Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant J ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093617

RESUMO

Being a bona fide actin bundler, Arabidopsis villin5 (VLN5) plays a crucial role in regulating actin stability and organization within pollen tubes. Despite its significance, the precise mechanism through which VLN5 bundles actin filaments has remained elusive. Through meticulous deletion analysis, we have unveiled that the link between gelsolin repeat 6 (G6) and the headpiece domain (VHP), rather than VHP itself, is indispensable for VLN5-mediated actin bundling. Further refinement of this region has pinpointed a critical sequence spanning from Val763 to Ser823, essential for VLN5's actin-bundling activity. Notably, the absence of Val763-Ser823 in VLN5 results in decreased filamentous decoration within pollen tubes and a diminished ability to rescue actin bundling defects in vln2vln5 mutant pollen tubes compared to intact VLN5. Moreover, our findings highlight that the Val763-Ser823 sequence harbors a binding site for F-actin, suggesting that this linker-based F-actin binding site, in conjunction with the F-actin binding site localized in G1-G6, enables a single VLN5 to concurrently bind to two adjacent actin filaments. Therefore, our study unveils a novel mechanism by which VLN5 bundles actin filaments.

2.
J Comput Chem ; 39(30): 2551-2557, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30447084

RESUMO

Molecular dynamics (MD) simulations are widely used to explore the conformational space of biological macromolecules. Advances in hardware, as well as in methods, make the generation of large and complex MD datasets much more common. Although different clustering and dimensionality reduction methods have been applied to MD simulations, there remains a need for improved strategies that handle nonlinear data and/or can be applied to very large datasets. We present an original implementation of the pivot-based version of the stochastic proximity embedding method aimed at large MD datasets using the dihedral distance as a metric. The advantages of the algorithm in terms of data storage and computational efficiency are presented, as well as the implementation realized. Application and testing through the analysis of a 200 ns accelerated MD simulation of a 35-residue villin headpiece is discussed. Analysis of the simulation shows the promise of this method to organize large conformational ensembles. © 2018 Wiley Periodicals, Inc.


Assuntos
Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Processos Estocásticos , Bases de Dados de Proteínas
3.
Molecules ; 22(4)2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28422069

RESUMO

Glycine (Gly) residues are particularly susceptible to hydrogen abstraction; which results in the formation of the capto-dative stabilized Cα-centered Gly radical (GLR) on the protein backbone. We examined the effect of GLR formation on the structure of the Trp cage; tryptophan zipper; and the villin headpiece; three fast-folding and stable miniproteins; using all-atom (OPLS-AA) molecular dynamics simulations. Radicalization changes the conformation of the GLR residue and affects both neighboring residues but did not affect the stability of the Trp zipper. The stability of helices away from the radical center in villin were also affected by radicalization; and GLR in place of Gly15 caused the Trp cage to unfold within 1 µs. These results provide new evidence on the destabilizing effects of protein oxidation by reactive oxygen species.


Assuntos
Glicina/química , Estabilidade Proteica , Desdobramento de Proteína , Proteínas/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Proteínas dos Microfilamentos/química , Simulação de Dinâmica Molecular , Oxirredução , Conformação Proteica
4.
Biochim Biophys Acta ; 1850(5): 878-888, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25153688

RESUMO

BACKGROUND: Accelerated molecular dynamics (aMD) has been proven to be a powerful biasing method for enhanced sampling of biomolecular conformations on general-purpose computational platforms. Biologically important long timescale events that are beyond the reach of standard molecular dynamics can be accessed without losing the detailed atomistic description of the system in aMD. Over other biasing methods, aMD offers the advantages of tuning the level of acceleration to access the desired timescale without any advance knowledge of the reaction coordinate. SCOPE OF REVIEW: Recent advances in the implementation of aMD and its applications to small peptides and biological macromolecules are reviewed here along with a brief account of all the aMD variants introduced in the last decade. MAJOR CONCLUSIONS: In comparison to the original implementation of aMD, the recent variant in which all the rotatable dihedral angles are accelerated (RaMD) exhibits faster convergence rates and significant improvement in statistical accuracy of retrieved thermodynamic properties. RaMD in conjunction with accelerating diffusive degrees of freedom, i.e. dual boosting, has been rigorously tested for the most difficult conformational sampling problem, protein folding. It has been shown that RaMD with dual boosting is capable of efficiently sampling multiple folding and unfolding events in small fast folding proteins. GENERAL SIGNIFICANCE: RaMD with the dual boost approach opens exciting possibilities for sampling multiple timescales in biomolecules. While equilibrium properties can be recovered satisfactorily from aMD-based methods, directly obtaining dynamics and kinetic rates for larger systems presents a future challenge. This article is part of a Special Issue entitled Recent developments of molecular dynamics.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Preparações Farmacêuticas/química , Proteínas/química , Cinética , Conformação Proteica , Dobramento de Proteína , Desdobramento de Proteína , Relação Estrutura-Atividade , Termodinâmica
5.
Magnetochemistry ; 9(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36776538

RESUMO

Protein methyl groups can participate in multiple motional modes on different time scales. Sub-nanosecond to nano-second time scale motions of methyl axes are particularly challenging to detect for small proteins in solutions. In this work we employ NMR relaxation interference between the methyl H-H/H-C dipole-dipole interactions [Sun&Tugarinov, J. Magn. Reason. 2012] to characterize methyl axes motions as a function of temperature in a small model protein villin headpiece subdomain (HP36), in which all non-exchangeable protons are deuterated with the exception of methyl groups of leucine and valine residues. The data points to the existence of slow motional modes of methyl axes on sub-nanosecond to nanosecond time scales. Further, at high temperatures for which the overall tumbling of the protein is on the order of 2 ns, we observe a coupling between the slow internal motion and the overall molecular tumbling, based on the anomalous order parameters and their temperature-dependent trends. The addition of 28%(w/w) glycerol-d8 increases the viscosity of the solvent and separates the timescales of internal and overall tumbling, thus permitting for another view of the necessity of the coupling assumption for these sites at high temperatures.

6.
Protein Sci ; 25(3): 587-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26609791

RESUMO

The villin headpiece helical subdomain (HP36) is one of the best known model systems for computational studies of fast-folding all-α miniproteins. HP21 is a peptide fragment-derived from HP36-comprising only the first and second helices of the full domain. Experimental studies showed that although HP21 is mostly unfolded in solution, it does maintain some persistent native-like structure as indicated by the analysis of NMR-derived chemical shifts. Here we compare the experimental data for HP21 with the results obtained from a 15-µs long folding molecular dynamics simulation performed in explicit water and with full electrostatics. We find that the simulation is in good agreement with the experiment and faithfully reproduces the major experimental findings, namely that (a) HP21 is disordered in solution with <10% of the trajectory corresponding to transiently stable structures, (b) the most highly populated conformer is a native-like structure with an RMSD from the corresponding portion of the HP36 crystal structure of <1 Å, (c) the simulation-derived chemical shifts-over the whole length of the trajectory-are in reasonable agreement with the experiment giving reduced χ(2) values of 1.6, 1.4, and 0.8 for the Δδ(13) C(α) , Δδ(13) CO, and Δδ(13) C(ß) secondary shifts, respectively (becoming 0.8, 0.7, and 0.3 when only the major peptide conformer is considered), and finally, (d) the secondary structure propensity scores are in very good agreement with the experiment and clearly indicate the higher stability of the first helix. We conclude that folding molecular dynamics simulations can be a useful tool for the structural characterization of even marginally stable peptides.


Assuntos
Proteínas dos Microfilamentos/química , Simulação de Dinâmica Molecular , Proteínas de Neurofilamentos/química , Fragmentos de Peptídeos/química , Dobramento de Proteína , Sequência de Aminoácidos , Estabilidade Proteica , Estrutura Secundária de Proteína , Eletricidade Estática
7.
Protein Sci ; 25(2): 423-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26473993

RESUMO

The thermostable 36-residue subdomain of the villin headpiece (HP36) is the smallest known cooperatively folding protein. Although the folding and internal dynamics of HP36 and close variants have been extensively studied, there has not been a comprehensive investigation of side-chain motion in this protein. Here, the fast motion of methyl-bearing amino acid side chains is explored over a range of temperatures using site-resolved solution nuclear magnetic resonance deuterium relaxation. The squared generalized order parameters of methyl groups extensively spatially segregate according to motional classes. This has not been observed before in any protein studied using this methodology. The class segregation is preserved from 275 to 305 K. Motions detected in Helix 3 suggest a fast timescale of conformational heterogeneity that has not been previously observed but is consistent with a range of folding and dynamics studies. Finally, a comparison between the order parameters in solution with previous results based on solid-state nuclear magnetic resonance deuterium line shape analysis of HP36 in partially hydrated powders shows a clear disagreement for half of the sites. This result has significant implications for the interpretation of data derived from a variety of approaches that rely on partially hydrated protein samples.


Assuntos
Proteínas dos Microfilamentos/química , Animais , Galinhas , Simulação de Dinâmica Molecular , Movimento (Física) , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Temperatura
8.
Protein Sci ; 23(2): 145-56, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24243806

RESUMO

Thermostable villin headpiece protein (HP67) consists of the N-terminal subdomain (residues 10-41) and the autonomously folding C-terminal subdomain (residues 42-76) which pack against each other to form a structure with a unified hydrophobic core. The X-ray structures of the isolated C-terminal subdomain (HP36) and its counterpart in HP67 are very similar for the hydrophobic core residues. However, fine rearrangements of the free energy landscape are expected to occur because of the interactions between the two subdomains. We detect and characterize these changes by comparing the µs-ms time scale dynamics of the methyl-bearing side chains in isolated HP36 and in HP67. Specifically, we probe three hydrophobic side chains at the interface of the two subdomains (L42, V50, and L75) as well as at two residues far from the interface (L61 and L69). Solid-state deuteron NMR techniques are combined with computational modeling for the detailed characterization of motional modes in terms of their kinetic and thermodynamic parameters. The effect of interdomain interactions on side chain dynamics is seen for all residues but L75. Thus, changes in dynamics because of subdomain interactions are not confined to the site of perturbation. One of the main results is a two- to threefold increase in the value of the activation energies for the rotameric mode of motions in HP67 compared with HP36. Detailed analysis of configurational entropies and heat capacities complement the kinetic view of the degree of the disorder in the folded state.


Assuntos
Proteínas dos Microfilamentos/química , Proteínas de Neurofilamentos/química , Fragmentos de Peptídeos/química , Termodinâmica , Animais , Galinhas , Simulação por Computador , Cristalografia por Raios X , Entropia , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Estrutura Terciária de Proteína
9.
J Mol Biol ; 426(13): 2520-8, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24792909

RESUMO

Dynamics and function of proteins are governed by the structural and energetic properties of the different states they adopt and the barriers separating them. In earlier work, native-state triplet-triplet energy transfer (TTET) on the villin headpiece subdomain (HP35) revealed an equilibrium between a locked native state and an unlocked native state, which are structurally similar but have different dynamic properties. The locked state is restricted to low amplitude motions, whereas the unlocked state shows increased conformational flexibility and undergoes local unfolding reactions. This classified the unlocked state as a dry molten globule (DMG), which was proposed to represent an expanded native state with loosened side-chain interactions and a solvent-shielded core. To test whether the unlocked state of HP35 is actually expanded compared to the locked state, we performed high-pressure TTET measurements. Increasing pressure shifts the equilibrium from the locked toward the unlocked state, with a small negative reaction volume for unlocking (ΔV(0)=-1.6±0.5cm(3)/mol). Therefore, rather than being expanded, the unlocked state represents an alternatively packed, compact state, demonstrating that native proteins can exist in several compact folded states, an observation with implications for protein function. The transition state for unlocking/locking, in contrast, has a largely increased volume relative to the locked and unlocked state, with respective activation volumes of 7.1±0.4cm(3)/mol and 8.7±0.9cm(3)/mol, indicating an expansion of the protein during the locking/unlocking transition. The presented results demonstrate the existence of both compact, low-energy and expanded, high-energy DMGs, prompting a broader definition of this state.


Assuntos
Proteínas/química , Transferência de Energia , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas de Neurofilamentos/química , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Pressão , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA