RESUMO
Irisin is secreted by muscle, increases with exercise, and mediates certain favorable effects of physical activity. In particular, irisin has been shown to have beneficial effects in adipose tissues, brain, and bone. However, the skeletal response to exercise is less clear, and the receptor for irisin has not been identified. Here we show that irisin binds to proteins of the αV class of integrins, and biophysical studies identify interacting surfaces between irisin and αV/ß5 integrin. Chemical inhibition of the αV integrins blocks signaling and function by irisin in osteocytes and fat cells. Irisin increases both osteocytic survival and production of sclerostin, a local modulator of bone remodeling. Genetic ablation of FNDC5 (or irisin) completely blocks osteocytic osteolysis induced by ovariectomy, preventing bone loss and supporting an important role of irisin in skeletal remodeling. Identification of the irisin receptor should greatly facilitate our understanding of irisin's function in exercise and human health.
Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Remodelação Óssea , Fibronectinas/metabolismo , Integrina alfaV/metabolismo , Osteócitos/metabolismo , Osteólise/metabolismo , Adipócitos/patologia , Animais , Linhagem Celular Tumoral , Feminino , Fibronectinas/genética , Células HEK293 , Humanos , Integrina alfaV/genética , Camundongos , Osteócitos/patologia , Osteólise/genéticaRESUMO
The molecular mediator and functional significance of meal-associated brown fat (BAT) thermogenesis remains elusive. Here, we identified the gut hormone secretin as a non-sympathetic BAT activator mediating prandial thermogenesis, which consequentially induces satiation, thereby establishing a gut-secretin-BAT-brain axis in mammals with a physiological role of prandial thermogenesis in the control of satiation. Mechanistically, meal-associated rise in circulating secretin activates BAT thermogenesis by stimulating lipolysis upon binding to secretin receptors in brown adipocytes, which is sensed in the brain and promotes satiation. Chronic infusion of a modified human secretin transiently elevates energy expenditure in diet-induced obese mice. Clinical trials with human subjects showed that thermogenesis after a single-meal ingestion correlated with postprandial secretin levels and that secretin infusions increased glucose uptake in BAT. Collectively, our findings highlight the largely unappreciated function of BAT in the control of satiation and qualify BAT as an even more attractive target for treating obesity.
Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Ingestão de Alimentos , Secretina/metabolismo , Termogênese , Adipócitos Marrons/citologia , Tecido Adiposo Marrom/citologia , Animais , Células HEK293 , Humanos , Lipólise , Camundongos , Camundongos Knockout , Camundongos Obesos , Secretina/genéticaRESUMO
In mitochondria, the oxidation of nutrients is coupled to ATP synthesis by the generation of a protonmotive force across the mitochondrial inner membrane. In mammalian brown adipose tissue (BAT), uncoupling protein 1 (UCP1, SLC25A7), a member of the SLC25 mitochondrial carrier family, dissipates the protonmotive force by facilitating the return of protons to the mitochondrial matrix. This process short-circuits the mitochondrion, generating heat for non-shivering thermogenesis. Recent cryo-electron microscopy (cryo-EM) structures of human UCP1 have provided new molecular insights into the inhibition and activation of thermogenesis. Here, we discuss these structures, describing how purine nucleotides lock UCP1 in a proton-impermeable conformation and rationalizing potential conformational changes of this carrier in response to fatty acid activators that enable proton leak for thermogenesis.
Assuntos
Termogênese , Proteína Desacopladora 1 , Humanos , Proteína Desacopladora 1/metabolismo , Animais , Mitocôndrias/metabolismo , Tecido Adiposo Marrom/metabolismoRESUMO
While mechanisms controlling uncoupling protein-1 (UCP1) in thermogenic adipocytes play a pivotal role in non-shivering thermogenesis, it remains unclear whether F1Fo-ATP synthase function is also regulated in brown adipose tissue (BAT). Here, we show that inhibitory factor 1 (IF1, encoded by Atp5if1), an inhibitor of ATP synthase hydrolytic activity, is a critical negative regulator of brown adipocyte energy metabolism. In vivo, IF1 levels are diminished in BAT of cold-adapted mice compared to controls. Additionally, the capacity of ATP synthase to generate mitochondrial membrane potential (MMP) through ATP hydrolysis (the so-called "reverse mode" of ATP synthase) is increased in brown fat. In cultured brown adipocytes, IF1 overexpression results in an inability of mitochondria to sustain the MMP upon adrenergic stimulation, leading to a quiescent-like phenotype in brown adipocytes. In mice, adeno-associated virus-mediated IF1 overexpression in BAT suppresses adrenergic-stimulated thermogenesis and decreases mitochondrial respiration in BAT. Taken together, our work identifies downregulation of IF1 upon cold as a critical event for the facilitation of the reverse mode of ATP synthase as well as to enable energetic adaptation of BAT to effectively support non-shivering thermogenesis.
RESUMO
Obesity-induced diabetes affects >400 million people worldwide. Uncontrolled lipolysis (free fatty acid release from adipocytes) can contribute to diabetes and obesity. To identify future therapeutic avenues targeting this pathway, we performed a high-throughput screen and identified the extracellular-regulated kinase 3 (ERK3) as a hit. We demonstrated that ß-adrenergic stimulation stabilizes ERK3, leading to the formation of a complex with the cofactor MAP kinase-activated protein kinase 5 (MK5), thereby driving lipolysis. Mechanistically, we identified a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes the expression of the major lipolytic enzyme ATGL. Finally, we provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis, but elevates energy dissipation, promoting lean phenotype and ameliorating diabetes. Thus, ERK3/MK5 represents a previously unrecognized signaling axis in adipose tissue and an attractive target for future therapies aiming to combat obesity-induced diabetes.
Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Metabolismo Energético/genética , Lipólise/genética , Proteína Quinase 6 Ativada por Mitógeno/genética , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Obesidade/complicações , Células 3T3 , Tecido Adiposo/enzimologia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Proteína Forkhead Box O1/metabolismo , Deleção de Genes , Células HEK293 , Humanos , Hipoglicemiantes/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipase/genética , Lipase/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genéticaRESUMO
Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.
Assuntos
Metabolismo Energético/genética , Mitocôndrias/metabolismo , Obesidade/genética , Sirtuínas/genética , Proteína Desacopladora 1/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Regulação da Expressão Gênica , Glucose/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Obesidade/metabolismo , Obesidade/patologia , Proteômica/métodos , Ácido Succínico/metabolismo , Termogênese/genética , Proteína Desacopladora 1/metabolismoRESUMO
Diet-induced obesity can be caused by impaired thermogenesis of beige adipocytes, the brown-like adipocytes in white adipose tissue (WAT). Promoting brown-like features in WAT has been an attractive therapeutic approach for obesity. However, the mechanism underlying beige adipocyte formation is largely unknown. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and overexpression of human Naa10p is linked to cancer development. Here, we report that both conventional and adipose-specific Naa10p deletions in mice result in increased energy expenditure, thermogenesis, and beige adipocyte differentiation. Mechanistically, Naa10p acetylates the N terminus of Pgc1α, which prevents Pgc1α from interacting with Pparγ to activate key genes, such as Ucp1, involved in beige adipocyte function. Consistently, fat tissues of obese human individuals show higher NAA10 expression. Thus, Naa10p-mediated N-terminal acetylation of Pgc1α downregulates thermogenic gene expression, making inhibition of Naa10p enzymatic activity a potential strategy for treating obesity.
Assuntos
Adipócitos Bege/enzimologia , Tecido Adiposo Bege/enzimologia , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Obesidade/enzimologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Processamento de Proteína Pós-Traducional , Termogênese , Acetilação , Tecido Adiposo Bege/fisiopatologia , Adiposidade , Adolescente , Adulto , Idoso , Animais , Estudos de Casos e Controles , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Acetiltransferase N-Terminal A/deficiência , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/deficiência , Acetiltransferase N-Terminal E/genética , Células NIH 3T3 , Obesidade/genética , Obesidade/fisiopatologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fenótipo , Transdução de Sinais , Adulto JovemRESUMO
mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.
Assuntos
Adipócitos Marrons/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólise , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirtuínas/metabolismo , Adipócitos Marrons/citologia , Animais , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirtuínas/genéticaRESUMO
In the cold, the absence of the mitochondrial uncoupling protein 1 (UCP1) results in hyper-recruitment of beige fat, but classical brown fat becomes atrophied. Here we examine possible mechanisms underlying this phenomenon. We confirm that in brown fat from UCP1-knockout (UCP1-KO) mice acclimated to the cold, the levels of mitochondrial respiratory chain proteins were diminished; however, in beige fat, the mitochondria seemed to be unaffected. The macrophages that accumulated massively not only in brown fat but also in beige fat of the UCP1-KO mice acclimated to cold did not express tyrosine hydroxylase, the norepinephrine transporter (NET) and monoamine oxidase-A (MAO-A). Consequently, they could not influence the tissues through the synthesis or degradation of norepinephrine. Unexpectedly, in the cold, both brown and beige adipocytes from UCP1-KO mice acquired an ability to express MAO-A. Adipose tissue norepinephrine was exclusively of sympathetic origin, and sympathetic innervation significantly increased in both tissues of UCP1-KO mice. Importantly, the magnitude of sympathetic innervation and the expression levels of genes induced by adrenergic stimulation were much higher in brown fat. Therefore, we conclude that no qualitative differences in innervation or macrophage character could explain the contrasting reactions of brown versus beige adipose tissues to UCP1-ablation. Instead, these contrasting responses may be explained by quantitative differences in sympathetic innervation: the beige adipose depot from the UCP1-KO mice responded to cold acclimation in a canonical manner and displayed enhanced recruitment, while the atrophy of brown fat lacking UCP1 may be seen as a consequence of supraphysiological adrenergic stimulation in this tissue.
Assuntos
Tecido Adiposo Bege , Tecido Adiposo Marrom , Sistema Nervoso Simpático , Termogênese , Proteína Desacopladora 1 , Animais , Camundongos , Tecido Adiposo Bege/inervação , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adrenérgicos/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Norepinefrina/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Camundongos Knockout , Aclimatação/genética , Sistema Nervoso Simpático/fisiologia , Macrófagos/metabolismoRESUMO
The molecular evolution of the mammalian heater protein UCP1 is a powerful biomarker to understand thermoregulatory strategies during species radiation into extreme climates, such as aquatic life with high thermal conductivity. While fully aquatic mammals lost UCP1, most semiaquatic seals display intact UCP1 genes, apart from large elephant seals. Here, we show that UCP1 thermogenic activity of the small-bodied harbor seal is equally potent compared to terrestrial orthologs, emphasizing its importance for neonatal survival on land. In contrast, elephant seal UCP1 does not display thermogenic activity, not even when translating a repaired or a recently highlighted truncated version. Thus, the thermogenic benefits for neonatal survival during terrestrial birth in semiaquatic pinnipeds maintained evolutionary selection pressure on UCP1 function and were only outweighed by extreme body sizes among elephant seals, fully eliminating UCP1-dependent thermogenesis.
Assuntos
Tamanho Corporal , Focas Verdadeiras , Termogênese , Proteína Desacopladora 1 , Animais , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Termogênese/genética , Focas Verdadeiras/genética , Evolução Molecular , Phoca/genéticaRESUMO
Notch3 promotes mammary luminal cell specification and forced Notch3 activation can induce mammary tumor formation. However, recent studies suggest a tumor-suppressive role for Notch3. Here, we report on Notch3 expression and functional analysis in the mouse mammary gland. Notch3 is expressed in the luminal compartment throughout mammary gland development, but switches to basal cells with initiation of post-lactational involution. Deletion of Notch3 caused a decrease of Notch activation in luminal cells and diminished luminal progenitors at puberty, as well as reduced alveolar progenitors during pregnancy. Parous Notch3-/- mammary glands developed hyperplasia with accumulation of CD24hiCD49flo cells, some of which progressed to invasive tumors with luminal features. Notch3 deletion abolished Notch activation in basal cells during involution, accompanied by altered apoptosis and reduced brown adipocytes, leading to expansion of parity-identified mammary epithelial cells (PI-MECs). Interestingly, the postpartum microenvironment is required for the stem cell activity of Notch3-/- PI-MECs. Finally, high expression of NOTCH3 is associated with prolonged survival in patients with luminal breast cancer. These results highlight an unexpected tumor-suppressive function for Notch3 in the parous mammary gland through restriction of PI-MEC expansion.
Assuntos
Células Epiteliais , Glândulas Mamárias Animais , Animais , Células Epiteliais/metabolismo , Feminino , Lactação , Camundongos , Camundongos Transgênicos , Gravidez , Células-TroncoRESUMO
Brown adipose tissue (BAT) is correlated to cardiovascular health in rodents and humans, but the physiological role of BAT in the initial cardiac remodeling at the onset of stress is unknown. Activation of BAT via 48 h cold (16°C) in mice following transverse aortic constriction (TAC) reduced cardiac gene expression for LCFA uptake and oxidation in male mice and accelerated the onset of cardiac metabolic remodeling, with an early isoform shift of carnitine palmitoyltransferase 1 (CPT1) toward increased CPT1a, reduced entry of long chain fatty acid (LCFA) into oxidative metabolism (0.59 ± 0.02 vs. 0.72 ± 0.02 in RT TAC hearts, p < .05) and increased carbohydrate oxidation with altered glucose transporter content. BAT activation with TAC reduced early hypertrophic expression of ß-MHC by 61% versus RT-TAC and reduced pro-fibrotic TGF-ß1 and COL3α1 expression. While cardiac natriuretic peptide expression was yet to increase at only 3 days TAC, Nppa and Nppb expression were elevated in Cold TAC versus RT TAC hearts 2.7- and 2.4-fold, respectively. Eliminating BAT thermogenic activation with UCP1 KO mice eliminated differences between Cold TAC and RT TAC hearts, confirming effects of BAT activation rather than autonomous cardiac responses to cold. Female responses to BAT activation were blunted, with limited UCP1 changes with cold, partly due to already activated BAT in females at RT compared to thermoneutrality. These data reveal a previously unknown physiological mechanism of UCP1-dependent BAT activation in attenuating early cardiac hypertrophic and profibrotic signaling and accelerating remodeled metabolic activity in the heart at the onset of cardiac stress.
Assuntos
Tecido Adiposo Marrom , Fibrose , Proteína Desacopladora 1 , Animais , Tecido Adiposo Marrom/metabolismo , Camundongos , Masculino , Proteína Desacopladora 1/metabolismo , Fibrose/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Camundongos Endogâmicos C57BL , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Fisiológico , Remodelação Ventricular/fisiologia , Camundongos Knockout , Temperatura BaixaRESUMO
Cold-induced nonshivering thermogenesis has contributed to the improvement of several metabolic syndromes caused by obesity. Several long noncoding RNAs (lncRNAs) have been shown to play a role in brown fat biogenesis and thermogenesis. Here we show that the lncRNA lnc266 is induced by cold exposure in inguinal white adipose tissue (iWAT). In vitro functional studies reveal that lnc266 promotes brown adipocyte differentiation and thermogenic gene expression. At room temperature, lnc266 has no effects on white fat browning and systemic energy consumption. However, in a cold environment, lnc266 promotes white fat browning and thermogenic gene expression in obese mice. Moreover, lnc266 increases core body temperature and reduces body weight gain. Mechanistically, lnc266 does not directly regulate Ucp1 expression. Instead, lnc266 sponges miR-16-1-3p and thus abolishes the repression of miR-16-1-3p on Ucp1 expression. As a result, lnc266 promotes preadipocyte differentiation toward brown-like adipocytes and stimulates thermogenic gene expression. Overall, lnc266 is a cold-inducible lncRNA in iWAT, with a key role in white fat browning and the thermogenic program.
Assuntos
MicroRNAs , RNA Longo não Codificante , Termogênese , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Termogênese/genéticaRESUMO
The transcription factor early B-cell factor 2 (EBF2) is an essential mediator of brown adipocyte commitment and terminal differentiation. However, the mechanisms by which EBF2 regulates chromatin to activate brown fat-specific genes in adipocytes were unknown. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by deep sequencing) analyses in brown adipose tissue showed that EBF2 binds and regulates the activity of lineage-specific enhancers. Mechanistically, EBF2 physically interacts with the chromatin remodeler BRG1 and the BAF chromatin remodeling complex in brown adipocytes. We identified the histone reader protein DPF3 as a brown fat-selective component of the BAF complex that was required for brown fat gene programming and mitochondrial function. Loss of DPF3 in brown adipocytes reduced chromatin accessibility at EBF2-bound enhancers and led to a decrease in basal and catecholamine-stimulated expression of brown fat-selective genes. Notably, Dpf3 is a direct transcriptional target of EBF2 in brown adipocytes, thereby establishing a regulatory module through which EBF2 activates and also recruits DPF3-anchored BAF complexes to chromatin. Together, these results reveal a novel mechanism by which EBF2 cooperates with a tissue-specific chromatin remodeling complex to activate brown fat identity genes.
Assuntos
Adipogenia/genética , Tecido Adiposo Marrom/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Fatores de Transcrição/genética , Tecido Adiposo Marrom/metabolismo , Animais , Linhagem da Célula/genética , Células Cultivadas , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transcrição GênicaRESUMO
In this issue of Genes & Development, Shapira and colleagues (pp. 660-673) outline mechanisms by which the brown fat transcription factor early B-cell factor 2 (EBF2) selectively activates brown lineage-specific gene expression. The investigators show that EBF2 interacts with and recruits a tissue-specific BAF chromatin remodeling complex to brown fat gene enhancers, thereby regulating chromatin accessibility. Their findings provide important insight into epigenetic regulation of adipocyte fate and thermogenic gene expression.
Assuntos
Tecido Adiposo Marrom , Cromatina , Adipócitos Marrons , Linfócitos B , Epigênese Genética , TermogêneseRESUMO
Adipogenesis is one of the major mechanisms for adipose tissue expansion, during which spindle-shaped mesenchymal stem cells commit to the fate of adipocyte precursors and differentiate into round-shaped fat-laden adipocytes. Here, we investigated the lipidomic profile dynamics of ex vivo-differentiated brown and white adipocytes derived from the stromal vascular fractions of interscapular brown (iBAT) and inguinal white adipose tissues. We showed that sphingomyelin was specifically enriched in terminally differentiated brown adipocytes, but not white adipocytes. In line with this, freshly isolated adipocytes of iBAT showed higher sphingomyelin content than those of inguinal white adipose tissue. Upon cold exposure, sphingomyelin abundance in iBAT gradually decreased in parallel with reduced sphingomyelin synthase 1 protein levels. Cold-exposed animals treated with an inhibitor of sphingomyelin hydrolases failed to maintain core body temperature and showed reduced oxygen consumption and iBAT UCP1 levels. Conversely, blockade of sphingomyelin synthetic enzymes resulted in enhanced nonshivering thermogenesis, reflected by elevated body temperature and UCP1 levels. Taken together, our results uncovered a relation between sphingomyelin abundance and fine-tuning of UCP1-mediated nonshivering thermogenesis.
Assuntos
Esfingomielinas , Termogênese , Proteína Desacopladora 1 , Animais , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Esfingomielinas/metabolismo , Camundongos , Masculino , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the "browning of WAT," leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.
Assuntos
Adipogenia , Diferenciação Celular , Fibronectinas , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células CultivadasRESUMO
Ucp1 promoter-driven Cre transgenic mice are useful in the manipulation of gene expression specifically in thermogenic adipose tissues. However, the wildly used Ucp1-Cre line was generated by random insertion into the genome and showed ectopic activity in some tissues beyond adipose tissues. Here, we characterized a knockin mouse line Ucp1-iCre generated by targeting IRES-Cre cassette immediately downstream the stop codon of the Ucp1 gene. The Cre insertion had little to no effect on uncoupling protein 1 (UCP1) levels in brown adipose tissue. Ucp1-iCre mice of both genders exhibited normal thermogenesis and cold tolerance. When crossed with Rosa-tdTomato reporter mice, Ucp1-iCre mice showed robust Cre activity in thermogenic adipose tissues. In addition, limited Cre activity was sparsely present in the ventromedial hypothalamus (VMH), choroid plexus, kidney, adrenal glands, ovary, and testis in Ucp1-iCre mice, albeit to a much lesser extent and with reduced intensity compared with the conventional Ucp1-Cre line. Single-cell transcriptome analysis revealed Ucp1 mRNA expression in male spermatocytes. Moreover, male Ucp1-iCre mice displayed a high frequency of Cre-mediated recombination in the germline, whereas no such effect was observed in female Ucp1-iCre mice. These findings suggest that Ucp1-iCre mice offer promising utility in the context of conditional gene manipulation in thermogenic adipose tissues, while also highlighting the need for caution in mouse mating and genotyping procedures.NEW & NOTEWORTHY Ucp1 promoter-driven Cre transgenic mice are useful in the manipulation of gene expression specifically in thermogenic adipose tissues. The widely used Ucp1-Cre mouse line (Ucp1-CreEvdr), which was generated using the bacterial artificial chromosome (BAC) strategy, exhibits major brown and white fat transcriptomic dysregulation and ectopic activity beyond adipose tissues. Here, we comprehensively validate Ucp1-iCre knockin mice, which serve as another optional model besides Ucp1-CreEvdr mice for specific genetic manipulation in thermogenic tissue.
Assuntos
Tecido Adiposo Marrom , Integrases , Termogênese , Proteína Desacopladora 1 , Animais , Feminino , Masculino , Camundongos , Tecido Adiposo Marrom/metabolismo , Técnicas de Introdução de Genes , Células Germinativas/metabolismo , Integrases/genética , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Recombinação Genética , Espermatócitos/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismoRESUMO
Cold stress significantly affects gene expression in adipocytes; studying this phenomenon can help reveal the pathogeneses of conditions such as obesity and insulin resistance. Adipocyte triglyceride lipase (ATGL); cell death-inducing deoxyribonucleic acid (DNA) fragmentation factor subunit alpha (DFFA)-like effector (CIDEA); and uncoupling protein genes UCP1, UCP2, and UCP3 are the most studied genes in pig adipose tissues under cold stress. However, contradictory results have been observed in gene expression changes to UCP3 and UCP2 when adipose tissues under cold stress were examined. Therefore, we conducted a meta-analysis of 32 publications in total on the effect of cold stress on the expression of ATGL, CIDEA, UCP2, and UCP3. Our results showed that cold stress affected the expression of swine adipocyte genes; specifically, it was positively correlated with the expression of UCP3 in swine adipocytes. Conversely, expression of ATGL was negatively affected under cold stress conditions. In addition, the loss of functional UCP1 in pigs likely triggered a compensatory increase in UCP3 activity. We also simulated the docking results of UCP2 and UCP3. Our results showed that UCP2 could strongly bind to adenosine triphosphate (ATP), meaning that UCP3 played a more significant role in pig adipocytes.
RESUMO
Uncoupling protein 1 (UCP1) is located at the inner membrane of mitochondria and mediates nonshivering thermogenesis. Its abnormal expression is associated with metabolic diseases, cancer, and acute kidney injury. Myeloid-derived suppressor cells (MDSCs) with immunosuppressive activity accumulate in the tumor microenvironment (TME). Here, decreased UCP1 expression in MDSCs was observed in the peripheral blood of patients with colorectal cancer and transplanted mouse tumors. Aggravated tumor progression was observed in UCP1-knockout mice and conditional knockout mice (UCP1fl/fl-S100A8cre). The number of G-MDSCs and M-MDSCs increased in the transplanted tumor tissues from UCP1-deficient mice compared with those from wild-type mice. The tumor-promoting effect disappeared when the tumor-bearing mice were depleted of MDSCs by the α-DR5 administration. Adoptive transfer of tumor-derived MDSCs sharply promoted the tumor growth in vivo. Furthermore, these tumor-derived MDSCs enhanced the proliferation, reduced death, inhibited IFN-γ production of CD4+ and CD8+T cells, and induced Treg cells ex vivo. In conclusion, MDSCs in the TME alter the metabolic pattern by decreasing UCP1 expression to enhance immunosuppressive activity for tumor escape.