Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 223, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539072

RESUMO

BACKGROUND: Triticale is making its way on dairy farms as an alternative forage crop. This requires the availability of high-yielding triticale varieties with good digestibility. Triticale forage breeding mainly focussed on biomass yield, but efforts to improve digestibility are increasing. We previously investigated the interrelationships among different quality traits in soft dough triticale: starch, acid detergent fibre and in vitro digestibility of organic matter (IVOMD) and of neutral detergent fibre (IVNDFD) of the total plant, IVNDFD and Klason lignin of the stems, and ear proportion and stem length. Here we determine the genetic control of these traits, using a genome-wide association (GWAS) approach. A total of 33,231 DArTseq SNP markers assessed in a collection of 118 winter triticale genotypes, including 101 varieties and 17 breeding lines, were used. RESULTS: The GWAS identified a total of 53 significant marker-trait associations (MTAs). The highest number of significantly associated SNP markers (n = 10) was identified for total plant IVNDFD. A SNP marker on chromosome 1A (4211801_19_C/T; 474,437,796 bp) was found to be significantly associated with ear proportion, and plant and stem IVNDFD, with the largest phenotypic variation for ear proportion (R²p = 0.23). Based on MTAs, candidate genes were identified which were of particular relevance for variation in in vitro digestibility (IVD) because they are putatively involved in plasma membrane transport, cytoskeleton organisation, carbohydrate metabolic processes, protein phosphorylation, and sterol and cell wall biogenesis. Interestingly, a xyloglucan-related candidate gene on chromosome 2R, SECCE2Rv1G0126340, was located in close proximity of a SNP significantly associated with stem IVNDFD. Furthermore, quantitative trait loci previously reported in wheat co-localized with significantly associated SNP markers in triticale. CONCLUSIONS: A collection of 118 winter triticale genotypes combined with DArTseq SNP markers served as a source for identifying 53 MTAs and several candidate genes for forage IVD and related traits through a GWAS approach. Taken together, the results of this study demonstrate that the genetic diversity available in this collection can be further exploited for research and breeding purposes to improve the IVD of triticale forage.


Assuntos
Estudo de Associação Genômica Ampla , Triticale , Detergentes , Melhoramento Vegetal , Fenótipo
2.
BMC Plant Biol ; 24(1): 43, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200422

RESUMO

BACKGROUND: The development of the plant in vitro techniques has brought about the variation identified in regenerants known as somaclonal or tissue culture-induced variation (TCIV). S-adenosyl-L-methionine (SAM), glutathione (GSH), low methylated pectins (LMP), and Cu(II) ions may be implicated in green plant regeneration efficiency (GPRE) and TCIV, according to studies in barley (Hordeum vulgare L.) and partially in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927). Using structural equation models (SEM), these metabolites have been connected to the metabolic pathways (Krebs and Yang cycles, glycolysis, transsulfuration), but not for triticale. Using metabolomic and (epi)genetic data, the study sought to develop a triticale regeneration efficiency statistical model. The culture's induction medium was supplemented with various quantities of Cu(II) and Ag(I) ions for regeneration. The period of plant regeneration has also changed. The donor plant, anther-derived regenerants, and metAFLP were utilized to analyze TCIV concerning DNA in symmetric (CG, CHG) and asymmetric (CHH) sequence contexts. Attenuated Total Reflectance-Fourier Transfer Infrared (ATR-FTIR) spectroscopy was used to gather the metabolomic information on LMP, SAM, and GSH. To frame the data, a structural equation model was employed. RESULTS: According to metAFLP analysis, the average sequence change in the CHH context was 8.65%, and 0.58% was de novo methylation. Absorbances of FTIR spectra in regions specific for LMP, SAM, and GSH were used as variables values introduced to the SEM model. The average number of green regenerants per 100 plated anthers was 2.55. CONCLUSIONS: The amounts of pectin demethylation, SAM, de novo methylation, and GSH are connected in the model to explain GPRE. By altering the concentration of Cu(II) ions in the medium, which influences the amount of pectin, triticale's GPRE can be increased.


Assuntos
Hordeum , Triticale , Suplementos Nutricionais , Glutationa , Hordeum/genética , Pectinas , Íons
3.
J Dairy Sci ; 107(6): 3531-3542, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38135041

RESUMO

The aim of the present study was to assess the effect of replacing the forage portion (alfalfa, corn silage, and barley straw) in the diet of lactating Holstein cows with triticale hay (TH, × Triticosecale L.) on DMI, digestibility, ruminal fermentation variables, estimated microbial-N synthesis (EMNS), and milk production and composition. Eight Holstein cows were used in a replicated Latin square design (two 4 × 4 squares) with four 28-d periods and 4 treatments, including a TH-free diet (control), and diets replacing 33%, 66%, and 100% of the forage portion with TH. Cows were fed ad libitum with 10% carryover during the experimental periods. Intakes and in vivo digestibilities of dry matter, organic matter, crude protein, and ash-free neutral detergent fiber, rumen pH, ammonia-N, total and individual short-chain fatty acids, protozoa, and bacteria populations were evaluated using specific methods. Moreover, in vitro total gas and methane release and in vivo urinary purine derivatives, EMNS, milk production, and composition were measured. The results showed that TH diets lowered DMI, compared with the control. Apparent digestibilities of DM, OM, CP, and NDF increased with dietary TH inclusion. The addition of TH instead of the diet forage portion increased in vivo rumen pH; acetic, propionic, valeric, and isovaleric acids concentrations; cellulolytic bacteria number; and in vitro gas production. In vivo rumen ammonia-N, short-chain fatty acids, butyric acid, in vivo and in vitro total protozoa and Entodiniinae numbers, and in vitro methane production decreased with increasing dietary levels of TH instead of the forage portion. The dietary addition of TH did not affect milk yield, protein, and lactose, but increased fat-corrected milk, milk fat, fat-corrected milk:DMI ratio, and milk yield:DMI ratio. Milk urea N decreased, but urinary purine derivatives excretion and EMNS increased with increasing levels of TH in the diet. For variables with significant changes, except for isovaleric acid, there was a linear response of animals to increasing levels of TH in the diet. Results suggest that TH, which is grown with less water compared with alfalfa, corn forage, and straw, is a potential alternative to those forages by increasing milk production efficiency, milk fat, and decreasing methane emission.


Assuntos
Ração Animal , Dieta , Digestão , Fermentação , Lactação , Leite , Rúmen , Silagem , Animais , Bovinos , Feminino , Dieta/veterinária , Leite/química , Leite/metabolismo , Rúmen/metabolismo , Triticale
4.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39273515

RESUMO

This study aimed to determine whether using DNA-based markers assigned to individual chromosomes would detect the genetic structures of 446 winter triticale forms originating from two breeding companies more effectively than using the entire pool of markers. After filtering for quality control parameters, 6380 codominant single nucleotide polymorphisms (SNPs) markers and 17,490 dominant diversity array technology (silicoDArT) markers were considered for analysis. The mean polymorphic information content (PIC) values varied depending on the chromosomes and ranged from 0.30 (2R) to 0.43 (7A) for the SNPs and from 0.28 (2A) to 0.35 (6R) for the silicoDArTs. The highest correlation of genetic distance (GD) matrices based on SNP markers was observed among the 5B-5R (0.642), 5B-7B (0.626), and 5A-5R (0.605) chromosomes. When silicoDArTs were used for the analysis, the strongest correlations were found between 5B-5R (0.732) and 2B-5B (0.718). A Bayesian analysis showed that SNPs (total marker pool) allowed for the identification of a more complex structure (K = 4, ΔK = 2460.2) than the analysis based on silicoDArTs (K = 2, ΔK = 128). Triticale lines formed into groups, ranging from two (most of the chromosomes) to four (7A) groups depending on the analyzed chromosome when SNP markers were used for analysis. Linkage disequilibrium (LD) varied among individual chromosomes, ranging from 0.031 for 1A to 0.228 for 7R.


Assuntos
Cromossomos de Plantas , Polimorfismo de Nucleotídeo Único , Marcadores Genéticos , Cromossomos de Plantas/genética , Poliploidia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Variação Genética , Grão Comestível/genética , Genética Populacional/métodos , Mapeamento Cromossômico/métodos , Teorema de Bayes
5.
J Sci Food Agric ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39422103

RESUMO

BACKGROUND: To remain competitive, brewers must innovate by incorporating novel elements beyond traditional styles. Thus, exploring triticale as a modern substitute for barley malt is promising, especially given its higher amylolytic activity compared to barley. This study aimed to assess the impact of substituting up to 50% of barley malt with unmalted triticale on green beer quality, encompassing multiple stages from wort production to primary fermentation at a laboratory scale. RESULTS: Triticale-based worts (ratios 10-50%) had lower extract content than 100% barley malt. However, incorporating 10% of triticale led to only a 1% decrease in extract content compared to the all-malt wort. Shearzyme® 500L, an endo-1,4-ß-xylanase with ß-glucanase side activity, effectively addressed wort viscosity by breaking down arabinoxylans and ß-glucans in triticale cell walls. All triticale-based beers exhibited lower ethanol content compared to reference beer, as is typical when using adjuncts. In green beer, a 50% triticale ratio lowered ethanol content by 16% (without enzyme) and 19% (with enzyme) compared to 100% malt beer. However, green beer with 10% triticale had satisfactory levels of total polyphenol and vicinal diketone content, among other parameters. CONCLUSION: Commercial enzyme application significantly enhanced proteolytic activity within the grain. Fermentations of enzyme-treated worts showed higher amino acid levels, further confirming the increased proteolytic activity facilitated by the chosen enzyme. Overall, this study provides a comprehensive analysis of the brewing process using native triticale. Building on this foundation, future studies will focus on optimizing mashing conditions to enhance the fermentation profile of the wort. © 2024 Society of Chemical Industry.

6.
Trop Anim Health Prod ; 56(3): 117, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568238

RESUMO

Cereals such as triticale may contain high levels of xylans and arabinoxylans, limiting its use in diets since they act as anti-nutritional factors. The objective was to evaluate the effects of the enzyme xylanase included in triticale-based diets on productive performance, digestibility, carcass traits and meat quality in growing-finishing rabbits. Eighty rabbits (New Zealand X California breed), 35 days old, with an average initial live weight of 821 ± 26 g, were used. Twenty animals for treatment were used in each one of the fourth experimental treatments: 0, 4000, 8000 and 12,000 XU/kg of xylanase inclusion (XilaBlend 6X). The rabbits were fed ad libitum and fecal excretion was collected on days 7, 14, 21, 28 and 35 of the experimental period. At the end of the experimental period, the rabbits were slaughtered and carcass characteristics and meat quality were measured. A higher (P < 0.05) live weight was observed in rabbits fed diets with the addition of xylanase enzyme on days 4 and 7 of the experimental period. On the other hand, in the average total tract digestibility of organic matter, no significant difference was observed, similar to what occurred in the carcass traits and nutritional quality of the meat. The inclusion of 8000 XU/kg of xylanase enzyme provided the best values of apparent digestibility of total tract protein and dry matter on the finished stage of rabbits.


Assuntos
Triticale , Animais , Coelhos , Melhoramento Vegetal , Dieta/veterinária , Suplementos Nutricionais , Carne
7.
Yi Chuan ; 46(1): 63-77, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38230457

RESUMO

Hexaploid triticale is an important genetic resource for genetic improvement of common wheat, which can broaden the genetic basis of wheat. In order to lay a foundation for the subsequent research and utilization of triticale germplasm materials, the chromosomal genetic characteristics of cross and backcross offspring of hexaploid triticale×hexaploid wheat were investigated in the process of transferring rye chromatin from hexaploid triticale to hexaploid wheat. Hybrid and backcross combinations were prepared with hexaploid triticale 16yin171 as the maternal parent and hexaploid wheat Chuanmai62 as the paternal parent. The chromosomes in root tip cells of F1, BC1F1 and BC1F2 plants were traced and identified non-denaturing florescence in situ hybridization (ND-FISH). The results indicated that the backcross setting rate of hybrid F1 was 2.61%. The transmission frequency of 2R chromosome was the highest in BC1F1 plants while the transmissibility of rye chromosome in BC1F2 plant was 6R>4R>2R, and the 5B-7B wheat translocation in BC1F2 plants showed severe segregation. A total of 24 structural variant chromosomes were observed both in BC1F1 and BC1F2 plants, including chromosome fragments, isochromosomes, translocations, and dicentric chromosomes. In addition, the seed length and 1000-grain weight of some BC1F2 plants were better than that of the hexaploid wheat parent Chuanmai 62. Therefore, multiple backcrosses should be adopted as far as possible to make the rapid recovery of group D chromosomes, ensuring the recovery of fertility in offspring, when hexaploid tritriale is used as a bridge to introduce rye genetic material into common wheat. At the same time, the potential application value of chromosomal structural variation materials should be also concerned.


Assuntos
Triticale , Triticum , Triticum/genética , Triticale/genética , Secale/genética , Cromossomos de Plantas/genética , Hibridização In Situ , Translocação Genética
8.
Plant Dis ; 107(12): 3817-3824, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37227435

RESUMO

Root-lesion nematode (RLN; Pratylenchus neglectus) is a migratory endoparasite and a major soilborne pathogen that affects wheat (Triticum spp.) production worldwide. Genetic resistance is one of the most economical and effective ways to manage P. neglectus in wheat. This study evaluated 37 local cultivars and germplasm lines in seven greenhouse experiments, including 26 hexaploid wheat, six durum wheat, two synthetic hexaploid wheat, one emmer wheat, and two triticale for P. neglectus resistance from 2016 to 2020. North Dakota field soils infested with two RLN populations (350 to 1,125 nematodes per kilogram of soil) were used for resistance screening under controlled greenhouse conditions. The final nematode population density for each cultivar and line was counted under the microscope to categorize the resistance ranking of these entries as resistant, moderately resistant, moderately susceptible, and susceptible. Out of the 37 cultivars and lines, one was classified as resistant (Brennan); 18 were moderately resistant (Divide, Carpio, Prosper, Advance, Alkabo, SY Soren, Barlow, Bolles, Select, Faller, Briggs, WB Mayville, SY Ingmar, W7984, PI 626573, Ben, Grandin, and Villax St. Jose); 11 were moderately susceptible; and seven were susceptible to P. neglectus. The resistant to moderately resistant lines identified in this study could be used in breeding programs after the resistance genes or loci are further elucidated. This research provides valuable information about P. neglectus resistance among wheat and triticale cultivars used in the Upper Midwest region of the United States.


Assuntos
Triticum , Tylenchoidea , Animais , Triticum/genética , Triticum/parasitologia , Locos de Características Quantitativas , North Dakota , Doenças das Plantas/parasitologia , Melhoramento Vegetal , Tylenchoidea/genética , Resistência à Doença/genética
9.
Ann Bot ; 130(3): 393-408, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35294964

RESUMO

BACKGROUND AND AIMS: The study reports on four different types of flag leaf rolling under soil drought in relation to the level of cell wall-bound phenolics. The flag leaf colonization by aphids, as a possible bioindicator of the accumulation of cell wall-bound phenolics, was also estimated. METHODS: The proteins of the photosynthetic apparatus that form its core and are crucial for maintaining its stability (D1/PsbA protein), limit destructive effects of light (PsbS, a protein binding carotenoids in the antennas) and participate in efficient electron transport between photosystems II (PSII) and PSI (Rieske iron-sulfur protein of the cytochrome b6f complex) were evaluated in two types of flag leaf rolling. Additionally, biochemical and physiological reactions to drought stress in rolling and non-rolling flag leaves were compared. KEY RESULTS: The study identified four types of genome-related types of flag leaf rolling. The biochemical basis for these differences was a different number of phenolic molecules incorporated into polycarbohydrate structures of the cell wall. In an extreme case of non-rolling dehydrated flag leaves, they were found to accumulate high amounts of cell wall-bound phenolics that limited cell water loss and protected the photosynthetic apparatus against excessive light. PSII was also additionally protected against excess light by the accumulation of photosynthetic apparatus proteins that ensured stable and efficient transport of excitation energy beyond PSII and its dissipation as far-red fluorescence and heat. Our analysis revealed a new type of flag leaf rolling brought about by an interaction between wheat and rye genomes, and resulting in biochemical specialization of flexible, rolling and rigid, non-rolling parts of the flag leaf. The study confirmed limited aphid colonization of the flag leaves with enhanced content of cell wall-bound phenolics. CONCLUSIONS: Non-rolling leaves developed effective adaptation mechanisms to reduce both water loss and photoinhibitory damage to the photosynthetic apparatus under drought stress.


Assuntos
Secas , Água , Carotenoides/metabolismo , Clorofila/metabolismo , Complexo Citocromos b6f/metabolismo , Biomarcadores Ambientais , Fenóis/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Solo , Água/metabolismo
10.
Mol Breed ; 42(10): 60, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309488

RESUMO

Pre -harvest sprouting (PHS) is an important problem in cereal production reducing yield and grain quality. After decades of improvement, triticale remains particularly susceptible to PHS but no resistance genes or QTLs were identified so far in this species. As wheat shares the A and B genomes with triticale, wheat PHS resistance genes can be introgressed into triticale genome by recombination after interspecific crosses. In this project, three PHS resistance genes have been transferred from wheat to triticale by marker-assisted interspecific crosses, followed by four backcrosses. The gene TaPHS1 from the 3AS chromosome of cultivar Zenkoujikomugi (Zen) and the TaMKK3 and TaQsd1, respectively located on the 4AL and 5BL chromosomes derived both from cultivar Aus1408, were pyramided in the triticale cultivar Cosinus. Only the TaPHS1 gene increases consistently the PHS resistance in triticale. The lack of efficacy of the other two genes, especially TaQsd1, could be the result of an imperfect linkage between the marker and the gene of interest. The introduction of PHS resistance genes did not alter agronomic nor disease resistance performances of triticale. This approach leads to two new, agronomically performant and PHS-resistant triticale cultivars. Today, two breeding triticale lines are ready to enter the official registration process.

11.
Bull Environ Contam Toxicol ; 108(2): 359-365, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34181031

RESUMO

We investigated the ability of triticale uptake of Mercury (Hg), clarified whether triticale root uptake of Hg2+ via Zinc (Zn2+) transports, using hydroponic experiments. At 25℃, when Hg exposure in solution was lower than 20 µM, Hg concentration in the roots can be better described by a hyperbolic function, which shows a saturable characteristic. Under ice-cold (< 2℃) conditions, a nonsaturable (linear) component was found. Low exposure of Zn2+ (0-1 µM) inhibited plant Hg uptake when Hg exposure in the solution ranged from 1 to 10 µM, it showed an antagonistic effect of Zn on plant uptake of Hg. When Hg exposure was 20 µM, it revealed a synergistic effect of Zn on plant uptake of Hg, Hg in the root increased at the Zn (1 µM) exposure in the solution. Our results will deepen the understanding of Hg transfer in the soil-plant system.


Assuntos
Mercúrio , Poluentes do Solo , Triticale , Hidroponia , Mercúrio/análise , Raízes de Plantas/química , Poluentes do Solo/análise , Zinco
12.
Plant Cell Rep ; 40(1): 29-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33037884

RESUMO

KEY MESSAGE: Ca2+ NPs enhanced tolerance of Triticale callus under salt stress by improving biochemical activity and confocal laser scanning analysis, conferring salt tolerance on callus cells. CaO NPs (Ca2+) are significant components that act as transducers in many adaptive and developmental processes in plants. In this study, effect of Ca2+ NPs on the response and regulation of the protective system in Triticale callus under short and long-salt treatments was investigated. The activation of Ca2+ NPs was induced by salt stress in callus of Triticale cultivars. MDA, H2O2, POD, and protein activities were determined in callus tissues. Concerning MDA, H2O2, protein activities, it was found that the Ca2+ NPs treatment was significant, and it demonstrated a high correlation with the tolerance levels of cultivars. Tatlicak cultivar was detected for better MDA activities in the short time with 1.5 ppm Ca2+ NPs concentration of 50 g and 100 g NaCl. Similarly, the same cultivar responded with better H2O2 activity at 1.5 ppm Ca2+ NPs 100 g NaCl in the short time. POD activities exhibited a decreasing trend in response to the increasing concentrations of Ca2+ NPs. The best result was observed at 1.5 ppm Ca2+ NPs 100 g NaCl in the short term. Based on the protein content, treatment of short-term cultured callus cells with 1.5 ppm Ca2+ NPs inhibited stress response and it significantly promoted Ca2+ NPs signals as compared to control callus. Confocal laser scanning analysis proved that the application of Ca2+ NPs could alleviate the adverse effects of salt stress by the inhibition of stress severity in callus cells. This study demonstrated, under in vitro conditions, that the application of Ca2+ NPs can significantly suppress the adverse effects of salt stress on Triticale callus; it was also verified that the concentration of Ca2+ NPs could be important parameter to be considered in adjusting the micronutrient content in the media for this plant.


Assuntos
Compostos de Cálcio/farmacologia , Nanopartículas/química , Óxidos/farmacologia , Estresse Salino/fisiologia , Triticale/efeitos dos fármacos , Triticale/fisiologia , Compostos de Cálcio/síntese química , Compostos de Cálcio/química , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Óxidos/síntese química , Óxidos/química , Proteínas de Plantas/metabolismo , Estresse Salino/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Triticale/citologia , Difração de Raios X
13.
Molecules ; 26(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494546

RESUMO

The triticale grain has high nutritive value and good technological suitability. Triticale flour can be a valuable raw material for bread-making. The aim of this work was to determine the profile of phenolic acids in triticale grain of selected Polish cultivars and its products. Ultra-high-performance liquid chromatography (UPLC-PDA-MS/MS) was applied for separation and identification of these constituents. The grain of the examined triticale cultivars contained 13 phenolic acids, of which ferulic acid was determined in the largest amount and was constituted from 42-44% of the total content of phenolic acids in the grain. In addition, due to the large amounts of ferulic, di-ferulic, and sinapic acids, composition of the phenolic acids fraction in triticale grain of the tested cultivars varied in comparison with that of wheat and rye cultivars. In triticale flour, the number of phenolic acids was nearly 4 times lower than in the grain, as phenolic acids were removed along with bran, in which their proportion was almost 9 times higher than in the grain intended for grinding. The application of bran in the bread recipe resulted in a 3.5-fold increase in the fraction of phenolic acids compared to the bread produced from triticale flour without bran addition.


Assuntos
Ácidos Cumáricos/análise , Grão Comestível/química , Hidroxibenzoatos/análise , Triticale/química , Polônia , Espectrometria de Massas em Tandem
14.
Trop Anim Health Prod ; 53(5): 511, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637022

RESUMO

Small-scale dairy systems face reduced availability of water for irrigation of pastures and disruption in the amount or pattern of rains due to climate change, so research on alternative short-cycle rain-fed forages is needed. Grazing reduces feeding costs and small-grain cereals may be an option. The objective was to assess on-farm the performance of dairy cows grazing 6 h/day of three small-grain cereals: rye (RYE), wheat (WHT), and triticale (TRT), and supplemented 4.5 kg dry matter (DM)/cow/day of concentrate. Twelve Holstein cows were used in repeated 3 × 3 Latin squares with 14-day experimental periods. Pasture variables were analysed with a split-plot design, and economic analysis was performed with partial budgets. Sampling of forage (sward height, net herbage accumulation, botanical and chemical composition of herbage) and animal variables (milk yield and composition, live weight, and body condition score) were at the end of each period. The RYE showed a trend (P > 0.05) for higher net herbage accumulation (NHA) with highly significant differences (P < 0.001) among periods. The RYE had higher DM, a lower crude protein (CP) content (P < 0.05), and no differences for other chemical components between treatments (P > 0.05). The RYE proportion in pasture was consistently higher, whilst the lowest cereal proportion was in WHT. There were no differences (P > 0.05) for any animal variable. The RYE and TRT treatments proved useful as rain-fed forage alternatives under grazing. WHT showed lower crop and economic performance. However, given the higher cereal component in pastures, regrowth potential, and post-grazing herbage mass, as well as better economic performance, the RYE treatment was better ranked by the participating farmer.


Assuntos
Indústria de Laticínios , Grão Comestível , Animais , Bovinos , Lactação , México , Chuva
15.
Theor Appl Genet ; 133(2): 457-477, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31960090

RESUMO

KEY MESSAGE: The spring wheat-derived QTL Fhb1 was successfully introgressed into triticale and resulted in significantly improved FHB resistance in the three triticale mapping populations. Fusarium head blight (FHB) is a major problem in cereal production particularly because of mycotoxin contaminations. Here we characterized the resistance to FHB in triticale breeding material harboring resistance factors from bread wheat. A highly FHB-resistant experimental line which derives from a triticale × wheat cross was crossed to several modern triticale cultivars. Three populations of recombinant inbred lines were generated and evaluated in field experiments for FHB resistance using spray inoculations during four seasons and were genotyped with genotyping-by-sequencing and SSR markers. FHB severity was assessed in the field by visual scorings and on the harvested grain samples using digital picture analysis for quantifying the whitened kernel surface (WKS). Four QTLs with major effects on FHB resistance were identified, mapping to chromosomes 2B, 3B, 5R, and 7A. Those QTLs were detectable with both Fusarium severity traits. Measuring of WKS allows easy and fast grain symptom quantification and appears as an effective scoring tool for FHB resistance. The QTL on 3B collocated with Fhb1, and the QTL on 5R with the dwarfing gene Ddw1. This is the first report demonstrating the successful introgression of Fhb1 into triticale. It comprises a significant step forward for enhancing FHB resistance in this crop.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticale/genética , Triticum/genética , Mapeamento Cromossômico , Sistema Enzimático do Citocromo P-450/genética , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Genes de Plantas , Introgressão Genética , Genótipo , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Triticale/microbiologia , Triticum/microbiologia
16.
Plant Cell Rep ; 39(9): 1185-1197, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32638075

RESUMO

KEY MESSAGE: A Triticeae type III non-specific lipid transfer protein (nsLTP) was shown for the first time to be translocated from the anther tapetum to the pollen cell wall. Two anther-expressed non-specific lipid transfer proteins (nsLTPs) were identified in triticale (× Triticosecale Wittmack). LTPc3a and LTPc3b contain a putative signal peptide sequence and eight cysteine residues in a C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C pattern. These proteins belong to the type III class of nsLTPs which are expressed exclusively in the inflorescence of angiosperms. The level of LTPc3 transcript in the anther was highest at the tetrad and uninucleate microspore stages, and absent in mature pollen. In situ hybridization showed that LTPc3 was expressed in the tapetal layer of the developing triticale anther. The expression of the LTPc3 protein peaked at the uninucleate microspore stage, but was also found to be associated with the mature pollen. Accordingly, an LTPc3a::GFP translational fusion expressed in transgenic Brachypodium distachyon first showed activity in the tapetum, then in the anther locule, and later on the mature pollen grain. Altogether, these results represent the first detailed characterization of a Triticeae anther-expressed type III nsLTP with possible roles in pollen cell wall formation.


Assuntos
Parede Celular/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Triticale/metabolismo , Brachypodium/genética , Cisteína , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/genética , Transporte Proteico , Triticale/citologia , Triticale/genética
17.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383684

RESUMO

Samples of triticale seeds of various qualities were assessed in the study. The seeds were obtained during experiments, reflecting the actual sowing conditions. The experiments were conducted on an original test facility designed by the authors of this study. The speed of the air (15, 20, 25 m/s) transporting seeds in the pneumatic conduit was adjusted to sowing. The resulting graphic database enabled the distinction of six classes of seeds according to their quality and sowing speed. The database was prepared to build training, validation and test sets. The neural model generation process was based on multi-layer perceptron networks (MLPN) and statistical (machine training). When the MLPN was used to identify contaminants in seeds sown at a speed of 15 m/s, the lowest RMS error of 0.052 was noted, whereas the classification correctness coefficient amounted to 0.99.

18.
J Sci Food Agric ; 100(7): 2999-3006, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32052451

RESUMO

BACKGROUND: The aim was to determine the influence of harvesting time and meteorological conditions on the occurrence of Fusarium spp. and mycotoxins in the grain of spring cereals. A field experiment was performed in 2016-2018 with spring oat (Avena sativa L.) and spring triticale (× Triticosecale Wittm.) plots. Grain samples of oat and triticale were analysed for Fusarium infection and co-contamination with mycotoxins deoxynivalenol (DON), zearalenone (ZEA) and T-2 toxin (T-2). RESULTS: Results from the three-year study showed that the occurrence of Fusarium spp. fungi and mycotoxins produced by them in spring oat and triticale grain was most influenced by the meteorological conditions at harvesting time and crop species. CONCLUSIONS: It was found that in all experimental years, F. poae, F. tricinctum and F. sporotrichioides predominated in oat grains and F. graminearum, F. sporotrichioides and F. avenaceum predominated in spring triticale; as a result, oat grains were more contaminated with T-2 and triticale grains with DON and ZEA. Due to the rainy harvesting period in 2017, the contamination level of Fusarium fungi of grain of both crop species was 100%, and the concentrations of DON and ZEA in the samples of spring triticale were several times higher than those set forth in the EU regulation. Co-occurrence of all three mycotoxins analysed (DON, ZEA and T-2) was identified in these samples. © 2020 Society of Chemical Industry.


Assuntos
Grão Comestível/química , Contaminação de Alimentos/análise , Fusarium/metabolismo , Micotoxinas/química , Avena/química , Avena/microbiologia , Grão Comestível/microbiologia , Fusarium/classificação , Fusarium/genética , Fusarium/isolamento & purificação , Hordeum/química , Hordeum/microbiologia , Micotoxinas/metabolismo , Estações do Ano , Espectrometria de Massas em Tandem , Fatores de Tempo , Triticum/química , Triticum/microbiologia
19.
Trop Anim Health Prod ; 52(4): 1903-1910, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31955377

RESUMO

The dry season in central Mexico is a difficult time for small-scale dairy systems to meet feed requirements for their herds as pasture growth is limited. Conserved forage options are needed to complement pastures. The objective was to assess on-farm the production of dairy cows complemented with triticale silage (X. Triticosecale Witt. (TSL)) at two levels of inclusion (5.0 and 7.5 kg DM/d), grazing pastures of two grass species during the dry season: perennial ryegrass (PRG; Lolium perenne) or tall fescue (TFC; Lolium arundinaceum) (TFC) with white clover (Trifolium repens), and 4.65 kg DM/d concentrate. Experimental design was a 2 × 2 factorial in repeated 4 × 4 Latin squares. Chemical composition of TSL was 96 g CP/kg DM, 667 g NDF/kg DM, 713 g in vitro enzymatic digestibility of OM (IVEDOM)/kg DM, and pH of 4.6. There were differences (P < 0.05) in net herbage accumulation (NHA) and sward height between pastures, with higher NHA in TFC than that in PRG, although the chemical composition of PRG was higher (P < 0.05) in PC, IVEDOM, and estimated ME. There were no differences (P > 0.05) in milk yield (12.3 ± 2.63 kg/cow/day), milk compositions (33.1 ± 0.45 g milkfat/kg, 41 33.3 ± 0.21 g milk protein/kg, 47.9 ± 0.36 g lactose/kg, and 10.47 ± 2.25 mg MUN/dL), body condition score (2.4 ± 0.22), or live weight (490 ± 72.8 kg). At a higher inclusion of TSL, there was lower intake of pasture. Inclusion of 5.0 kg DM/cow/day of triticale silage better complements grazing and sustains moderate milk yields when pasture growth and intake are limited.


Assuntos
Bovinos/fisiologia , Indústria de Laticínios/métodos , Lolium , Silagem/análise , Triticale , Animais , Dieta/veterinária , Feminino , Pradaria , México , Estações do Ano , Especificidade da Espécie
20.
J Food Sci Technol ; 57(2): 693-701, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32116378

RESUMO

We studied the quality of dry pasta packaged and stored for 45 days in biodegradable bags made from triticale flour films. Results were compared with the quality of pasta packaged in commercial bags. Characterization of films and technologic and microbiological quality of pasta were performed. Biodegradable bags presented adequate properties during storage. There was no microbiological growth or differences in moisture and breaking force of dry pasta within both types of packaging during storage. Cooking quality of pasta was not affected by the type of packaging or storage time. We also studied the antioxidant capacity of pasta enriched with partially-deoiled-chia flour during storage in both types of packaging. A decrease in the antioxidant activity measured by ABTS assay was found at 45 days of storage in pasta packaged in biodegradable bags. Nevertheless, the total phenolic content and the antioxidant activity evaluated by FRAP method did not change significantly with time or type of packaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA