Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Med Phys ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860497

RESUMO

BACKGROUND: Ultra-high dose rate radiotherapy (UHDR-RT) has demonstrated normal tissue sparing capabilities, termed the FLASH effect; however, available dosimetry tools make it challenging to characterize the UHDR beams with sufficiently high concurrent spatial and temporal resolution. Novel dosimeters are needed for safe clinical implementation and improved understanding of the effect of UHDR-RT. PURPOSE: Ultra-fast scintillation imaging has been shown to provide a unique tool for spatio-temporal dosimetry of conventional cyclotron pencil beam scanning (PBS) deliveries, indicating the potential use for characterization of UHDR PBS proton beams. The goal of this work is to introduce this novel concept and demonstrate its capabilities in recording high-resolution dose rate maps at FLASH-capable proton beam currents, as compared to log-based dose rate calculation, internally developed UHDR beam simulation, and a fast point detector (EDGE diode). METHODS: The light response of a scintillator sheet located at isocenter and irradiated by PBS proton fields (40-210 nA, 250 MeV) was imaged by an ultra-fast iCMOS camera at 4.5-12 kHz sampling frequency. Camera sensor and image intensifier gain were optimized to maximize the dynamic range; the camera acquisition rate was also varied to evaluate the optimal sampling frequency. Large field delivery enabled flat field acquisition for evaluation of system response homogeneity. Image intensity was calibrated to dose with film and the recorded spatio-temporal data was compared to a PPC05 ion chamber, log-based reconstruction, and EDGE diode. Dose and dose rate linearity studies were performed to evaluate agreement under various beam conditions. Calculation of full-field mean and PBS dose rate maps were calculated to highlight the importance of high resolution, full-field information in UHDR studies. RESULTS: Camera response was linear with dose (R2 = 0.997) and current (R22 = 0.98) in the range from 2-22 Gy and 40-210 nA, respectively, when compared to ion chamber readings. The deviation of total irradiation time calculated with the imaging system from the log file recordings decreased from 0.07% to 0.03% when imaging at 12 kfps versus 4.5 kfps. Planned and delivered spot positions agreed within 0.2 ± $\pm$ 0.1 mm and total irradiation time agreed within 0.2 ± $\pm$ 0.2 ms when compared with the log files, indicating the high concurrent spatial and temporal resolution. For all deliveries, the PBS dose rate measured at the diode location agreed between the imaging and the diode within 3% ± $\pm$ 2% and with the simulation within 5% ± $\pm$ 3% CONCLUSIONS: Full-field mapping of dose and dose rate is imperative for complete understanding of UHDR PBS proton dose delivery. The high linearity and various spatiotemporal metric reporting capabilities confirm the continued use of this camera system for UHDR beam characterization, especially for spatially resolved dose rate information.

2.
Med Phys ; 51(3): 2311-2319, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37991111

RESUMO

BACKGROUND: Dosimetry in ultra-high dose rate (UHDR) electron beamlines poses a significant challenge owing to the limited usability of standard dosimeters in high dose and high dose-per-pulse (DPP) applications. PURPOSE: In this study, Al2 O3 :C nanoDot optically stimulated luminescent dosimeters (OSLDs), single-use powder-based LiF:Mg,Ti thermoluminescent dosimeters (TLDs), and Gafchromic EBT3 film were evaluated at extended dose ranges (up to 40 Gy) in conventional dose rate (CONV) and UHDR beamlines to determine their usability for calibration and dose verification in the setting of FLASH radiation therapy. METHODS: OSLDs and TLDs were evaluated against established dose-rate-independent Gafchromic EBT3 film with regard to the potential influence of mean dose rate, instantaneous dose rate, and DPP on signal response. The dosimeters were irradiated at CONV or UHDR conditions on a 9-MeV electron beam. Under UHDR conditions, different settings of pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude were used to characterize the individual dosimeters' response in order to isolate their potential dependencies on dose, dose rate, and DPP. RESULTS: The OSLDs, TLDs, and Gafchromic EBT3 film were found to be suitable at a dose range of up to 40 Gy without any indication of saturation in signal. The response of OSLDs and TLDs in UHDR conditions were found to be independent of mean dose rate (up to 1440 Gy/s), instantaneous dose rate (up to 2 MGy/s), and DPP (up to 7 Gy), with uncertainties on par with nominal values established in CONV beamlines (± 4%). In cross-comparing the response of OSLDs, TLDs and Gafchromic film at dose rates of 0.18-245 Gy/s, the coefficient of variation or relative standard deviation in the measured dose between the three dosimeters (inter-dosimeter comparison) was found to be within 2%. CONCLUSIONS: We demonstrated the dynamic range of OSLDs, TLDs, and Gafchromic film to be suitable up to 40 Gy, and we developed a protocol that can be used to accurately translate the measured signal in each respective dosimeter to dose. OSLDs and powdered TLDs were shown to be viable for dosimetric measurement in UHDR beamlines, providing dose measurements with accuracies on par with Gafchromic EBT3 film and their concurrent use demonstrating a means for redundant dosimetry in UHDR conditions.


Assuntos
Dosímetros de Radiação , Titânio , Doses de Radiação , Dosimetria Termoluminescente/métodos , Radiometria/métodos
3.
Med Phys ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772134

RESUMO

BACKGROUND: The extremely fast delivery of doses with ultra high dose rate (UHDR) beams necessitates the investigation of novel approaches for real-time dosimetry and beam monitoring. This aspect is fundamental in the perspective of the clinical application of FLASH radiotherapy (FLASH-RT), as conventional dosimeters tend to saturate at such extreme dose rates. PURPOSE: This study aims to experimentally characterize newly developed silicon carbide (SiC) detectors of various active volumes at UHDRs and systematically assesses their response to establish their suitability for dosimetry in FLASH-RT. METHODS: SiC PiN junction detectors, recently realized and provided by STLab company, with different active areas (ranging from 4.5 to 10 mm2) and thicknesses (10-20 µm), were irradiated using 9 MeV UHDR pulsed electron beams accelerated by the ElectronFLASH linac at the Centro Pisano for FLASH Radiotherapy (CPFR). The linearity of the SiC response as a function of the delivered dose per pulse (DPP), which in turn corresponds to a specific instantaneous dose rate, was studied under various experimental conditions by measuring the produced charge within the SiC active layer with an electrometer. Due to the extremely high peak currents, an external customized electronic RC circuit was built and used in conjunction with the electrometer to avoid saturation. RESULTS: The study revealed a linear response for the different SiC detectors employed up to 21 Gy/pulse for SiC detectors with 4.5 mm2/10 µm active area and thickness. These values correspond to a maximum instantaneous dose rate of 5.5 MGy/s and are indicative of the maximum achievable monitored DPP and instantaneous dose rate of the linac used during the measurements. CONCLUSIONS: The results clearly demonstrate that the developed devices exhibit a dose-rate independent response even under extreme instantaneous dose rates and dose per pulse values. A systematic study of the SiC response was also performed as a function of the applied voltage bias, demonstrating the reliability of these dosimeters with UHDR also without any applied voltage. This demonstrates the great potential of SiC detectors for accurate dosimetry in the context of FLASH-RT.

4.
Phys Eng Sci Med ; 47(1): 143-151, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37938519

RESUMO

Optical Calorimetry (OC) is based on interferometry and provides a direct measurement of spatially resolved absorbed dose to water by measuring refractive index changes induced by radiation. The purpose of this work was to optimize and characterize in software an OC system tailored for ultra-high dose rate applications and to build and test a prototype in a clinical environment. A radiation dosimeter using the principles of OC was designed in optical modelling software. Traditional image quality instruments, fencepost and contrast phantoms, were utilized both in software and experimentally in a lab environment to investigate noise reduction techniques and to test the spatial and dose resolution of the system. Absolute dose uncertainty was assessed by measurements in a clinical 6 MV Flattening Filter Free (FFF) photon beam with dose rates in the range 0.2-6 Gy/s achieved via changing the distance from the source. Design improvements included: equalizing the pathlengths of the interferometer, isolating the system from external vibrations and controlling the system's internal temperature as well as application of mathematical noise reduction techniques. Simulations showed that these improvements should increase the spatial resolution from 22 to 35 lp/mm and achieve a minimum detectable dose of 0.2 Gy, which was confirmed experimentally. In the FFF beam, the absolute dose uncertainty was dose rate dependent and decreased from 2.5 ± 0.8 to 2.5 ± 0.2 Gy for dose rates of 0.2 and 6 Gy/s, respectively. A radiation dosimeter utilizing the principles of OC was developed and constructed. Optical modelling software and image quality phantoms allowed for iterative testing and refinement. The refined OC system proved capable of measuring absorbed dose to water in a linac generated photon beam. Reduced uncertainty at higher dose rates indicates the potential for OC as a dosimetry system for high dose rate techniques such as microbeam and ultra-high dose-rate radiotherapy.


Assuntos
Radiometria , Software , Simulação por Computador , Calorimetria/métodos , Água
5.
Phys Med Biol ; 69(7)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38422545

RESUMO

Objective. Imaging of optical photons emitted from tissue during radiotherapy is a promising technique for real-time visualization of treatment delivery, offering applications in dose verification, treatment monitoring, and retrospective treatment plan comparison. This research aims to explore the feasibility of intensified imaging of tissue luminescence during proton therapy (PT), under both conventional and ultra-high dose rate (UHDR) conditions.Approach. Conventional and UHDR pencil beam scanning (PBS) PT irradiation of freshex vivoporcine tissue and tissue-mimicking plastic phantom was imaged using intensified complementary metal-oxide-semiconductor(CMOS) cameras. The optical emission from tissue was characterized during conventional irradiation using both blue and red-sensitive intensifiers to ensure adequate spectral coverage. Spectral characterization was performed using bandpass filters between the lens and sensor. Imaging of conventional proton fields (240 MeV, 10 nA) was performed at 100 Hz frame rate, while UHDR PBS proton delivery (250 MeV, 99 nA) was recorded at 1 kHz frame rate. Dependence of optical emission yield on proton energy was studied using an optical tissue-mimicking plastic phantom and a range shifter. Finally, we demonstrated fast beam tracking capability of fast camera towardsin vivomonitoring of FLASH PT.Main results. Under conventional treatment dose rates optical emission was imaged with single spot resolution. Spot profiles were found to agree with the treatment planning system calculation within >90% for all spectral bands and spot intensity was found to vary with spectral filtration. The resultant polychromatic emission presented a maximum intensity at 650 nm and decreasing signal at lower wavelengths, which is consistent with expected attenuation patterns of high fat and muscle tissue. For UHDR beam imaging, optical yield increased with higher proton energy. Imaging at 1 kHz allowed continuous monitoring of delivery during porcine tissue irradiation, with clear identification of individual dwell positions. The number of dwell positions matched the treatment plan in total and per row showing adequate temporal capability of iCMOS imaging.Significance. For the first time, this study characterizes optical emission from tissue during PT and demonstrates our capability of fast optical tracking of pencil proton beam on the tissue anatomy in both conventional and UHDR setting. Similar to the Cherenkov imaging in radiotherapy, this imaging modality could enable a seamless, independent validation of PT treatments.


Assuntos
Terapia com Prótons , Animais , Suínos , Terapia com Prótons/métodos , Prótons , Estudos Retrospectivos , Diagnóstico por Imagem , Imagens de Fantasmas
6.
Med Phys ; 51(6): 4536-4545, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639653

RESUMO

BACKGROUND: Plane-parallel ionization chambers are the recommended secondary standard systems for clinical reference dosimetry of electrons. Dosimetry in high dose rate and dose-per-pulse (DPP) is challenging as ionization chambers are subject to ion recombination, especially when dose rate and/or DPP is increased beyond the range of conventional radiotherapy. The lack of universally accepted models for correction of ion recombination in UDHR is still an issue as it is, especially in FLASH-RT research, which is crucial in order to be able to accurately measure the dose for a wide range of dose rates and DPPs. PURPOSE: The objective of this study was to show the feasibility of developing an Artificial Intelligence model to predict the ion-recombination factor-ksat for a plane-parallel Advanced Markus ionization chamber for conventional and ultra-high dose rate electron beams based on machine parameters. In addition, the predicted ksat of the AI model was compared with the current applied analytical models for this correction factor. METHODS: A total number of 425 measurements was collected with a balanced variety in machine parameter settings. The specific ksat values were determined by dividing the output of the reference dosimeter (optically stimulated luminescence [OSL]) by the output of the AM chamber. Subsequently, a XGBoost regression model was trained, which used the different machine parameters as input features and the corresponding ksat value as output. The prediction accuracy of this regression model was characterized by R2-coefficient of determination, mean absolute error and root mean squared error. In addition, the model was compared with the Two-Voltage (TVA) method and empirical Petersson model for 19 different dose-per-pulse values ranging from conventional to UDHR regimes. The Akiake Information criterion (AIC) was calculated for the three different models. RESULTS: The XGBoost regression model reached a R2-score of 0.94 on the independent test set with a MAE of 0.067 and RMSE of 0.106. For the additional 19 random data points, the ksat values predicted by the XGBoost model showed to be in agreement, within the uncertainties, with the ones determined by the Petersson model and better than the TVA method for doses per pulse >3.5 Gy with a maximum deviation from the ground truth of 14.2%, 16.7%, and -36.0%, respectively, for DPP >4 Gy. CONCLUSION: The proposed method of using AI for ksat determination displays efficiency. For the investigated DPPs, the ksat values obtained with the XGBoost model were in concurrence with the ones obtained with the current available analytical models within the boundaries of uncertainty, certainly for the DPP characterizing UDHR. But the overall performance of the AI model, taking the number of free parameters into account, lacked efficiency. Future research should optimize the determination of the experimental ksat, and investigate the determination the ksat for DPPs higher than the ones investigated in this study, while also evaluating the prediction of the proposed XGBoost model for UDHR machines of different centers.


Assuntos
Elétrons , Radiometria , Dosagem Radioterapêutica , Elétrons/uso terapêutico , Radiometria/instrumentação , Radiometria/métodos , Automação , Doses de Radiação , Inteligência Artificial
7.
Med Phys ; 51(6): 4504-4512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507253

RESUMO

BACKGROUND: Dosimetry in ultra-high dose rate (UHDR) beamlines is significantly challenged by limitations in real-time monitoring and accurate measurement of beam output, beam parameters, and delivered doses using conventional radiation detectors, which exhibit dependencies in ultra-high dose-rate (UHDR) and high dose-per-pulse (DPP) beamline conditions. PURPOSE: In this study, we characterized the response of the Exradin W2 plastic scintillator (Standard Imaging, Inc.), a water-equivalent detector that provides measurements with a time resolution of 100 Hz, to determine its feasibility for use in UHDR electron beamlines. METHODS: The W2 scintillator was exposed to an UHDR electron beam with different beam parameters by varying the pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude settings of an electron UHDR linear accelerator system. The response of the W2 scintillator was evaluated as a function of the total integrated dose delivered, DPP, and mean and instantaneous dose rate. To account for detector radiation damage, the signal sensitivity (pC/Gy) of the W2 scintillator was measured and tracked as a function of dose history. RESULTS: The W2 scintillator demonstrated mean dose rate independence and linearity as a function of integrated dose and DPP for DPP ≤ 1.5 Gy (R2 > 0.99) and PRF ≤ 90 Hz. At DPP > 1.5 Gy, nonlinear behavior and signal saturation in the blue and green signals as a function of DPP, PRF, and integrated dose became apparent. In the absence of Cerenkov correction, the W2 scintillator exhibited PW dependence, even at DPP values <1.5 Gy, with a difference of up to 31% and 54% in the measured blue and green signal for PWs ranging from 0.5 to 3.6 µs. The change in signal sensitivity of the W2 scintillator as a function of accumulated dose was approximately 4%/kGy and 0.3%/kGy for the measured blue and green signal responses, respectively, as a function of integrated dose history. CONCLUSION: The Exradin W2 scintillator can provide output measurements that are both dose rate independent and linear in response if the DPP is kept ≤1.5 Gy (corresponding to a mean dose rate up to 290 Gy/s in the used system), as long as proper calibration is performed to account for PW and changes in signal sensitivity as a function of accumulated dose. For DPP > 1.5 Gy, the W2 scintillator's response becomes nonlinear, likely due to limitations in the electrometer related to the high signal intensity.


Assuntos
Elétrons , Contagem de Cintilação , Contagem de Cintilação/instrumentação , Dosagem Radioterapêutica , Radiometria/instrumentação , Radioterapia/instrumentação , Aceleradores de Partículas
8.
Anticancer Res ; 44(10): 4251-4260, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39348953

RESUMO

BACKGROUND/AIM: The purpose of this study was to evaluate whether the sparing effect on cell survival is observed under normoxia. MATERIALS AND METHODS: A superconducting spiral sector-type azimuthally varying field (AVF) cyclotron produced 230 MeV proton beams at 250 Gy/s as ultra-high dose rate (uHDR) and 1 Gy/s as normal dose rate (NDR) to irradiate tumor and normal cell lines (HSGc-c5 and HDF up to 24 Gy at the center of spread-out Bragg peak (SOBP). The Advanced Markus chamber and Gafchromic film were used to measure the examined absolute dose and field sizes. Colony formation assay and immunofluorescence staining were conducted to evaluate the sparing effect. RESULTS: A homogeneous field was achieved at the center of the SOBP for both uHDR and NDR scanned proton beams, and dose reproducibility and linearity were adequate for experiments. There were significant differences in cell surviving fractions of HSGc-C5 and HDF cells irradiated at uHDRs compared to NDRs at 20 Gy and 24 Gy. Increasing γ-H2AX foci were observed for both cell lines at NDR. CONCLUSION: The sparing effect on cell survival was first observed under normoxic conditions for tumor and normal cells with doses exceeding 20 Gy, using proton irradiation at 250 Gy/s extracted from a superconducting AVF cyclotron. This study marks a significant milestone in advancing our understanding of the underlying mechanism behind the sparing effect.


Assuntos
Sobrevivência Celular , Ciclotrons , Terapia com Prótons , Humanos , Sobrevivência Celular/efeitos da radiação , Terapia com Prótons/métodos , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Prótons , Dosagem Radioterapêutica
9.
Phys Med Biol ; 69(14)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38876112

RESUMO

Objective. To fabricate and validate a novel focused collimator designed to spare normal tissue in a murine hemithoracic irradiation model using 250 MeV protons delivered at ultra-high dose rates (UHDRs) for preclinical FLASH radiation therapy (FLASH-RT) studies.Approach. A brass collimator was developed to shape 250 MeV UHDR protons from our Varian ProBeam. Six 13 mm apertures, of equivalent size to kV x-ray fields historically used to perform hemithorax irradiations, were precisely machined to match beam divergence, allowing concurrent hemithoracic irradiation of six mice while sparing the contralateral lung and abdominal organs. The collimated field profiles were characterized by film dosimetry, and a radiation survey of neutron activation was performed to ensure the safety of staff positioning animals.Main results. The brass collimator produced 1.2 mm penumbrae radiation fields comparable to kV x-rays used in preclinical studies. The penumbrae in the six apertures are similar, with full-width half-maxima of 13.3 mm and 13.5 mm for the central and peripheral apertures, respectively. The collimator delivered a similar dose at an average rate of 52 Gy s-1for all apertures. While neutron activation produces a high (0.2 mSv h-1) initial ambient equivalent dose rate, a parallel work-flow in which imaging and setup are performed without the collimator ensures safety to staff.Significance. Scanned protons have the greatest potential for future translation of FLASH-RT in clinical treatments due to their ability to treat deep-seated tumors with high conformality. However, the Gaussian distribution of dose in proton spots produces wider lateral penumbrae compared to other modalities. This presents a challenge in small animal pre-clinical studies, where millimeter-scale penumbrae are required to precisely target the intended volume. Offering high-throughput irradiation of mice with sharp penumbrae, our novel collimator-based platform serves as an important benchmark for enabling large-scale, cost-effective radiobiological studies of the FLASH effect in murine models.


Assuntos
Terapia com Prótons , Animais , Camundongos , Terapia com Prótons/instrumentação , Terapia com Prótons/métodos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica
10.
In Vivo ; 38(5): 2220-2227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39187321

RESUMO

BACKGROUND/AIM: There are only a few studies on dosimetry with ultrahigh-dose-rate (uHDR) scanned carbon-ion beams. This study investigated the characteristics of four types of ionization chambers for the uHDR beam. MATERIALS AND METHODS: We employed a newly developed large-plane parallel chamber to monitor a 208.3-MeV/u uHDR scanned carbon-ion beam with a 110-Gy/s average dose rate. The ionization chambers used were the Advanced Markus chamber (AMC), PinPoint 3D chamber (PPC), Farmer chamber (FC), and large-plane parallel chamber (StingRay). The AMC and StingRay surfaces and the PPC and FC geometric centers were aligned to the radiation isocenter using treatment room lasers. Using the voltage range stated in the instruction manuals, we obtained the saturation curves of the chambers. From these curves, we obtained the ion recombination correction factors using the two-voltage and three-voltage linear methods. The dose linearity was evaluated using five measurement points, and the chamber repeatability was verified by conducting repeated measurements for different dose values. RESULTS: Although all chambers, except for AMC, reached saturation when specified voltages were applied, they exhibited excellent linearity for different dose values. The ion recombination correction factors of the AMC obtained using the aforementioned linear methods were nearly 1. Additionally, all chambers exhibited excellent repeatability. Although the standard deviation of the PPC for the lowest dose was ~1.5%, those of all the other chambers were <1.0%. CONCLUSION: All ionization chambers can be used for measuring the relative dose, and absolute dose can be conveniently measured using the AMC with an uHDR carbon-ion scanned beam.


Assuntos
Radioterapia com Íons Pesados , Radiometria , Dosagem Radioterapêutica , Radiometria/métodos , Radiometria/instrumentação , Radioterapia com Íons Pesados/métodos , Radioterapia com Íons Pesados/instrumentação , Carbono/química , Humanos
11.
Med Phys ; 51(2): 1421-1432, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38207016

RESUMO

BACKGROUND: The recent rediscovery of the FLASH effect, a normal tissue sparing phenomenon observed in ultra-high dose rate (UHDR) irradiations, has instigated a surge of research endeavors aiming to close the gap between experimental observation and clinical treatment. However, the dependences of the FLASH effect and its underpinning mechanisms on beam parameters are not well known, and large-scale in vivo studies using murine models of human cancer are needed for these investigations. PURPOSE: To commission a high-throughput, variable dose rate platform providing uniform electron fields (≥15 cm diameter) at conventional (CONV) and UHDRs for in vivo investigations of the FLASH effect and its dependences on pulsed electron beam parameters. METHODS: A murine whole-thoracic lung irradiation (WTLI) platform was constructed using a 1.3 cm thick Cerrobend collimator forming a 15 × 1.6 cm2 slit. Control of dose and dose rate were realized by adjusting the number of monitor units and couch vertical position, respectively. Achievable doses and dose rates were investigated using Gafchromic EBT-XD film at 1 cm depth in solid water and lung-density phantoms. Percent depth dose (PDD) and dose profiles at CONV and various UHDRs were also measured at depths from 0 to 2 cm. A radiation survey was performed to assess radioactivation of the Cerrobend collimator by the UHDR electron beam in comparison to a precision-machined copper alternative. RESULTS: This platform allows for the simultaneous thoracic irradiation of at least three mice. A linear relationship between dose and number of monitor units at a given UHDR was established to guide the selection of dose, and an inverse-square relationship between dose rate and source distance was established to guide the selection of dose rate between 20 and 120 Gy·s-1 . At depths of 0.5 to 1.5 cm, the depth range relevant to murine lung irradiation, measured PDDs varied within ±1.5%. Similar lateral dose profiles were observed at CONV and UHDRs with the dose penumbrae widening from 0.3 mm at 0 cm depth to 5.1 mm at 2.0 cm. The presence of lung-density plastic slabs had minimal effect on dose distributions as compared to measurements made with only solid water slabs. Instantaneous dose rate measurements of the activated copper collimator were up to two orders of magnitude higher than that of the Cerrobend collimator. CONCLUSIONS: A high-throughput, variable dose rate platform has been developed and commissioned for murine WTLI electron FLASH radiotherapy. The wide field of our UHDR-enabled linac allows for the simultaneous WTLI of at least three mice, and for the average dose rate to be modified by changing the source distance, without affecting dose distribution. The platform exhibits uniform, and comparable dose distributions at CONV and UHDRs up to 120 Gy·s-1 , owing to matched and flattened 16 MeV CONV and UHDR electron beams. Considering radioactivation and exposure to staff, Cerrobend collimators are recommended above copper alternatives for electron FLASH research. This platform enables high-throughput animal irradiation, which is preferred for experiments using a large number of animals, which are required to effectively determine UHDR treatment efficacies.


Assuntos
Cobre , Elétrons , Humanos , Animais , Camundongos , Aceleradores de Partículas , Pulmão , Água , Dosagem Radioterapêutica , Radiometria
12.
Phys Med Biol ; 69(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38640916

RESUMO

Objective.Beam current transformers (BCT) are promising detectors for real-time beam monitoring in ultra-high dose rate (UHDR) electron radiotherapy. However, previous studies have reported a significant sensitivity of the BCT signal to changes in source-to-surface distance (SSD), field size, and phantom material which have until now been attributed to the fluctuating levels of electrons backscattered within the BCT. The purpose of this study is to evaluate this hypothesis, with the goal of understanding and mitigating the variations in BCT signal due to changes in irradiation conditions.Approach.Monte Carlo simulations and experimental measurements were conducted with a UHDR-capable intra-operative electron linear accelerator to analyze the impact of backscattered electrons on BCT signal. The potential influence of charge accumulation in media as a mechanism affecting BCT signal perturbation was further investigated by examining the effects of phantom conductivity and electrical grounding. Finally, the effectiveness of Faraday shielding to mitigate BCT signal variations is evaluated.Main Results.Monte Carlo simulations indicated that the fraction of electrons backscattered in water and on the collimator plastic at 6 and 9 MeV is lower than 1%, suggesting that backscattered electrons alone cannot account for the observed BCT signal variations. However, our experimental measurements confirmed previous findings of BCT response variation up to 15% for different field diameters. A significant impact of phantom type on BCT response was also observed, with variations in BCT signal as high as 14.1% when comparing measurements in water and solid water. The introduction of a Faraday shield to our applicators effectively mitigated the dependencies of BCT signal on SSD, field size, and phantom material.Significance.Our results indicate that variations in BCT signal as a function of SSD, field size, and phantom material are likely driven by an electric field originating in dielectric materials exposed to the UHDR electron beam. Strategies such as Faraday shielding were shown to effectively prevent these electric fields from affecting BCT signal, enabling reliable BCT-based electron UHDR beam monitoring.


Assuntos
Elétrons , Método de Monte Carlo , Imagens de Fantasmas , Espalhamento de Radiação , Elétrons/uso terapêutico , Aceleradores de Partículas , Doses de Radiação
13.
Radiother Oncol ; 194: 110197, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447870

RESUMO

PURPOSE: A better characterization of the dependence of the tissue sparing effect at ultra-high dose rate (UHDR) on physical beam parameters (dose, dose rate, radiation quality) would be helpful towards a mechanistic understanding of the FLASH effect and for its broader clinical translation. To address this, a comprehensive study on the normal tissue sparing at UHDR using the zebrafish embryo (ZFE) model was conducted. METHODS: One-day-old ZFE were irradiated over a wide dose range (15-95 Gy) in three different beams (proton entrance channel, proton spread out Bragg peak and 30 MeV electrons) at UHDR and reference dose rate. After irradiation the ZFE were incubated for 4 days and then analyzed for four different biological endpoints (pericardial edema, curved spine, embryo length and eye diameter). RESULTS: Dose-effect curves were obtained and a sparing effect at UHDR was observed for all three beams. It was demonstrated that proton relative biological effectiveness and UHDR sparing are both relevant to predict the resulting dose response. Dose dependent FLASH modifying factors (FMF) for ZFE were found to be compatible with rodent data from the literature. It was found that the UHDR sparing effect saturates at doses above âˆ¼ 50 Gy with an FMF of âˆ¼ 0.7-0.8. A strong dose rate dependence of the tissue sparing effect in ZFE was observed. The magnitude of the maximum sparing effect was comparable for all studied biological endpoints. CONCLUSION: The ZFE model was shown to be a suitable pre-clinical high-throughput model for radiobiological studies on FLASH radiotherapy, providing results comparable to rodent models. This underlines the relevance of ZFE studies for FLASH radiotherapy research.


Assuntos
Relação Dose-Resposta à Radiação , Elétrons , Embrião não Mamífero , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Elétrons/uso terapêutico , Embrião não Mamífero/efeitos da radiação , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Prótons , Eficiência Biológica Relativa
14.
Front Oncol ; 14: 1373453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655137

RESUMO

FLASH-radiotherapy delivers a radiation beam a thousand times faster compared to conventional radiotherapy, reducing radiation damage in healthy tissues with an equivalent tumor response. Although not completely understood, this radiobiological phenomenon has been proved in several animal models with a spectrum of all kinds of particles currently used in contemporary radiotherapy, especially electrons. However, all the research teams have performed FLASH preclinical studies using industrial linear accelerator or LINAC commonly employed in conventional radiotherapy and modified for the delivery of ultra-high-dose-rate (UHDRs). Unfortunately, the delivering and measuring of UHDR beams have been proved not to be completely reliable with such devices. Concerns arise regarding the accuracy of beam monitoring and dosimetry systems. Additionally, this LINAC totally lacks an integrated and dedicated Treatment Planning System (TPS) able to evaluate the internal dose distribution in the case of in vivo experiments. Finally, these devices cannot modify dose-time parameters of the beam relevant to the flash effect, such as average dose rate; dose per pulse; and instantaneous dose rate. This aspect also precludes the exploration of the quantitative relationship with biological phenomena. The dependence on these parameters need to be further investigated. A promising advancement is represented by a new generation of electron LINAC that has successfully overcome some of these technological challenges. In this review, we aim to provide a comprehensive summary of the existing literature on in vivo experiments using electron FLASH radiotherapy and explore the promising clinical perspectives associated with this technology.

15.
Cancer Radiother ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39304401

RESUMO

Ultra-high dose rate external beam radiotherapy (UHDR-RT) uses dose rates of several tens to thousands of Gy/s, compared with the dose rate of the order of a few Gy/min for conventional radiotherapy techniques, currently used in clinical practice. The use of such dose rate is likely to improve the therapeutic index by obtaining a radiobiological effect, known as the "FLASH" effect. This would maintain tumor control while enhancing tissues protection. To date, this effect has been achieved using beams of electrons, photons, protons, and heavy ions. However, the conditions required to achieve this "FLASH" effect are not well defined, and raise several questions, particularly with regard to the definition of the prescription, including dose fractionation, irradiated volume and the temporal structure of the pulsed beam. In addition, the dose delivered over a very short period induces technical challenges, particularly in terms of detectors, which must be mastered to guarantee safe clinical implementation. IRSN has carried out an in-depth literature review of the UHDR-RT technique, covering various aspects relating to patient radiation protection: the radiobiological mechanisms associated with the FLASH effect, the used temporal structure of the UHDR beams, accelerators and dose control, the properties of detectors to be used with UHDR beams, planning, clinical implementation, and clinical studies already carried out or in progress.

16.
Med Phys ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941539

RESUMO

BACKGROUND: An ultra-high dose rate (UHDR) electron accelerator for FLASH radiotherapy (RT) produces very intense bremsstrahlung by the interaction of the electron beam with objects both inside and outside of the accelerator. The bremsstrahlung dose per pulse is typically 1-2 orders of magnitude larger than that of conventional RT x-ray treatment of the same energy, and for electron energies above 10 MeV, the bremsstrahlung produces substantially more induced radioactivity outside the accelerator than for conventional RT. Therefore, a thorough radiation safety assessment is mandatory prior to the operation of a UHDR electron accelerator. PURPOSE: To evaluate the radiation safety of a prototype FLASH-enabled Varian TrueBeam accelerator and to develop a general framework for assessment of all key radiation safety properties of a UHDR electron accelerator for FLASH RT. METHODS: Production of bremsstrahlung and induced radioactivity by a UHDR electron accelerator is modeled by various analytical methods. The analytical modeling is compared with National Institute of Standards and Technology (NIST) bremsstrahlung yield data as well as measurements of primary bremsstrahlung outside the bunker and induced radioactivity of irradiated thick targets for a FLASH-enabled 16 MeV Varian TrueBeam electron accelerator. In addition, the analytical modeling is complemented by measurements of secondary bremsstrahlung inside/outside the bunker and neutrons at the maze entrance. RESULTS: Calculated bremsstrahlung yields deviate maximum 8.5% from NIST data, and all measurements of primary bremsstrahlung and induced radioactivity agree with calculations, validating the analytical tools. In addition, it is found that scattering foil bremsstrahlung dominates primary bremsstrahlung and the main source of secondary bremsstrahlung is the irradiated object outside the accelerator. It follows that primary and secondary bremsstrahlung outside the bunker can be calculated using the same simple formalism as that used for conventional RT. Measured primary bremsstrahlung tenth-value layers for concrete of the simple formalism are in good agreement with NCRP and IAEA data, while measured secondary bremsstrahlung tenth-value layers for concrete are considerably lower than NCRP and IAEA data. All calculations and measurements form a general framework for assessment of all key radiation safety properties of a UHDR electron accelerator. CONCLUSIONS: The FLASH-enabled Varian TrueBeam accelerator is safe for normal operation (max. 99 pulses per irradiation) in a bunker designed for at least 15 MV conventional x-ray treatment unless the UHDR workload is much larger than the x-ray workload. A similar finding applies to other UHDR electron accelerators. However, during beam tuning, radiation survey, or other tests with extended irradiation time, the UHDR workload may become very large, necessitating the implementation of additional safety measures.

17.
Phys Med Biol ; 68(19)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37735967

RESUMO

Purpose. Commercial electron FLASH platforms deliver ultra-high dose rate doses at discrete combinations of pulse parameters including pulse width (PW), pulse repetition frequency (PRF) and number of pulses (N), which dictate unique combinations of dose and dose rates. Additionally, collimation, source to surface distance, and airgaps also vary the dose per pulse (DPP). Currently, obtaining pulse parameters for the desired dose and dose rate is a cumbersome manual process involving creating, updating, and looking up values in large spreadsheets for every treatment configuration. This work presents a pulse parameter optimizer application to match intended dose and dose rate precisely and efficiently.Methods. Dose and dose rate calculation methods have been described for a commercial electron FLASH platform. A constrained optimization for the dose and dose rate cost function was modelled as a mixed integer problem in MATLAB (The MathWorks Inc., Version9.13.0 R2022b, Natick, Massachusetts). The beam and machine data required for the application were acquired using GafChromic film and alternating current current transformers (ACCTs). Variables for optimization included DPP for every collimator, PW and PRF measured using ACCT and airgap factors.Results. Using PW, PRF,Nand airgap factors as parameters, a software was created to optimize dose and dose rate, reaching the closest match if exact dose and dose rates are not achievable. Optimization took 20 s or less to converge to results. This software was validated for accuracy of dose calculation and precision in matching prescribed dose and dose rate.Conclusion. A pulse parameter optimization application was built for a commercial electron FLASH platform to increase efficiency in dose, dose rate, and pulse parameter prescription process. Automating this process reduces safety concerns associated with manual look up and calculation of these parameters, especially when many subjects at different doses and dose rates are to be safely managed.


Assuntos
Eletricidade , Elétrons , Humanos , Frequência Cardíaca , Software
18.
Radiother Oncol ; 187: 109820, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37516363

RESUMO

The ability to reduce toxicity of ultra-high dose rate (UHDR) helium ion irradiation has not been reported in vivo. Here, we tested UHDR helium ion irradiation in an embryonic zebrafish model. Our results show that UHDR helium ions spare body development and reduce spine curvature, compared to conventional dose rate.


Assuntos
Hélio , Peixe-Zebra , Animais , Hélio/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Íons/uso terapêutico , Dosagem Radioterapêutica
19.
Biomed Phys Eng Express ; 9(5)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37567152

RESUMO

Objective. This work sets out the capabilities of the high energy proton research beamline developed in the Christie proton therapy centre for Ultra-High Dose Rate (UHDR) irradiation and FLASH experiments. It also characterises the lower limits of UHDR operation for this Pencil Beam Scanning (PBS) proton hardware.Approach. Energy dependent nozzle transmission was measured using a Faraday Cup beam collector. Spot size was measured at the reference plane using a 2D scintillation detector. Integrated depth doses (IDDs) were measured. EBT3 Gafchromic film was used to compare UHDR and conventional dose rate spots. Our beam monitor calibration methodolgy for UHDR is described. A microDiamond detector was used to determine dose rates at zref. Instantaneous depth dose rates were calculated for 70-245 MeV. PBS dose rate distributions were calculated using Folkerts and Van der Water definitions.Main results. Transmission of 7.05 ± 0.1% is achieveable corresponding to a peak instantaneous dose rate of 112.7 Gy s-1. Beam parameters are comparable in conventional and UHDR mode with a spot size ofσx= 4.6 mm,σy= 6.6 mm. Dead time in the beam monitoring electonics warrants a beam current dependent MU correction in the present configuration. Fast beam scanning of 26.4 m s-1(X) and 12.1 m s-1(Y) allows PBS dose rates of the order tens of Grays per second.Significance. UHDR delivery is possible for small field sizes and high energies enabling research into the FLASH effect with PBS protons at our facility. To our knowledge this is also the first thorough characterisation of UHDR irradiation using the hardware of this clinical accelerator at energies less than 250 MeV. The data set out in this publication can be used for designing experiments at this UK research facility and inform the possible future clinical translation of UHDR PBS proton therapy.


Assuntos
Terapia com Prótons , Prótons , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador , Reino Unido
20.
Phys Imaging Radiat Oncol ; 28: 100506, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38045641

RESUMO

Background and purpose: Accurate dosimetry in Ultra-High Dose Rate (UHDR) beams is challenging because high levels of ion recombination occur within ionisation chambers used as reference dosimeters. A Small-body Portable Graphite Calorimeter (SPGC) exhibiting a dose-rate independent response was built to offer reduced uncertainty on secondary standard dosimetry in UHDR regimes. The aim of this study was to quantify the effect of the geometry and material properties of the device on the dose measurement. Materials and methods: A detailed model of the SPGC was built in the Monte Carlo code TOPAS (v3.6.1) to derive the impurity and gap correction factors, kimp and kgap. A dose conversion factor, DwMC/DgMC, was also calculated using FLUKA (v2021.2.0). These factors convert the average dose to its graphite core to the dose-to-water for a 249.7 MeV mono-energetic spot-scanned clinical proton beam. The effect of the surrounding Styrofoam on the dose measurement was examined in the simulations by substituting it for graphite. Results: The kimp and kgap correction factors were 0.9993 ± 0.0002 and 1.0000 ± 0.0001, respectively when the Styrofoam was not substituted, and 1.0037 ± 0.0002 and 0.9999 ± 0.0001, respectively when substituted for graphite. The dose conversion factor was calculated to be 1.0806 ± 0.0001. All uncertainties are Type A. Conclusions: Impurity and gap correction factors, and the dose conversion factor were calculated for the SPGC in a FLASH proton beam. Separating out the effect of scatter from Styrofoam insulation showed this as the dominating correction factor, amounting to 1.0043 ± 0.0002.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA