Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.090
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 37: 457-495, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30676822

RESUMO

Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.


Assuntos
Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Imunoterapia/métodos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/fisiologia , Viroses/imunologia , Animais , Senescência Celular , Doença Crônica , Anergia Clonal , Epigênese Genética , Humanos , Neoplasias/terapia , Viroses/terapia
2.
Immunol Rev ; 322(1): 98-112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38193358

RESUMO

Human autoantibodies (auto-Abs) neutralizing type I IFNs were first discovered in a woman with disseminated shingles and were described by Ion Gresser from 1981 to 1984. They have since been found in patients with diverse conditions and are even used as a diagnostic criterion in patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1). However, their apparent lack of association with viral diseases, including shingles, led to wide acceptance of the conclusion that they had no pathological consequences. This perception began to change in 2020, when they were found to underlie about 15% of cases of critical COVID-19 pneumonia. They have since been shown to underlie other severe viral diseases, including 5%, 20%, and 40% of cases of critical influenza pneumonia, critical MERS pneumonia, and West Nile virus encephalitis, respectively. They also seem to be associated with shingles in various settings. These auto-Abs are present in all age groups of the general population, but their frequency increases with age to reach at least 5% in the elderly. We estimate that at least 100 million people worldwide carry auto-Abs neutralizing type I IFNs. Here, we briefly review the history of the study of these auto-Abs, focusing particularly on their known causes and consequences.


Assuntos
COVID-19 , Herpes Zoster , Interferon Tipo I , Poliendocrinopatias Autoimunes , Feminino , Humanos , Idoso , Autoanticorpos
3.
Annu Rev Microbiol ; 75: 515-539, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34348026

RESUMO

To reproduce, prokaryotic viruses must hijack the cellular machinery of their hosts and redirect it toward the production of viral particles. While takeover of the host replication and protein synthesis apparatus has long been considered an essential feature of infection, recent studies indicate that extensive reprogramming of host primary metabolism is a widespread phenomenon among prokaryotic viruses that is required to fulfill the biosynthetic needs of virion production. In this review we provide an overview of the most significant recent findings regarding virus-induced reprogramming of prokaryotic metabolism and suggest how quantitative systems biology approaches may be used to provide a holistic understanding of metabolic remodeling during lytic viral infection.


Assuntos
Vírus , Células Procarióticas
4.
Immunity ; 47(2): 310-322.e7, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813660

RESUMO

Select humans and animals control persistent viral infections via adaptive immune responses that include production of neutralizing antibodies. The precise genetic basis for the control remains enigmatic. Here, we report positional cloning of the gene responsible for production of retrovirus-neutralizing antibodies in mice of the I/LnJ strain. It encodes the beta subunit of the non-classical major histocompatibility complex class II (MHC-II)-like molecule H2-O, a negative regulator of antigen presentation. The recessive and functionally null I/LnJ H2-Ob allele supported the production of virus-neutralizing antibodies independently of the classical MHC haplotype. Subsequent bioinformatics and functional analyses of the human H2-Ob homolog, HLA-DOB, revealed both loss- and gain-of-function alleles, which could affect the ability of their carriers to control infections with human hepatitis B (HBV) and C (HCV) viruses. Thus, understanding of the previously unappreciated role of H2-O (HLA-DO) in immunity to infections may suggest new approaches in achieving neutralizing immunity to viruses.


Assuntos
Anticorpos Neutralizantes , Antígenos HLA-D/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Imunidade Humoral , Vírus do Tumor Mamário do Camundongo/imunologia , Vírus Rauscher/imunologia , Infecções por Retroviridae/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Apresentação de Antígeno/genética , Biologia Computacional , Feminino , Predisposição Genética para Doença , Antígenos HLA-D/genética , Células HeLa , Hepatite B/imunologia , Hepatite B/transmissão , Hepatite C/imunologia , Hepatite C/transmissão , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Imunidade Humoral/genética , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Mutação/genética , Polimorfismo Genético , Infecções por Retroviridae/transmissão
5.
Artigo em Inglês | MEDLINE | ID: mdl-39008152

RESUMO

Cancer is a significant global health concern associated with multiple distinct factors, including microbial and viral infections. Numerous studies have elucidated the role of microorganisms, such as Helicobacter pylori (H. pylori), as well as viruses for example human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus (HCV), in the development of human malignancies. Substantial attention has been focused on the treatment of these microorganism- and virus-associated cancers, with promising outcomes observed in studies employing peptide-based therapies. The current paper provides an overview of microbe- and virus-induced cancers and their underlying molecular mechanisms. We discuss an assortment of peptide-based therapies which are currently being developed, including tumor-targeting peptides and microbial/viral peptide-based vaccines. We describe the major technological advancements that have been made in the design, screening, and delivery of peptides as anticancer agents. The primary focus of the current review is to provide insight into the latest research and development in this field and to provide a realistic glimpse into the future of peptide-based therapies for microbe- and virus-induced neoplasms.

6.
J Virol ; : e0081424, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212450

RESUMO

Selective autophagy is a protein clearance mechanism mediated by evolutionarily conserved selective autophagy receptors (SARs), which specifically degrades misfolded, misassembled, or metabolically regulated proteins. SARs help the host to suppress viral infections by degrading viral proteins. However, viruses have evolved sophisticated mechanisms to counteract, evade, or co-opt autophagic processes, thereby facilitating viral replication. Therefore, this review aims to summarize the complex mechanisms of SARs involved in viral infections, specifically focusing on how viruses exploit strategies to regulate selective autophagy. We present an updated understanding of the various critical roles of SARs in viral pathogenesis. Furthermore, newly discovered evasion strategies employed by viruses are discussed and the ubiquitination-autophagy-innate immune regulatory axis is proposed to be a crucial pathway to control viral infections. This review highlights the remarkable flexibility and plasticity of SARs in viral infections.

7.
J Virol ; 98(6): e0010824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38742874

RESUMO

Numerous studies have demonstrated the presence of covert viral infections in insects. These infections can be transmitted in insect populations via two main routes: vertical from parents to offspring, or horizontal between nonrelated individuals. Thirteen covert RNA viruses have been described in the Mediterranean fruit fly (medfly). Some of these viruses are established in different laboratory-reared and wild medfly populations, although variations in the viral repertoire and viral levels have been observed at different time points. To better understand these viral dynamics, we characterized the prevalence and levels of covert RNA viruses in two medfly strains, assessed the route of transmission of these viruses, and explored their distribution in medfly adult tissues. Altogether, our results indicated that the different RNA viruses found in medflies vary in their preferred route of transmission. Two iflaviruses and a narnavirus are predominantly transmitted through vertical transmission via the female, while a nodavirus and a nora virus exhibited a preference for horizontal transmission. Overall, our results give valuable insights into the viral tropism and transmission of RNA viruses in the medfly, contributing to the understanding of viral dynamics in insect populations. IMPORTANCE: The presence of RNA viruses in insects has been extensively covered. However, the study of host-virus interaction has focused on viruses that cause detrimental effects to the host. In this manuscript, we uncovered which tissues are infected with covert RNA viruses in the agricultural pest Ceratitis capitata, and which is the preferred transmission route of these viruses. Our results showed that vertical and horizontal transmission can occur simultaneously, although each virus is transmitted more efficiently following one of these routes. Additionally, our results indicated an association between the tropism of the RNA virus and the preferred route of transmission. Overall, these results set the basis for understanding how viruses are established and maintained in medfly populations.


Assuntos
Ceratitis capitata , Vírus de RNA , Tropismo Viral , Animais , Vírus de RNA/genética , Vírus de RNA/fisiologia , Feminino , Ceratitis capitata/virologia , Masculino , Infecções por Vírus de RNA/transmissão , Infecções por Vírus de RNA/virologia
8.
Arterioscler Thromb Vasc Biol ; 44(6): 1302-1314, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511327

RESUMO

INTRODUCTION: Viral infections have been associated with the progression of atherosclerosis and CD8+ T-cells directed against common viruses, such as influenza, Epstein-Barr virus, and cytomegalovirus, have been detected inside human atherosclerotic lesions. These virus-specific CD8+ T-cells have been hypothesized to contribute to the development of atherosclerosis; however, whether they affect disease progression directly remains unclear. In this study, we aimed to characterize the activation status of virus-specific CD8+ T-cells in the atherosclerotic lesion. METHODS: The presence, clonality, tissue enrichment, and phenotype of virus-associated CD8+ T-cells in atherosclerotic lesions were assessed by exploiting bulk T-cell receptor-ß sequencing and single-cell T-cell receptor (α and ß) sequencing datasets on human endarterectomy samples and patient-matched blood samples. To investigate if virus-specific CD8+ T-cells can be activated through T-cell receptor stimulation in the atherosclerotic lesion, the immunopeptidome of human plaques was determined. RESULTS: Virus-associated CD8+ T-cells accumulated more in the atherosclerotic lesion (mean=2.0%), compared with patient-matched blood samples (mean=1.4%; P=0.05), and were more clonally expanded and tissue enriched in the atherosclerotic lesion in comparison with nonassociated CD8+ T-cells from the lesion. Single-cell T-cell receptor sequencing and flow cytometry revealed that these virus-associated CD8+ T-cells were phenotypically highly similar to other CD8+ T-cells in the lesion and that both exhibited a more activated phenotype compared with circulating T-cells. Interestingly, virus-associated CD8+ T-cells are unlikely to be activated through antigen-specific interactions in the atherosclerotic lesion, as no virus-derived peptides were detected on HLA-I in the lesion. CONCLUSIONS: This study suggests that virus-specific CD8+ T-cells are tissue enriched in atherosclerotic lesions; however, their potential contribution to inflammation may involve antigen-independent mechanisms.


Assuntos
Linfócitos T CD8-Positivos , Ativação Linfocitária , Placa Aterosclerótica , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Aterosclerose/imunologia , Aterosclerose/virologia , Aterosclerose/patologia , Masculino , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Feminino , Pessoa de Meia-Idade , Idoso , Doenças das Artérias Carótidas/imunologia , Doenças das Artérias Carótidas/virologia , Doenças das Artérias Carótidas/patologia , Interações Hospedeiro-Patógeno
9.
Rev Med Virol ; 34(1): e2489, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37930054

RESUMO

In May 2022, World Health Organization (WHO) reported an outbreak of Mpox in several European countries which were previously Mpox free. Mpox (formerly known as monkeypox) is a zoonotic viral disease endemic in Central and West Africa. The sudden emergence of Mpox outside Africa and its subsequent rapid spread lead the WHO to declare the outbreak as Public Health Emergency of International Concern. By 15 May 2023, a total of 87,704 confirmed cases and 140 deaths had been reported from 111 countries and territories worldwide. Looking back on this outbreak 1 year later, several important questions have arisen. Here, we address these questions using the classic 5 Ws: What, When, Where, Who and Why? We discuss these questions to understand how this outbreak emerged and how it was effectively managed. We outline what needs to be done to prevent, or at least minimise, outbreaks due to emerging and re-emerging viral infections.


Assuntos
Mpox , Humanos , Animais , Mpox/epidemiologia , Surtos de Doenças , Zoonoses , Saúde Pública , África/epidemiologia
10.
Proc Natl Acad Sci U S A ; 119(25): e2121778119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696579

RESUMO

Community-acquired pneumonia (CAP) has been brought to the forefront of global health priorities due to the COVID-19 pandemic. However, classification of viral versus bacterial pneumonia etiology remains a significant clinical challenge. To this end, we have engineered a panel of activity-based nanosensors that detect the dysregulated activity of pulmonary host proteases implicated in the response to pneumonia-causing pathogens and produce a urinary readout of disease. The nanosensor targets were selected based on a human protease transcriptomic signature for pneumonia etiology generated from 33 unique publicly available study cohorts. Five mouse models of bacterial or viral CAP were developed to assess the ability of the nanosensors to produce etiology-specific urinary signatures. Machine learning algorithms were used to train diagnostic classifiers that could distinguish infected mice from healthy controls and differentiate those with bacterial versus viral pneumonia with high accuracy. This proof-of-concept diagnostic approach demonstrates a way to distinguish pneumonia etiology based solely on the host proteolytic response to infection.


Assuntos
COVID-19 , Infecções Comunitárias Adquiridas , Perfilação da Expressão Gênica , Peptídeo Hidrolases , Pneumonia Bacteriana , Animais , Técnicas Biossensoriais , COVID-19/genética , Infecções Comunitárias Adquiridas/classificação , Infecções Comunitárias Adquiridas/genética , Infecções Comunitárias Adquiridas/virologia , Modelos Animais de Doenças , Humanos , Aprendizado de Máquina , Camundongos , Nanopartículas , Peptídeo Hidrolases/genética , Pneumonia Bacteriana/classificação , Pneumonia Bacteriana/genética
11.
J Infect Dis ; 230(Supplement_2): S128-S140, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255398

RESUMO

BACKGROUND: Emerging evidence suggests that viral infections may contribute to Alzheimer's disease (AD) onset and/or progression. However, the extent of their involvement and the mechanisms through which specific viruses increase AD susceptibility risk remain elusive. METHODS: We used an integrative systems bioinformatics approach to identify viral-mediated pathogenic mechanisms, by which Herpes Simplex Virus 1 (HSV-1), Human Cytomegalovirus (HCMV), Epstein-Barr virus (EBV), Kaposi Sarcoma-associated Herpesvirus (KSHV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), Influenza A Virus (IAV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) could facilitate AD pathogenesis via virus-host protein-protein interactions (PPIs). We also explored potential synergistic pathogenic effects resulting from herpesvirus reactivation (HSV-1, HCMV, and EBV) during acute SARS-CoV-2 infection, potentially increasing AD susceptibility. RESULTS: Herpesviridae members (HSV-1, EBV, KSHV, HCMV) impact AD-related processes like amyloid-ß (Aß) formation, neuronal death, and autophagy. Hepatitis viruses (HBV, HCV) influence processes crucial for cellular homeostasis and dysfunction, they also affect microglia activation via virus-host PPIs. Reactivation of HCMV during SARS-CoV-2 infection could potentially foster a lethal interplay of neurodegeneration, via synergistic pathogenic effects on AD-related processes like response to unfolded protein, regulation of autophagy, response to oxidative stress, and Aß formation. CONCLUSIONS: These findings underscore the complex link between viral infections and AD development. Viruses impact AD-related processes through shared and distinct mechanisms, potentially influencing variations in AD susceptibility.


Assuntos
Doença de Alzheimer , Biologia Computacional , SARS-CoV-2 , Viroses , Humanos , Doença de Alzheimer/virologia , Doença de Alzheimer/metabolismo , Biologia Computacional/métodos , Viroses/virologia , SARS-CoV-2/fisiologia , COVID-19/virologia , Herpesviridae/genética , Herpesviridae/fisiologia
12.
13.
Immunology ; 172(3): 500-515, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38584001

RESUMO

Lifestyle factors like poor maternal diet or antibiotic exposure disrupt early life microbiome assembly in infants, increasing the risk of severe lower respiratory infections (sLRI). Our prior studies in mice indicated that a maternal low-fibre diet (LFD) exacerbates LRI severity in infants by impairing recruitment of plasmacytoid dendritic cells (pDC) and consequently attenuating expansion of lung regulatory T (Treg) cells during pneumonia virus of mice (PVM) infection. Here, we investigated whether maternal dietary fibre intake influences Treg cell phenotypes in the mediastinal lymph nodes (mLN) and lungs of PVM-infected neonatal mice. Using high dimensional flow cytometry, we identified distinct clusters of regulatory T cells (Treg cells), which differed between lungs and mLN during infection, with notably greater effector Treg cell accumulation in the lungs. Compared to high-fibre diet (HFD)-reared pups, frequencies of various effector Treg cell subsets were decreased in the lungs of LFD-reared pups. Particularly, recruitment of chemokine receptor 3 (CXCR3+) expressing Treg cells was attenuated in LFD-reared pups, correlating with lower lung expression of CXCL9 and CXCL10 chemokines. The recruitment of this subset in response to PVM infection was similarly impaired in pDC depleted mice or following anti-CXCR3 treatment, increasing immunopathology in the lungs. In summary, PVM infection leads to the sequential recruitment and expansion of distinct Treg cell subsets to the lungs and mLN. The attenuated recruitment of the CXCR3+ subset in LFD-reared pups increases LRI severity, suggesting that strategies to enhance pDCs or CXCL9/CXCL10 expression will lower immune-mediated pathogenesis.


Assuntos
Tolerância Imunológica , Pulmão , Receptores CXCR3 , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Receptores CXCR3/metabolismo , Camundongos , Pulmão/imunologia , Pulmão/virologia , Feminino , Infecções por Pneumovirus/imunologia , Camundongos Endogâmicos C57BL , Linfonodos/imunologia , Quimiocina CXCL10/metabolismo , Modelos Animais de Doenças , Animais Recém-Nascidos
14.
J Hepatol ; 80(2): 251-267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36972796

RESUMO

BACKGROUND & AIMS: Chronic viral infections present serious public health challenges; however, direct-acting antivirals (DAAs) are now able to cure nearly all patients infected with hepatitis C virus (HCV), representing the only cure of a human chronic viral infection to date. DAAs provide a valuable opportunity to study immune pathways in the reversal of chronic immune failures in an in vivo human system. METHODS: To leverage this opportunity, we used plate-based single-cell RNA-seq to deeply profile myeloid cells from liver fine needle aspirates in patients with HCV before and after DAA treatment. We comprehensively characterised liver neutrophils, eosinophils, mast cells, conventional dendritic cells, plasmacytoid dendritic cells, classical monocytes, non-classical monocytes, and macrophages, and defined fine-grained subpopulations of several cell types. RESULTS: We discovered cell type-specific changes post-cure, including an increase in MCM7+STMN1+ proliferating CD1C+ conventional dendritic cells, which may support restoration from chronic exhaustion. We observed an expected downregulation of interferon-stimulated genes (ISGs) post-cure as well as an unexpected inverse relationship between pre-treatment viral load and post-cure ISG expression in each cell type, revealing a link between viral loads and sustained modifications of the host's immune system. We found an upregulation of PD-L1/L2 gene expression in ISG-high neutrophils and IDO1 expression in eosinophils, pinpointing cell subpopulations crucial for immune regulation. We identified three recurring gene programmes shared by multiple cell types, distilling core functions of the myeloid compartment. CONCLUSIONS: This comprehensive single-cell RNA-seq atlas of human liver myeloid cells in response to cure of chronic viral infections reveals principles of liver immunity and provides immunotherapeutic insights. CLINICAL TRIAL REGISTRATION: This study is registered at ClinicalTrials.gov (NCT02476617). IMPACT AND IMPLICATIONS: Chronic viral liver infections continue to be a major public health problem. Single-cell characterisation of liver immune cells during hepatitis C and post-cure provides unique insights into the architecture of liver immunity contributing to the resolution of the first curable chronic viral infection of humans. Multiple layers of innate immune regulation during chronic infections and persistent immune modifications after cure are revealed. Researchers and clinicians may leverage these findings to develop methods to optimise the post-cure environment for HCV and develop novel therapeutic approaches for other chronic viral infections.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Antivirais/uso terapêutico , Infecção Persistente , Hepatite C/tratamento farmacológico , Hepacivirus/genética
15.
Clin Immunol ; 262: 110170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460895

RESUMO

The balance between the tumor-necrosis factor α (TNFα) and type-I interferon (T1IFN) pathways is crucial for proper immune function. Dysregulation of either pathway can contribute to autoimmune diseases development. Even though TNFα blockade has shown promising results in various autoimmune diseases, the effect on the balance between TNFα and T1IFN is elusive. We used targeted anti-TNFα therapies in juvenile idiopathic arthritis (JIA) as an experimental approach to study the cross-regulation between TNFα and type-I IFN. We found that TNFα-rich environment affected viral defense through the attenuation of T1IFN responses and affected the phenotype and distribution of myeloid dendritic cells, which are engaged in early viral infections. Anti-TNFα therapy normalized the observed deviations in JIA patients. We hypothesize that the inadequate immune response caused by a high TNFα environment could be projected to more frequent or lengthy viral infections and possibly play a role in the process of JIA disease development.


Assuntos
Artrite Juvenil , Interferon Tipo I , Viroses , Humanos , Artrite Juvenil/tratamento farmacológico , Células Dendríticas , Necrose , Fenótipo , Fator de Necrose Tumoral alfa
16.
Breast Cancer Res Treat ; 207(2): 235-252, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971906

RESUMO

PURPOSE: Several viruses have been casually linked to human cancers, including cervical, nasopharyngeal, liver, sarcoma, and Merkel cell carcinomas. However, the etiologic contribution of viral infections to breast cancer, the number one incident cancer among women worldwide, is not well established. Among studies exploring associations of viruses with breast cancer, potential linkages have been identified between breast cancer and five viruses: beta retrovirus, (i.e., mouse mammary tumor virus), human papillomavirus, Epstein Barr virus. bovine leukemia virus, and human cytomegalovirus. METHODS: In this review, we provide a comprehensive evaluation of epidemiological ecologic, case-control, case-only, and cohort studies investigating these associations. We discuss results from several existing reviews and meta-analyses, evaluate epidemiological studies published in the past five years, and assess the relationship between these viruses and breast tumor clinicopathological factors. RESULTS: The strongest epidemiological evidence for a viral role in breast cancer exists for MMTV and HPV, though limitations include lack of prospective studies for MMTV and potential detection bias in HPV studies. Viral detection challenges have limited studies of EBV and HCMV. Fewer studies have evaluated BLV, and though it has been associated with higher risk of breast cancer, sample sizes are quite small.   CONCLUSION: While epidemiologic evidence exists for an association between these five viruses and breast cancer, various methodological issues and lack of prospective studies preclude robust conclusions. Future research should prioritize establishing a temporal relationship between infection and disease, minimizing misclassification of detection assays, and further exploring the influence of co-infections.


Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/virologia , Neoplasias da Mama/etiologia , Feminino , Animais , Viroses/epidemiologia , Viroses/complicações , Viroses/virologia
17.
Clin Exp Immunol ; 217(2): 151-158, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38767592

RESUMO

Natural killer (NK) cells play a crucial role in controlling viral infections. The ability to kill infected cells without prior immunization, yet being tolerant to self, healthy cells, depends on the balance of germ-line encoded surface receptors. NK-cell receptors are divided into either activating, leading to activation of NK cell and its cytotoxic and pro-inflammatory activity, or inhibitory, providing tolerance for a target cell. The signals from inhibitory receptors dominate and NK-cell activation requires stimulation of activating receptors. In viral infections, NK-cell interaction with infected cells can result in activation, memory-like NK-cell differentiation, or NK-cell exhaustion, which constitutes one of the viral immune evasion mechanisms. All of these states are associated with the modulation of NK-cell receptor expression. In this review, we summarize the current knowledge of NK-cell receptors and their role in viral infection control, as well as the alterations of their expression observed in acute or chronic infections. We present recently discovered SARS-CoV-2-mediated modulation of NK-cell receptor expression and compare them with other human viral infections. Finally, since modulation of NK-cell receptor activation gives a promising addition to currently used antiviral therapies, we briefly discuss the clinical significance and future perspective of the application of agonists or antagonists of activating and inhibitory receptors, respectively. In sum, our review shows that although much is known about NK-cell receptor biology, a deeper understanding of NK-cell receptors role in viral infections is still needed.


Assuntos
COVID-19 , Células Matadoras Naturais , Receptores de Células Matadoras Naturais , SARS-CoV-2 , Viroses , Humanos , Células Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , COVID-19/imunologia , Viroses/imunologia , Animais , Ativação Linfocitária/imunologia
18.
Clin Exp Immunol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028583

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces pneumonia and acute respiratory failure in Coronavirus Disease 2019 (COVID-19) patients with inborn errors of immunity to type I interferon (IFN-I). The impact of SARS-CoV-2 infection varies widely, ranging from mild respiratory symptoms to life-threatening illness and organ failure, with a higher incidence in men than in women. Approximately 3 to 5% of critical COVID-19 patients under 60 and a smaller percentage of elderly patients exhibit genetic defects in IFN-I production, including X-chromosome-linked TLR7 and autosomal TLR3 deficiencies. Around 15 to 20% of cases over 70 years old, and a smaller percentage of younger patients, present with preexisting autoantibodies neutralizing type I interferons. Additionally, innate errors affecting the control of the response to type I interferon have been associated with pediatric multisystem inflammatory syndrome (MIS-C). Several studies have described rare errors of immunity, such as XIAP deficiency, CYBB, SOCS1, OAS1/2, and RNASEL, as underlying factors in MIS-C susceptibility. However, further investigations in expanded patient cohorts are needed to validate these findings and pave the way for new genetic approaches to MIS-C. This review aims to present recent evidence from the scientific literature on genetic and immunological abnormalities predisposing individuals to critical SARS-CoV-2 infection through IFN-I. We will also discuss multisystem inflammatory syndrome in children (MIS-C). Understanding the immunological mechanisms and pathogenesis of severe COVID-19 may inform personalized patient care and population protection strategies against future serious viral infections.

19.
Clin Exp Allergy ; 54(2): 109-119, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38011856

RESUMO

BACKGROUND: Preschool wheeze attacks triggered by recurrent viral infections, including respiratory syncytial virus (RSV), are associated with an increased risk of childhood asthma. However, mechanisms that lead to asthma following early-life viral wheezing remain uncertain. METHODS: To investigate a causal relationship between early-life RSV infections and onset of type 2 immunity, we developed a neonatal murine model of recurrent RSV infection, in vivo and in silico, and evaluated the dynamical changes of altered airway barrier function and downstream immune responses, including eosinophilia, mucus secretion and type 2 immunity. RESULTS: RSV infection of neonatal BALB/c mice at 5 and 15 days of age induced robust airway eosinophilia, increased pulmonary CD4+ IL-13+ and CD4+ IL-5+ cells, elevated levels of IL-13 and IL-5 and increased airway mucus at 20 days of age. Increased bronchoalveolar lavage albumin levels, suggesting epithelial barrier damage, were present and persisted following the second RSV infection. Computational in silico simulations demonstrated that recurrent RSV infection resulted in severe damage of the airway barrier (epithelium), triggering the onset of type 2 immunity. The in silico results also demonstrated that recurrent infection is not always necessary for the development of type 2 immunity, which could also be triggered with single infection of high viral load or when the epithelial barrier repair is compromised. CONCLUSIONS: The neonatal murine model demonstrated that recurrent RSV infection in early life alters airway barrier function and promotes type 2 immunity. A causal relationship between airway barrier function and type 2 immunity was suggested using in silico model simulations.


Assuntos
Asma , Eosinofilia , Infecções por Vírus Respiratório Sincicial , Humanos , Pré-Escolar , Animais , Camundongos , Recém-Nascido , Infecções por Vírus Respiratório Sincicial/complicações , Interleucina-13 , Modelos Animais de Doenças , Interleucina-5 , Pulmão , Asma/etiologia , Eosinofilia/etiologia , Camundongos Endogâmicos BALB C
20.
J Pediatr ; 274: 114179, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944187

RESUMO

OBJECTIVE: To evaluate the influence of proton pump inhibitor (PPI) use on COVID-19 susceptibility and severity in children. STUDY DESIGN: This retrospective, case-control study included all children ≤21 years undergoing COVID-19 polymerase chain reaction testing at a tertiary children's hospital between March 2020 and January 2023. The main exposure was PPI usage. The primary outcome was COVID-19 infection. The secondary outcome was COVID-19 hospitalization. Log-binomial regressions were used to examine associations between PPI use and these outcomes. RESULTS: 116 209 patients age 8.5 ± 6.2 years underwent 234 867 COVID-19 tests. Current PPI use was associated with a decreased risk of COVID-19 test positivity compared with PPI nonuse [RR 0.85 (95% CI 0.76, 0.94), P = .002]; however, there was a significant interaction with time of testing, and an effect of PPIs was no longer seen in the final months of the study following lessening of COVID-19 precautions [RR 1.04 (95% CI 0.0.80, 1.36), P = .77]. PPI use was not associated with risk of hospitalization in patients positive for COVID-19 after adjusting for other hospitalization risk factors [RR 0.85 (95% CI 0.64, 1.13), P = .26]. CONCLUSIONS: We did not find an association between PPI use and increased COVID-19 susceptibility or severity in this pediatric sample. These results provide reassuring evidence that PPIs may not worsen COVID-19 outcomes in children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA