Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 108: 106964, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943849

RESUMO

Hydrodynamic cavitation (HC) has emerged as a promising technology for water disinfection. Interestingly, when subjected to specific cavitation pressures, jet pump cavitation reactors (JPCRs) exhibit effective water treatment capabilities. This study investigated the cavitation flow and vorticty transport in a JPCR with various area ratios by utilizing computational fluid dynamics. The results reveal that cavitation is more likely to occur within the JPCR as the area ratio becomes smaller. While as the area ratio decreases, the limit flow ratio also decreases, leading to a reduced operational range for the JPCR. During the cavitation inception stage, only a few bubbles with limited travel distances are generated at the throat inlet. A stable cavitation layer developed between the throat and downstream wall during the limited cavitation stage. In this phase, the primary flow carried the bubbles towards the outlet. In addition, it was found that the vortex stretching, compression expansion, and baroclinic torque terms primarily influence the vorticity transport equation in this context. This work may provide a reference value to the design of JPCRs for water treatment.

2.
Comput Biol Med ; 176: 108526, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749328

RESUMO

Aortic valve replacement has become an increasing concern due to the rising prevalence of aortic stenosis in an ageing population. Existing replacement options have limitations, necessitating the development of improved prosthetic aortic valves. In this study, flow characteristics during systole in a stenotic aortic valve case are compared with those downstream of two newly designed surgical bioprosthetic aortic valves (BioAVs). To do so, advanced three-dimensional fluid-structure interaction simulations are conducted and dedicated analysis methods to investigate jet flow configuration and vortex dynamics are developed. Our findings reveal that the stenotic case maintains a high jet flow eccentricity due to a fixed orifice geometry, resulting in flow separation and increased vortex stretching and tilting in the commissural low-flow regions. One BioAV design introduces non-axisymmetric leaflet motion, which reduces the maximum jet velocity and forms more vortical structures. The other BioAV design produces a fixed symmetric triangular jet shape due to non-moving leaflets and exhibits favourable vorticity attenuation, revealed by negative temporally and spatially averaged projected vortex stretching values, and significantly reduced drag. Therefore, this study highlights the benefits of custom-designed aortic valves in the context of their replacement through comprehensive and novel flow analyses. The results emphasise the importance of analysing jet flow, vortical structures, momentum balance and vorticity transport for thoroughly evaluating aortic valve performance.


Assuntos
Valva Aórtica , Próteses Valvulares Cardíacas , Hemodinâmica , Modelos Cardiovasculares , Humanos , Valva Aórtica/fisiopatologia , Valva Aórtica/cirurgia , Valva Aórtica/fisiologia , Hemodinâmica/fisiologia , Estenose da Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Bioprótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA