metabolômica , Glucose/metabolismo
19.
Free Radic Biol Med ; 224: 723-739, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299525

RESUMO

The large multi-subunit mitochondrial alpha-keto glutarate dehydrogenase (KGDH) complex plays a key, rate-determining, role in the tricarboxylic acid (Krebs) cycle, catalyzing the conversion of alpha-keto glutarate to succinyl-CoA. This complex is both a source and target of oxidants, but the sites of modification and association with structural changes and activity loss are poorly understood. We report here oxidative modifications induced by Rose Bengal (RB) in the presence of O2, a source of singlet oxygen (1O2). A rapid loss of activity was detected, with this being dependent on light exposure, illumination time, and the presence of RB and O2. Activity loss was enhanced by D2O (consistent with 1O2 involvement), but diminished by both pre- and (to a lesser extent) post-illumination addition of lipoic acid and lipoamide. Aggregates containing all three KGDH subunits were detected on photooxidation. LC-MS experiments provided evidence for oxidation at 45 sites, including specific Met, His, Trp, Tyr residues and the lipoyllysine active-site cofactor. Products include mono- and di-oxygenated species, and kynurenine from Trp. Mapping of the modifications to the 3-D structure showed that these are localized to both the inner channel and the external surface, consistent with reactions of free 1O2, however the sites and extent of modification do not correlate with their solvent accessibility. These products are generated concurrently with loss of activity, indicative of strong links between these events. These data provide evidence for the impairment of KGDH activity by 1O2 via the oxidation of specific residues on the protein subunits of the complex.

20.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948727

RESUMO

Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases including cancer, cardiopathy, neurodegeneration, and heritable pathologies such as Barth syndrome. Cardiolipin, the signature phospholipid of the mitochondrion promotes proper cristae morphology, bioenergetic functions, and directly affects metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in the tafazzin gene are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impact metabolic flux through the tricarboxylic acid cycle and associated pathways in yeast. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a wild-type strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin, and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through about twelve metabolites. Several of the identified metabolites were specific to yeast pathways, including branched chain amino acids and fusel alcohol synthesis. Most metabolites showed similar kinetics amongst the different strains but mevalonate and α-ketoglutarate, as well as the NAD+/NADH couple measured in separate nuclear magnetic resonance experiments, showed pronounced differences. Taken together, the results show that cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA