Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.469
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 115(4): 937-951, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154288

RESUMO

Plant height (PH) is an important agronomic trait affecting crop architecture, biomass, resistance to lodging and mechanical harvesting. Elucidating the genetic governance of plant height is crucial because of the global demand for high crop yields. However, during the rapid growth period of plants the PH changes a lot on a daily basis, which makes it difficult to accurately phenotype the trait by hand on a large scale. In this study, an unmanned aerial vehicle (UAV)-based remote-sensing phenotyping platform was applied to obtain time-series PHs of 320 upland cotton accessions in three different field trials. The results showed that the PHs obtained from UAV images were significantly correlated with ground-based manual measurements, for three trials (R2 = 0.96, 0.95 and 0.96). Two genetic loci on chromosomes A01 and A11 associated with PH were identified by genome-wide association studies (GWAS). GhUBP15 and GhCUL1 were identified to influence PH in further analysis. We obtained a time series of PH values for three field conditions based on remote sensing with UAV. The key genes identified in this study are of great value for the breeding of ideal plant architecture in cotton.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Dispositivos Aéreos não Tripulados , Fatores de Tempo , Melhoramento Vegetal
2.
Environ Res ; 250: 118520, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401683

RESUMO

The sedentary and less active lifestyle of modern college students has a significant impact on the physical and mental well-being of the college community. Campus Green Spaces (GSs) are crucial in promoting physical activity and improving students' health. However, previous research has focused on evaluating campuses as a whole, without considering the diverse spatial scenarios within the campus environment. Accordingly, this study focused on the young people's residential scenario in university and constructed a framework including a comprehensive set of objective and subjective GSs exposure metrics. A systematic, objective exposure assessment framework ranging from 2D (GSs areas), and 2.5D (GSs visibility) to 3D (GSs volume) was innovatively developed using spatial analysis, deep learning technology, and unmanned aerial vehicle (UAV) measurement technology. Subjective exposure metrics incorporated GSs visiting frequency, GSs visiting duration, and GSs perceived quality. Our cross-sectional study was based on 820 university students in Nanjing, China. Subjective measures of GSs exposure, physical activity, and health status were obtained through self-reported questionnaires. The Generalized Linear Model (GLM) was used to evaluate the associations between GSs exposure, physical activity, and perceived health. Physical activity and social cohesion were considered as mediators, and path analysis based on Structural Equation Modeling (SEM) was used to disentangle the mechanisms linking GSs exposure to the health status of college students. We found that (1) 2D indicator suggested significant associations with health in the 100m buffer, and the potential underlying mechanisms were: GSs area → Physical activity → Social cohesion → Physical health → Mental health; GSs area → Physical activity → Social cohesion → Mental health. (2) Subjective GSs exposure indicators were more relevant in illustrating exposure-response relationships than objective ones. This study can clarify the complex nexus and mechanisms between campus GSs, physical activity, and health, and provide a practical reference for health-oriented campus GSs planning.


Assuntos
Exercício Físico , Estudantes , Humanos , Estudantes/psicologia , Masculino , Adulto Jovem , Feminino , Universidades , Estudos Transversais , China , Adolescente , Nível de Saúde
3.
Int J Health Geogr ; 23(1): 13, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764024

RESUMO

BACKGROUND: In the near future, the incidence of mosquito-borne diseases may expand to new sites due to changes in temperature and rainfall patterns caused by climate change. Therefore, there is a need to use recent technological advances to improve vector surveillance methodologies. Unoccupied Aerial Vehicles (UAVs), often called drones, have been used to collect high-resolution imagery to map detailed information on mosquito habitats and direct control measures to specific areas. Supervised classification approaches have been largely used to automatically detect vector habitats. However, manual data labelling for model training limits their use for rapid responses. Open-source foundation models such as the Meta AI Segment Anything Model (SAM) can facilitate the manual digitalization of high-resolution images. This pre-trained model can assist in extracting features of interest in a diverse range of images. Here, we evaluated the performance of SAM through the Samgeo package, a Python-based wrapper for geospatial data, as it has not been applied to analyse remote sensing images for epidemiological studies. RESULTS: We tested the identification of two land cover classes of interest: water bodies and human settlements, using different UAV acquired imagery across five malaria-endemic areas in Africa, South America, and Southeast Asia. We employed manually placed point prompts and text prompts associated with specific classes of interest to guide the image segmentation and assessed the performance in the different geographic contexts. An average Dice coefficient value of 0.67 was obtained for buildings segmentation and 0.73 for water bodies using point prompts. Regarding the use of text prompts, the highest Dice coefficient value reached 0.72 for buildings and 0.70 for water bodies. Nevertheless, the performance was closely dependent on each object, landscape characteristics and selected words, resulting in varying performance. CONCLUSIONS: Recent models such as SAM can potentially assist manual digitalization of imagery by vector control programs, quickly identifying key features when surveying an area of interest. However, accurate segmentation still requires user-provided manual prompts and corrections to obtain precise segmentation. Further evaluations are necessary, especially for applications in rural areas.


Assuntos
Mudança Climática , Humanos , Animais , Malária/epidemiologia , Mosquitos Vetores , Tecnologia de Sensoriamento Remoto/métodos , Sistemas de Informação Geográfica , Processamento de Imagem Assistida por Computador/métodos
4.
Am J Emerg Med ; 84: 135-140, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39116674

RESUMO

INTRODUCTION: Unmanned aerial vehicles (UAVs), more commonly known as drones, have rapidly become more diverse in capabilities and utilization through technology advancements and affordability. While drones have had significant positive impact on healthcare and consumer delivery particularly in remote and austere environments, Violent Non-State Actors (VNSAs) have increasingly used drones as weapons in planning and executing terrorist attacks resulting in significant morbidity and mortality. We aim to analyze drone-related attacks globally against civilians and critical infrastructure for more effective hospital and prehospital care preparedness. METHODS: We retrospectively reviewed the Global Terrorism Database (GTD) from 1970 to 2020 to analyze the worldwide prevalence of drone-related attacks against civilians and critical infrastructure. Cases were excluded if they had insufficient information regarding a drone involvement, and if attacks were conducted by the government entities. The trends in the number of attacks per month, as well as the number of fatalities and injuries, were examined using time series and trend analysis. RESULTS: The database search yielded 253 drone-related incidents, 173 of which met inclusion criteria. These incidents resulted in 92 fatalities and 215 injuries with civilian targets most commonly attacked by drones (76 events, 43.9%), followed by military (46 events, 26.5-%). The Middle East region was most affected (168 events, 97% of attacks) and the Islamic state of Iraq was the most common perpetrator (106 events, 61.2%). Almost all attacks were by explosive devices attached to drones (172 events, 99.4%). Time series with linear trend analyses suggested an upward trends of drone attacks by VNSAs, resulting in a greater number of injuries and fatalities, that became more frequent over the years. CONCLUSIONS: Overtime, there were upward trends of drone attacks, with higher lethality and morbidity. There were more injuries compared to fatalities. Most common region affected was the Middle East, and most common type of weapon employed by drone technology was explosive weapon. Investment in medical personnel training, security, and research is crucial for an effective mass-casualty incident response after the drone attacks.


Assuntos
Dispositivos Aéreos não Tripulados , Humanos , Estudos Retrospectivos , Terrorismo , Medicina de Desastres , Aeronaves , Bases de Dados Factuais , Ferimentos e Lesões/epidemiologia , Ferimentos e Lesões/mortalidade
6.
Am J Primatol ; : e23676, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148233

RESUMO

Using unmanned aerial vehicles (UAVs) for surveys on thermostatic animals has gained prominence due to their ability to provide practical and precise dynamic censuses, contributing to developing and refining conservation strategies. However, the practical application of UAVs for animal monitoring necessitates the automation of image interpretation to enhance their effectiveness. Based on our past experiences, we present the Sichuan snub-nosed monkey (Rhinopithecus roxellana) as a case study to illustrate the effective use of thermal cameras mounted on UAVs for monitoring monkey populations in Qinling, a region characterized by magnificent biodiversity. We used the local contrast method for a small infrared target detection algorithm to collect the total population size. Through the experimental group, we determined the average optimal grayscale threshold, while the validation group confirmed that this threshold enables automatic detection and counting of target animals in similar datasets. The precision rate obtained from the experiments ranged from 85.14% to 97.60%. Our findings reveal a negative correlation between the minimum average distance between thermal spots and the count of detected individuals, indicating higher interference in images with closer thermal spots. We propose a formula for adjusting primate population estimates based on detection rates obtained from UAV surveys. Our results demonstrate the practical application of UAV-based thermal imagery and automated detection algorithms for primate monitoring, albeit with consideration of environmental factors and the need for data preprocessing. This study contributes to advancing the application of UAV technology in wildlife monitoring, with implications for conservation management and research.

7.
Ecotoxicol Environ Saf ; 282: 116675, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38971099

RESUMO

Unmanned aerial vehicle (UAV) sprayers are widely utilized in commercial aerial application of plant protection products (PPPs) in East Asian countries due to their high flexibility, high efficiency and low cost, but spray drift can lead to low utilization of UAV sprayers application, environmental pollution and bystander exposure risk. Droplet size and spray volume are critical factors affecting spray drift. Currently, the high temperature and humidity environment under the influence of the tropical monsoon climate brings new challenges for UAV sprayers. Therefore, in this study, pesticides were simulated with seduction red solution, and spraying trials were conducted using the DJI commercial T40 UAV sprayers for a typical tropical crop, coconut. In this study, the spray drift distribution of droplets on the ground and in the air, as well as the bystander exposure risk, were comparatively analyzed using droplet size (VF, M, and C) and spray volume (75 L/hm2 and 60 L/hm2) as trial variables. The results indicated that the spray drift characteristics of UAV sprayers were significantly affected by droplet size and spray volume. The spray drift percentage was negatively correlated with the downwind distance and the sampling height. The smaller the droplet size, the farther the buffer zone distance, up to more than 30 m, and the cumulative drift percentage is also greater, resulting in a significant risk of spray drift. The reduction in spray volume helped to reduce the spray drift, and the cumulative drift percentage was reduced by 73.87 % with a droplet size of M. The region of the body where spray drift is deposited the most on bystanders is near chest height. This study provides a reference for the rational and safe use of multirotor UAV sprayers application operations in the tropics and enriches the spray drift database in the tropics.


Assuntos
Cocos , Cocos/química , Medição de Risco , Tamanho da Partícula , Agricultura/métodos , Humanos , Exposição Ambiental , Praguicidas/análise
8.
Risk Anal ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317929

RESUMO

The prediction of unmanned aerial vehicle (UAV) operators' unsafe acts is critical for preventing UAV incidents. However, there is a lack of research specifically focusing on UAV operators' unsafe acts, and existing approaches in related areas often lack precision and effectiveness. To address this, we propose a hybrid approach that combines the Human Factors Analysis and Classification System (HFACS) with random forest (RF) to predict and warn against UAV operators' unsafe acts. Initially, we introduce an improved HFACS framework to identify risk factors influencing the unsafe acts. Subsequently, we utilize the adaptive synthetic sampling algorithm (ADASYN) to rectify the imbalance in the dataset. The RF model is then used to construct a risk prediction and early warning model, as well as to identify critical risk factors associated with the unsafe acts. The results obtained through the improved HFACS framework reveal 33 risk factors, encompassing environmental influences, industry influences, unsafe supervision, and operators' states, contributing to the unsafe acts. The RF model demonstrates a significant improvement in prediction performance after applying ADASYN. The critical risk factors associated with the unsafe acts are identified as weak safety awareness, allowing unauthorized flight activities, lack of legal awareness, lack of supervision system, and obstacles. The findings of this study can assist policymakers in formulating effective measures to mitigate incidents resulting from UAV operators' unsafe acts.

9.
Sensors (Basel) ; 24(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339713

RESUMO

An Internet of Things (IoT) system for managing and coordinating unmanned aerial vehicles (UAVs) has revolutionized the industrial sector. The largest issue with the design of the Internet of UAVs (IoUAV) is security. Conspicuously, the novel contribution of the proposed work is to develop a layered authentication approach to facilitate safe IoUAV communication. Specifically, four modules, including the pre-deployment module, user registration module, login module, and authentication module, form the basis of security analysis. In the proposed technique, UAVs are added to the IoUAV registry. The next step is the user registration module, where people are registered with the UAV so they may access the information in real time. In the login module, the user connects with the server for data transmission. Finally, in the authentication module, all entities, including users, servers, and UAVs, are authenticated to ensure secure data communication. The proposed method achieves peak performance as compared to the state-of-the-art techniques in terms of statistical parameters of latency (3.255s), throughput (90.15%), and packet loss (8.854%).

10.
Sensors (Basel) ; 24(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38400501

RESUMO

The trajectory or moving-target tracking feature is desirable, because it can be used in various applications where the usefulness of UAVs is already proven. Tracking moving targets can also be applied in scenarios of cooperation between mobile ground-based and flying robots, where mobile ground-based robots could play the role of mobile landing pads. This article presents a novel proposition of an approach to position-tracking problems utilizing artificial potential fields (APF) for quadcopter UAVs, which, in contrast to well-known APF-based path planning methods, is a dynamic problem and must be carried out online while keeping the tracking error as low as possible. Also, a new flight control is proposed, which uses roll, pitch, and yaw angle control based on the velocity vector. This method not only allows the UAV to track a point where the potential function reaches its minimum but also enables the alignment of the course and velocity to the direction and speed given by the velocity vector from the APF. Simulation results present the possibilities of applying the APF method to holonomic UAVs such as quadcopters and show that such UAVs controlled on the basis of an APF behave as non-holonomic UAVs during 90° turns. This allows them and the onboard camera to be oriented toward the tracked target. In simulations, the AR Drone 2.0 model of the Parrot quadcopter is used, which will make it possible to easily verify the method in real flights in future research.

11.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475132

RESUMO

Flight parameters are crucial criteria for UAV control, playing a significant role in ensuring the safe and efficient completion of missions. Launch force and airspeed information are key parameters in the early and middle stages of flight, serving as important data for monitoring the UAV's flight status. In response to challenges such as weak launch force, low identification rates, small airspeed, and low recognition accuracy in UAVs, a method for identifying UAV flight parameters based on launch force and airspeed is proposed. From the aspect of launch force identification, a recognition method based on a low-g value accelerometer information source is proposed, utilizing a 'multi-level time window + threshold' approach. For airspeed identification, an optimization method for airspeed measurement under the Kalman filter architecture is introduced. A device for airspeed measurement based on pressure sensors is designed, and the recommended installation position is determined through simulation. Furthermore, the feasibility and robustness of the proposed launch force identification and airspeed measurement optimization methods are validated through simulation. Finally, the effectiveness of the design is verified through centrifuge and wind tunnel experiments. This research provides technical support for the identification of the launch force and airspeed measurement in UAVs.

12.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610394

RESUMO

This paper proposes a new sensor using optical flow to stabilize a quadrotor when a GPS signal is not available. Normally, optical flow varies with the attitude of the aerial vehicle. This produces positive feedback on the attitude control that destabilizes the orientation of the vehicle. To avoid this, we propose a novel sensor using an optical flow camera with a 6DoF IMU (Inertial Measurement Unit) mounted on a two-axis anti-shake stabilizer mobile aerial gimbal. We also propose a robust algorithm based on Sliding Mode Control for stabilizing the optical flow sensor downwards independently of the aerial vehicle attitude. This method improves the estimation of the position and velocity of the quadrotor. We present experimental results to show the performance of the proposed sensor and algorithms.

13.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123844

RESUMO

A lightweight aircraft visual navigation algorithm that fuses neural networks is proposed to address the limited computing power issue during the offline operation of aircraft edge computing platforms in satellite-denied environments with complex working scenarios. This algorithm utilizes object detection algorithms to label dynamic objects within complex scenes and performs dynamic feature point elimination to enhance the feature point extraction quality, thereby improving navigation accuracy. The algorithm was validated using an aircraft edge computing platform, and comparisons were made with existing methods through experiments conducted on the TUM public dataset and physical flight experiments. The experimental results show that the proposed algorithm not only improves the navigation accuracy but also has high robustness compared with the monocular ORB-SLAM2 method under the premise of satisfying the real-time operation of the system.

14.
Sensors (Basel) ; 24(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38793929

RESUMO

Unmanned Aerial Vehicle (UAV) infrared detection has problems such as weak and small targets, complex backgrounds, and poor real-time detection performance. It is difficult for general target detection algorithms to achieve the requirements of a high detection rate, low missed detection rate, and high real-time performance. In order to solve these problems, this paper proposes an improved small target detection method based on Picodet. First, to address the problem of poor real-time performance, an improved lightweight LCNet network was introduced as the backbone network for feature extraction. Secondly, in order to solve the problems of high false detection rate and missed detection rate due to weak targets, the Squeeze-and-Excitation module was added and the feature pyramid structure was improved. Experimental results obtained on the HIT-UAV public dataset show that the improved detection model's real-time frame rate increased by 31 fps and the average accuracy (MAP) increased by 7%, which proves the effectiveness of this method for UAV infrared small target detection.

15.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732816

RESUMO

Target detection technology based on unmanned aerial vehicle (UAV)-derived aerial imagery has been widely applied in the field of forest fire patrol and rescue. However, due to the specificity of UAV platforms, there are still significant issues to be resolved such as severe omission, low detection accuracy, and poor early warning effectiveness. In light of these issues, this paper proposes an improved YOLOX network for the rapid detection of forest fires in images captured by UAVs. Firstly, to enhance the network's feature-extraction capability in complex fire environments, a multi-level-feature-extraction structure, CSP-ML, is designed to improve the algorithm's detection accuracy for small-target fire areas. Additionally, a CBAM attention mechanism is embedded in the neck network to reduce interference caused by background noise and irrelevant information. Secondly, an adaptive-feature-extraction module is introduced in the YOLOX network's feature fusion part to prevent the loss of important feature information during the fusion process, thus enhancing the network's feature-learning capability. Lastly, the CIoU loss function is used to replace the original loss function, to address issues such as excessive optimization of negative samples and poor gradient-descent direction, thereby strengthening the network's effective recognition of positive samples. Experimental results show that the improved YOLOX network has better detection performance, with mAP@50 and mAP@50_95 increasing by 6.4% and 2.17%, respectively, compared to the traditional YOLOX network. In multi-target flame and small-target flame scenarios, the improved YOLO model achieved a mAP of 96.3%, outperforming deep learning algorithms such as FasterRCNN, SSD, and YOLOv5 by 33.5%, 7.7%, and 7%, respectively. It has a lower omission rate and higher detection accuracy, and it is capable of handling small-target detection tasks in complex fire environments. This can provide support for UAV patrol and rescue applications from a high-altitude perspective.

16.
Sensors (Basel) ; 24(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339638

RESUMO

In the field of unmanned systems, the combination of artificial intelligence with self-operating functionalities is becoming increasingly important. This study introduces a new method for autonomously detecting humans in indoor environments using unmanned aerial vehicles, utilizing the advanced techniques of a deep learning framework commonly known as "You Only Look Once" (YOLO). The key contribution of this research is the development of a new model (YOLO-IHD), specifically designed for human detection in indoor using drones. This model is created using a unique dataset gathered from aerial vehicle footage in various indoor environments. It significantly improves the accuracy of detecting people in these complex environments. The model achieves a notable advancement in autonomous monitoring and search-and-rescue operations, highlighting its importance for tasks that require precise human detection. The improved performance of the new model is due to its optimized convolutional layers and an attention mechanism that process complex visual data from indoor environments. This results in more dependable operation in critical situations like disaster response and indoor rescue missions. Moreover, when combined with an accelerating processing library, the model shows enhanced real-time detection capabilities and operates effectively in a real-world environment with a custom designed indoor drone. This research lays the groundwork for future enhancements designed to significantly increase the model's accuracy and the reliability of indoor human detection in real-time drone applications.


Assuntos
Inteligência Artificial , Dispositivos Aéreos não Tripulados , Humanos , Reprodutibilidade dos Testes , Sistemas Computacionais , Cultura
17.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475123

RESUMO

Unmanned aerial vehicle (UAV)-based geological mapping is significant for understanding the geological structure in the high-steep slopes, but the images obtained in these areas are inevitably influenced by the backlit effect because of the undulating terrain and the viewpoint change of the camera mounted on the UAV. To handle this concern, a novel backlit image restoration method is proposed that takes the real-world application into account and addresses the color distortion issue existing in backlit images captured in high-steep slope scenes. Specifically, there are two main steps in the proposed method, which consist of the backlit removal and the color and detail enhancement. The backlit removal first eliminates the backlit effect using the Retinex strategy, and then the color and detail enhancement step improves the image color and sharpness. The author designs extensive comparison experiments from multiple angles and applies the proposed method to different engineering applications. The experimental results show that the proposed method has potential compared to other main-stream methods both in qualitative visual effects and universal quantitative evaluation metrics. The backlit images processed by the proposed method are significantly improved by the process of feature key point matching, which is very conducive to the fine construction of 3D geological models of the high-steep slope.

18.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339604

RESUMO

Unmanned Aerial Vehicles (UAVs) have critical applications in various real-world scenarios, including mapping unknown environments, military reconnaissance, and post-disaster search and rescue. In these scenarios where communication infrastructure is missing, UAVs will form an ad hoc network and perform tasks in a distributed manner. To efficiently carry out tasks, each UAV must acquire and share global status information and data from neighbors. Meanwhile, UAVs frequently operate in extreme conditions, including storms, lightning, and mountainous areas, which significantly degrade the quality of wireless communication. Additionally, the mobility of UAVs leads to dynamic changes in network topology. Therefore, we propose a method that utilizes graph neural networks (GNN) to learn cooperative data dissemination. This method leverages the network topology relationship and enables UAVs to learn a decision policy based on local data structure, ensuring that all UAVs can recover global information. We train the policy using reinforcement learning that enhances the effectiveness of each transmission. After repeated simulations, the results validate the effectiveness and generalization of the proposed method.

19.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38676047

RESUMO

In the pursuit of sustainable agriculture, efficient water management remains crucial, with growers relying on advanced techniques for informed decision-making. Cotton yield prediction, a critical aspect of agricultural planning, benefits from cutting-edge technologies. However, traditional methods often struggle to capture the nuanced complexities of crop health and growth. This study introduces a novel approach to cotton yield prediction, leveraging the synergy between Unmanned Aerial Vehicles (UAVs) and scale-aware convolutional neural networks (CNNs). The proposed model seeks to harness the spatiotemporal dynamics inherent in high-resolution UAV imagery to improve the accuracy of the cotton yield prediction. The CNN component adeptly extracts spatial features from UAV-derived imagery, capturing intricate details related to crop health and growth, modeling temporal dependencies, and facilitating the recognition of trends and patterns over time. Research experiments were carried out in a cotton field at the USDA-ARS Cropping Systems Research Laboratory (CSRL) in Lubbock, Texas, with three replications evaluating four irrigation treatments (rainfed, full irrigation, percent deficit of full irrigation, and time delay of full irrigation) on cotton yield. The prediction revealed that the proposed CNN regression models outperformed conventional CNN models, such as AlexNet, CNN-3D, CNN-LSTM, ResNet. The proposed CNN model showed state-of-art performance at different image scales, with the R2 exceeding 0.9. At the cotton row level, the mean absolute error (MAE) and mean absolute percentage error (MAPE) were 3.08 pounds per row and 7.76%, respectively. At the cotton grid level, the MAE and MAPE were 0.05 pounds and 10%, respectively. This shows the proposed model's adaptability to the dynamic interplay between spatial and temporal factors that affect cotton yield. The authors conclude that integrating UAV-derived imagery and CNN regression models is a potent strategy for advancing precision agriculture, providing growers with a powerful tool to optimize cultivation practices and enhance overall cotton productivity.

20.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931506

RESUMO

Within research on the cross-view geolocation of UAVs, differences in image sources and interference from similar scenes pose huge challenges. Inspired by multimodal machine learning, in this paper, we design a single-stream pyramid transformer network (SSPT). The backbone of the model uses the self-attention mechanism to enrich its own internal features in the early stage and uses the cross-attention mechanism in the later stage to refine and interact with different features to eliminate irrelevant interference. In addition, in the post-processing part of the model, a header module is designed for upsampling to generate heat maps, and a Gaussian weight window is designed to assign label weights to make the model converge better. Together, these methods improve the positioning accuracy of UAV images in satellite images. Finally, we also use style transfer technology to simulate various environmental changes in order to expand the experimental data, further proving the environmental adaptability and robustness of the method. The final experimental results show that our method yields significant performance improvement: The relative distance score (RDS) of the SSPT-384 model on the benchmark UL14 dataset is significantly improved from 76.25% to 84.40%, while the meter-level accuracy (MA) of 3 m, 5 m, and 20 m is increased by 12%, 12%, and 10%, respectively. For the SSPT-256 model, the RDS has been increased to 82.21%, and the meter-level accuracy (MA) of 3 m, 5 m, and 20 m has increased by 5%, 5%, and 7%, respectively. It still shows strong robustness on the extended thermal infrared (TIR), nighttime, and rainy day datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA