RESUMO
Vsx2 is a transcription factor essential for retinal proliferation and bipolar cell differentiation, but the molecular mechanisms underlying its developmental roles are unclear. Here, we have profiled VSX2 genomic occupancy during mouse retinogenesis, revealing extensive retinal genetic programs associated with VSX2 during development. VSX2 binds and transactivates its enhancer in association with the transcription factor PAX6. Mice harboring deletions in the Vsx2 regulatory landscape exhibit specific abnormalities in retinal proliferation and in bipolar cell differentiation. In one of those deletions, a complete loss of bipolar cells is associated with a bias towards photoreceptor production. VSX2 occupies cis-regulatory elements nearby genes associated with photoreceptor differentiation and homeostasis in the adult mouse and human retina, including a conserved region nearby Prdm1, a factor implicated in the specification of rod photoreceptors and suppression of bipolar cell fate. VSX2 interacts with the transcription factor OTX2 and can act to suppress OTX2-dependent enhancer transactivation of the Prdm1 enhancer. Taken together, our analyses indicate that Vsx2 expression can be temporally and spatially uncoupled at the enhancer level, and they illuminate important mechanistic insights into how VSX2 is engaged with gene regulatory networks that are essential for retinal proliferation and cell fate acquisition.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Adulto , Animais , Diferenciação Celular/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Fatores de Transcrição/metabolismoRESUMO
The transcription factor OTX2 is required for photoreceptor and bipolar cell formation in the retina. It directly activates the transcription factors Prdm1 and Vsx2 through cell type-specific enhancers. PRDM1 and VSX2 work in opposition, such that PRDM1 promotes photoreceptor fate and VSX2 bipolar cell fate. To determine how OTX2+ cell fates are regulated in mice, we deleted Prdm1 and Vsx2 or their cell type-specific enhancers simultaneously using a CRISPR/Cas9 in vivo retina electroporation strategy. Double gene or enhancer targeting effectively removed PRDM1 and VSX2 protein expression. However, double enhancer targeting favored bipolar fate outcomes, whereas double gene targeting favored photoreceptor fate. Both conditions generated excess amacrine cells. Combined, these fate changes suggest that photoreceptors are a default fate outcome in OTX2+ cells and that VSX2 must be present in a narrow temporal window to drive bipolar cell formation. Prdm1 and Vsx2 also appear to redundantly restrict the competence of OTX2+ cells, preventing amacrine cell formation. By taking a combinatorial deletion approach of both coding sequences and enhancers, our work provides new insights into the complex regulatory mechanisms that control cell fate choice.
Assuntos
Proteínas de Homeodomínio/metabolismo , Células Fotorreceptoras/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Retina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proteínas de Homeodomínio/genética , Camundongos , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Retina/citologia , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo , Fatores de Transcrição/genéticaRESUMO
The transcription factors Prdm1 (Blimp1) and Vsx2 (Chx10) work downstream of Otx2 to regulate photoreceptor and bipolar cell fates in the developing retina. Mice that lack Vsx2 fail to form bipolar cells while Prdm1 mutants form excess bipolars at the direct expense of photoreceptors. Excess bipolars in Prdm1 mutants appear to derive from rods, suggesting that photoreceptor fate remains mutable for some time after cells become specified. Here we tested whether bipolar cell fate is also plastic during development. To do this, we created a system to conditionally misexpress Prdm1 at different stages of bipolar cell development. We found that Prdm1 blocks bipolar cell formation if expressed before the fate choice decision occurred. When we misexpressed Prdm1 just after the decision to become a bipolar cell was made, some cells were reprogrammed into photoreceptors. In contrast, Prdm1 misexpression in mature bipolar cells did not affect cell fate. We also provide evidence that sustained misexpression of Prdm1 was selectively toxic to photoreceptors. Our data show that bipolar fate is malleable, but only for a short temporal window following fate specification. Prdm1 and Vsx2 act by stabilizing photoreceptor and bipolar fates in developing OTX2+ cells of the retina.
Assuntos
Reprogramação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células Fotorreceptoras de Vertebrados/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/biossíntese , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Anophthalmia and microphthalmia (A/M) are rare distinct phenotypes that represent a continuum of structural developmental eye defects. Here, we describe three probands from an Egyptian population with various forms of A/M: two patients with bilateral anophthalmia and one with bilateral microphthalmia that were investigated using whole exome sequencing (WES). We identified three causative mutations in three different genes. A new homozygous frameshift mutation c.[422delA];[422delA], p.[N141Ifs∗19];[N141Ifs∗19] in VSX2 was identified in a patient showing bilateral anophthalmia. A previously reported SOX2 deletion c.[70_89del20] p.[N24Rfs∗65];[=] was found in one subject with bilateral anophthalmia. A novel homozygous in-frame mutation c.[431_433delACT];[431_433delACT], p.[Y144del]; [Y144del]) in FOXE3 was identified in a patient with severe bilateral microphthalmia and anterior segment dysgenesis. This study shows that whole exome sequencing (WES) is a reliable and effective strategy for the molecular diagnosis of A/M. Our results expand its allelic heterogeneity and highlight the need for the testing of patient with this developmental anomaly.
Assuntos
Anoftalmia/genética , Fatores de Transcrição Forkhead/genética , Proteínas de Homeodomínio/genética , Microftalmia/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética , Egito , Mutação da Fase de Leitura , Humanos , Mutação , Fenótipo , Deleção de SequênciaRESUMO
Few gene targets of Visual System Homeobox 2 (VSX2) have been identified despite its broad and critical role in the maintenance of neural retina (NR) fate during early retinogenesis. We performed VSX2 ChIP-seq and ChIP-PCR assays on early stage optic vesicle-like structures (OVs) derived from human iPS cells (hiPSCs), which highlighted WNT pathway genes as direct regulatory targets of VSX2. Examination of early NR patterning in hiPSC-OVs from a patient with a functional null mutation in VSX2 revealed mis-expression and upregulation of WNT pathway components and retinal pigmented epithelium (RPE) markers in comparison to control hiPSC-OVs. Furthermore, pharmacological inhibition of WNT signaling rescued the early mutant phenotype, whereas augmentation of WNT signaling in control hiPSC-OVs phenocopied the mutant. These findings reveal an important role for VSX2 as a regulator of WNT signaling and suggest that VSX2 may act to maintain NR identity at the expense of RPE in part by direct repression of WNT pathway constituents. Stem Cells 2016;34:2625-2634.
Assuntos
Padronização Corporal/genética , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Microftalmia/genética , Epitélio Pigmentado da Retina/metabolismo , Fatores de Transcrição/genética , Proteína Wnt1/genética , Substituição de Aminoácidos , Benzotiazóis/farmacologia , Biomarcadores/metabolismo , Diferenciação Celular , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Corpos Embrioides/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/patologia , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Microftalmia/metabolismo , Microftalmia/patologia , Mutação , Fenótipo , Cultura Primária de Células , Piridinas/farmacologia , Pirimidinas/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt1/agonistas , Proteína Wnt1/antagonistas & inibidores , Proteína Wnt1/metabolismoRESUMO
Understanding the mechanisms that regulate the transition between the proliferative and a post-mitotic state of retinal progenitor cells (RPCs) is key to advancing our knowledge of retinal growth and maturation. In the present study we determined that during zebrafish embryonic retinal neurogenesis, two paired-type homeobox genes - vsx2 and dmbx1 - function in a mutually antagonistic manner. We demonstrate that vsx2 gene expression requires active Fgf signaling and that this in turn suppresses dmbx1 expression and maintains cells in an undifferentiated, proliferative RPC state. This vsx2-dependent RPC state can be prolonged cell-autonomously by knockdown of dmbx1, or it can be suppressed prematurely by the over-expression of dmbx1, which we show can inhibit vsx2 expression and lead to precocious neuronal differentiation. dmbx1 loss of function also results in altered expression of canonical cell cycle genes, and in particular up-regulation of ccnd1, which correlates with our previous finding of a prolonged RPC cell cycle. By knocking down ccnd1 and dmbx1 simultaneously, we show that RPCs can overcome this phenotype to exit the cell cycle on time and differentiate normally into retinal neurons. Collectively, our data provide novel insight into the mechanism that enables RPCs to exit the cell cycle through a previously unrecognized antagonistic interaction of two paired-type homeobox genes that are central regulators of an Fgf-vsx2-dmbx1-ccnd1 signaling axis.
Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurogênese/fisiologia , Retina/embriologia , Células-Tronco/fisiologia , Peixe-Zebra/embriologia , Animais , Western Blotting , Bromodesoxiuridina , Pontos de Checagem do Ciclo Celular/genética , Ciclina D1/metabolismo , Primers do DNA/genética , Proteínas do Olho/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Retina/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismoRESUMO
The retinal pigment epithelium (RPE) is indispensable for vertebrate eye development and vision. In the classical model of optic vesicle patterning, the surface ectoderm produces fibroblast growth factors (FGFs) that specify the neural retina (NR) distally, whereas TGFß family members released from the proximal mesenchyme are involved in RPE specification. However, we previously proposed that bone morphogenetic proteins (BMPs) released from the surface ectoderm are essential for RPE specification in chick. We now show that the BMP- and Wnt-expressing surface ectoderm is required for RPE specification. We reveal that Wnt signalling from the overlying surface ectoderm is involved in restricting BMP-mediated RPE specification to the dorsal optic vesicle. Wnt2b is expressed in the dorsal surface ectoderm and subsequently in dorsal optic vesicle cells. Activation of Wnt signalling by implanting Wnt3a-soaked beads or inhibiting GSK3ß at optic vesicle stages inhibits NR development and converts the entire optic vesicle into RPE. Surface ectoderm removal at early optic vesicle stages or inhibition of Wnt, but not Wnt/ß-catenin, signalling prevents pigmentation and downregulates the RPE regulatory gene Mitf. Activation of BMP or Wnt signalling can replace the surface ectoderm to rescue MITF expression and optic cup formation. We provide evidence that BMPs and Wnts cooperate via a GSK3ß-dependent but ß-catenin-independent pathway at the level of pSmad to ensure RPE specification in dorsal optic vesicle cells. We propose a new dorsoventral model of optic vesicle patterning, whereby initially surface ectoderm-derived Wnt signalling directs dorsal optic vesicle cells to develop into RPE through a stabilising effect of BMP signalling.
Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Ectoderma/citologia , Epitélio Pigmentado da Retina/embriologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Animais , Padronização Corporal , Diferenciação Celular , Embrião de Galinha , Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Fator de Transcrição Associado à Microftalmia/biossíntese , Epitélio Pigmentado da Retina/metabolismo , Proteínas Smad/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismoRESUMO
Anophthalmia and microphthalmia (A/M) are a group of rare developmental disorders that affect the size of the ocular globe. A/M may present as the sole clinical feature, but are also frequently found in a variety of syndromes. A/M is genetically heterogeneous and can be caused by chromosomal aberrations, copy number variations and single gene mutations. To date, A/M has been caused by mutations in at least 20 genes that show different modes of inheritance. In this study, we enrolled eight consanguineous families with A/M, including seven from Pakistan and one from India. Sanger and exome sequencing of DNA samples from these families identified three novel mutations including two mutations in the Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3) gene, [c.1310_1311delAT; p.(Tyr437Trpfs*44) and c.964G > A; p.(Val322Met)] and a single missense mutation in Forkhead Box E3 (FOXE3) gene, [c.289A > G p.(Ile97Val)]. Additionally two previously reported mutations were identified in FOXE3 and in Visual System Homeobox 2 (VSX2). This is the first comprehensive study on families with A/M from the Indian subcontinent which provides further evidence for the involvement of known genes with novel and recurrent mutations.
Assuntos
Anoftalmia/genética , Variações do Número de Cópias de DNA , DNA/genética , Família , Microftalmia/genética , Adolescente , Anoftalmia/diagnóstico , Anoftalmia/epidemiologia , Criança , Pré-Escolar , Análise Mutacional de DNA , Exoma/genética , Feminino , Testes Genéticos , Humanos , Índia/epidemiologia , Lactente , Masculino , Microftalmia/diagnóstico , Microftalmia/epidemiologia , Mutação , Paquistão/epidemiologia , LinhagemRESUMO
Human induced pluripotent stem cells (hiPSCs) have been shown to differentiate along the retinal lineage in a manner that mimics normal mammalian development. Under certain culture conditions, hiPSCs form optic vesicle-like structures (OVs), which contain proliferating progenitors capable of yielding all neural retina (NR) cell types over time. Such observations imply conserved roles for regulators of retinogenesis in hiPSC-derived cultures and the developing embryo. However, whether and to what extent this assumption holds true has remained largely uninvestigated. We examined the role of a key NR transcription factor, visual system homeobox 2 (VSX2), using hiPSCs derived from a patient with microphthalmia caused by an R200Q mutation in the VSX2 homeodomain region. No differences were noted between (R200Q)VSX2 and sibling control hiPSCs prior to OV generation. Thereafter, (R200Q)VSX2 hiPSC-OVs displayed a significant growth deficit compared to control hiPSC-OVs, as well as increased production of retinal pigmented epithelium at the expense of NR cell derivatives. Furthermore, (R200Q)VSX2 hiPSC-OVs failed to produce bipolar cells, a distinctive feature previously observed in Vsx2 mutant mice. (R200Q)VSX2 hiPSC-OVs also demonstrated delayed photoreceptor maturation, which could be overcome via exogenous expression of wild-type VSX2 at early stages of retinal differentiation. Finally, RNAseq analysis on isolated hiPSC-OVs implicated key transcription factors and extracellular signaling pathways as potential downstream effectors of VSX2-mediated gene regulation. Our results establish hiPSC-OVs as versatile model systems to study retinal development at stages not previously accessible in humans and support the bona fide nature of hiPSC-OV-derived retinal progeny.
Assuntos
Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Retina/embriologia , Retina/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Substituição de Aminoácidos , Animais , Padronização Corporal/genética , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Mutação/genética , Fenótipo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Retina/patologia , Células Bipolares da Retina/metabolismo , Células Bipolares da Retina/patologia , Epitélio Pigmentado da Retina/embriologia , Epitélio Pigmentado da Retina/patologia , Análise de Sequência de RNA , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcriptoma/genéticaRESUMO
Anophthalmia and microphthalmia (AM) are the most severe malformations of the eye, corresponding respectively to reduced size or absent ocular globe. Wide genetic heterogeneity has been reported and different genes have been demonstrated to be causative of syndromic and non-syndromic forms of AM. We screened seven AM genes [GDF6 (growth differentiation factor 6), FOXE3 (forkhead box E3), OTX2 (orthodenticle protein homolog 2), PAX6 (paired box 6), RAX (retina and anterior neural fold homeobox), SOX2 (SRY sex determining region Y-box 2), and VSX2 (visual system homeobox 2 gene)] in a cohort of 150 patients with isolated or syndromic AM. The causative genetic defect was identified in 21% of the patients (32/150). Point mutations were identified by direct sequencing of these genes in 25 patients (13 in SOX2, 4 in RAX, 3 in OTX2, 2 in FOXE3, 1 in VSX2, 1 in PAX6, and 1 in GDF6). In addition eight gene deletions (five SOX2, two OTX2 and one RAX) were identified using a semi-quantitative multiplex polymerase chain reaction (PCR) [quantitative multiplex PCR amplification of short fluorescent fragments (QMPSF)]. The causative genetic defect was identified in 21% of the patients. This result contributes to our knowledge of the molecular basis of AM, and will facilitate accurate genetic counselling.
Assuntos
Anoftalmia/genética , Heterogeneidade Genética , Microftalmia/genética , Mutação Puntual/genética , Adolescente , Adulto , Anoftalmia/diagnóstico , Anoftalmia/patologia , Criança , Pré-Escolar , Proteínas do Olho/genética , Feminino , Fatores de Transcrição Forkhead/genética , Fator 6 de Diferenciação de Crescimento/genética , Proteínas de Homeodomínio/genética , Humanos , Lactente , Masculino , Microftalmia/diagnóstico , Microftalmia/patologia , Fatores de Transcrição Otx/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genéticaRESUMO
Visual System Homeobox 2 (Vsx2) is a transcription factor expressed in the developing retina that regulates tissue identity, growth, and fate determination. Several mutations in the Vsx2 gene exist in mice, including a spontaneous nonsense mutation and two targeted missense mutations originally identified in humans. Here, we expand the genetic repertoire to include a LacZ reporter allele (Vsx2 LacZ ) designed to express beta-Galactosidase (b-GAL) and simultaneously disrupt Vsx2 function (knock-in/knock-out). The retinal expression pattern of b-GAL is concordant with VSX2, and the mutant allele is recessive. Vsx2 LacZ homozygous mice have congenital bilateral microphthalmia accompanied by defects in retinal development including ectopic expression of non-retinal genes, reduced proliferation, delayed neurogenesis, aberrant tissue morphology, and an absence of bipolar interneurons - all hallmarks of Vsx2 loss-of-function. Unexpectedly, the mutant VSX2 protein is stably expressed, and there are subtle differences in eye size and early retinal neurogenesis when compared to the null mutant, ocular retardation J. The perdurance of the mutant VSX2 protein combined with subtle deviations from the null phenotype leaves open the possibility that Vsx2 LacZ allele is not a complete knock-out. The Vsx2 LacZ allele exhibits loss-of-function characteristics and adds to the genetic toolkit for understanding Vsx2 function.
RESUMO
Retinogenesis involves the specification of retinal cell types during early vertebrate development. While model organisms have been critical for determining the role of dynamic chromatin and cell-type specific transcriptional networks during this process, an enhanced understanding of the developing human retina has been more elusive due to the requirement for human fetal tissue. Pluripotent stem cell (PSC) derived retinal organoids offer an experimentally accessible solution for investigating the developing human retina. To investigate cellular and molecular changes in developing early retinal organoids, we developed SIX6-GFP and VSX2-tdTomato (or VSX2-h2b-mRuby3) dual fluorescent reporters. When differentiated as 3D organoids these expressed GFP at day 15 and tdTomato (or mRuby3) at day 25, respectively. This enabled us to explore transcriptional and chromatin related changes using RNA-seq and ATAC-seq from pluripotency through early retina specification. Pathway analysis of developing organoids revealed a stepwise loss of pluripotency, while optic vesicle and retina pathways became progressively more prevalent. Correlating gene transcription with chromatin accessibility in early eye field development showed that retinal cells underwent a clear change in chromatin landscape, as well as gene expression profiles. While each dataset alone provided valuable information, considering both in parallel provided an informative glimpse into the molecular nature eye development.
Assuntos
Organoides , Células-Tronco Pluripotentes , Humanos , Organoides/metabolismo , Cromatina/metabolismo , Retina/metabolismo , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular/genéticaRESUMO
Animal models have provided many insights into ocular development and disease, but they remain suboptimal for understanding human oculogenesis. Eye development requires spatiotemporal gene expression patterns and disease phenotypes can differ significantly between humans and animal models, with patient-associated mutations causing embryonic lethality reported in some animal models. The emergence of human induced pluripotent stem cell (hiPSC) technology has provided a new resource for dissecting the complex nature of early eye morphogenesis through the generation of three-dimensional (3D) cellular models. By using patient-specific hiPSCs to generate in vitro optic vesicle-like models, we can enhance the understanding of early developmental eye disorders and provide a pre-clinical platform for disease modelling and therapeutics testing. A major challenge of in vitro optic vesicle generation is the low efficiency of differentiation in 3D cultures. To address this, we adapted a previously published protocol of retinal organoid differentiation to improve embryoid body formation using a microwell plate. Established morphology, upregulated transcript levels of known early eye-field transcription factors and protein expression of standard retinal progenitor markers confirmed the optic vesicle/presumptive optic cup identity of in vitro models between day 20 and 50 of culture. This adapted protocol is relevant to researchers seeking a physiologically relevant model of early human ocular development and disease with a view to replacing animal models.
Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Corpos Embrioides/metabolismo , Humanos , Retina , Fatores de Transcrição/metabolismoRESUMO
Purpose: Early in mammalian eye development, VSX2, BRN3b, and RCVRN expression marks neural retinal progenitors (NRPs), retinal ganglion cells (RGCs), and photoreceptors (PRs), respectively. The ability to create retinal organoids from human induced pluripotent stem cells (hiPSC) holds great potential for modeling both human retinal development and retinal disease. However, no methods allowing the simultaneous, real-time monitoring of multiple specific retinal cell types during development currently exist. Methods: CRISPR/Cas9-mediated homology-directed repair (HDR) in hiPSCs facilitated the replacement of the VSX2 (Progenitor), BRN3b (Ganglion), and RCVRN (Photoreceptor) stop codons with sequences encoding a viral P2A peptide fused to Cerulean, green fluorescent protein, and mCherry reporter genes, respectively, to generate a triple transgenic reporter hiPSC line called PGP1. This was accomplished by co-electroporating HDR templates and sgRNA/Cas9 vectors into hiPSCs followed by antibiotic selection. Functional validation of the PGP1 hiPSC line included the ability to generate retinal organoids, with all major retinal cell types, displaying the expression of the three fluorescent reporters consistent with the onset of target gene expression. Disaggregated organoids were also analyzed by fluorescence-activated cell sorting and fluorescent populations were tested for the expression of the targeted gene. Results: Retinal organoids formed from the PGP1 line expressed appropriate fluorescent proteins consistent with the differentiation of NRPs, RGCs, and PRs. Organoids produced from the PGP1 line expressed transcripts consistent with the development of all major retinal cell types. Conclusions and Translational Relevance: The PGP1 line offers a powerful new tool to study retinal development, retinal reprogramming, and therapeutic drug screening.
Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Humanos , Organoides , Células Fotorreceptoras , RetinaRESUMO
Approximately one-third of childhood blindness is attributed to developmental eye disorders, of which 80% have a genetic cause. Eye morphogenesis is tightly regulated by a highly conserved network of transcription factors when disrupted by genetic mutations can result in severe ocular malformation. Human-induced pluripotent stem cells (hiPSCs) are an attractive tool to study early eye development as they are more physiologically relevant than animal models, can be patient-specific and their use does not elicit the ethical concerns associated with human embryonic stem cells. The generation of self-organizing hiPSC-derived optic cups is a major advancement to understanding mechanisms of ocular development and disease. Their development in vitro has been found to mirror that of the human eye and these early organoids have been used to effectively model microphthalmia caused by a VSX2 variant. hiPSC-derived optic cups, retina, and cornea organoids are powerful tools for future modeling of disease phenotypes and will enable a greater understanding of the pathophysiology of many other developmental eye disorders. These models will also provide an effective platform for identifying molecular therapeutic targets and for future clinical applications.
RESUMO
More than 8,000 genes are turned on or off as progenitor cells produce the 7 classes of retinal cell types during development. Thousands of enhancers are also active in the developing retinae, many having features of cell- and developmental stage-specific activity. We studied dynamic changes in the 3D chromatin landscape important for precisely orchestrated changes in gene expression during retinal development by ultra-deep in situ Hi-C analysis on murine retinae. We identified developmental-stage-specific changes in chromatin compartments and enhancer-promoter interactions. We developed a machine learning-based algorithm to map euchromatin and heterochromatin domains genome-wide and overlaid it with chromatin compartments identified by Hi-C. Single-cell ATAC-seq and RNA-seq were integrated with our Hi-C and previous ChIP-seq data to identify cell- and developmental-stage-specific super-enhancers (SEs). We identified a bipolar neuron-specific core regulatory circuit SE upstream of Vsx2, whose deletion in mice led to the loss of bipolar neurons.
Assuntos
Eucromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Heterocromatina/metabolismo , Retina/embriologia , Células Bipolares da Retina/metabolismo , Animais , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Elementos Facilitadores Genéticos , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Aprendizado de Máquina , Camundongos , Lâmina Nuclear/metabolismo , Regiões Promotoras Genéticas , RNA-Seq , Receptores Citoplasmáticos e Nucleares/genética , Retina/citologia , Retina/metabolismo , Retina/ultraestrutura , Células Bipolares da Retina/citologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Análise de Célula Única , Fatores de Transcrição/genética , Receptor de Lamina BRESUMO
The proper development of the vertebrate retina relies heavily on producing the correct number and type of differentiated retinal cell types. To achieve this, proliferating retinal progenitor cells (RPCs) must exit the cell cycle at an appropriate time and correctly express a subset of differentiation markers that help specify retinal cell fate. Homeobox genes, which encode a family of transcription factors, have been accredited to both these processes, implicated in the transcriptional regulation of important cell cycle components, such as cyclins and cyclin-dependent kinases, and proneural genes. This dual regulation of homeobox genes allows these factors to help co-ordinate the transition from the proliferating RPC to postmitotic, differentiated cell. However, understanding the exact molecular targets of these factors remains a challenging task. This commentary highlights the current knowledge we have about how these factors regulate cell cycle progression and differentiation, with particular emphasis on a recent discovery from our lab demonstrating an antagonistic relationship between Vsx2 and Dmbx1 to control RPC proliferation. Future studies should aim to further understand the direct transcriptional targets of these genes, additional co-factors/interacting proteins and the possible recruitment of epigenetic machinery by these homeobox genes.
RESUMO
During development, two cell types born from closely related progenitor pools often express identical transcriptional regulators despite their completely distinct characteristics. This phenomenon implies the need for a mechanism that operates to segregate the identities of the two cell types throughout differentiation after initial fate commitment. To understand this mechanism, we investigated the fate specification of spinal V2a interneurons, which share important developmental genes with motor neurons (MNs). We demonstrate that the paired homeodomain factor Chx10 functions as a critical determinant for V2a fate and is required to consolidate V2a identity in postmitotic neurons. Chx10 actively promotes V2a fate, downstream of the LIM-homeodomain factor Lhx3, while concomitantly suppressing the MN developmental program by preventing the MN-specific transcription complex from binding and activating MN genes. This dual activity enables Chx10 to effectively separate the V2a and MN pathways. Our study uncovers a widely applicable gene regulatory principle for segregating related cell fates.
Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Animais , Galinhas , Neurônios Motores/metabolismo , Ativação Transcricional/fisiologiaRESUMO
OBJECTIVE: To describe a unique lens subluxation phenotype in a child from a consanguineous family and to determine its genetic basis. METHODS: Ophthalmologic examination (including ocular biometry and electroretinography [ERG] for the proband) and autozygosity-analysis-guided exome sequencing for the family; confirmatory candidate gene sequencing in the family and ethnically matched controls. RESULTS: An otherwise healthy 3-year-old Saudi Arabian girl with poor vision since birth had smooth irides, lens subluxation, cone-rod dysfunction, and high myopia - features resembling Knobloch syndrome but differing in regard to direction of lens subluxation (superior rather than temporal) and the pattern of chorioretinal atrophy (without vitreous condensations or distinct macular atrophy). Autozygome-guided exome sequencing revealed the girl to harbor a homozygous exon 5 mutation in the ocular transcription factor gene visual homeobox 2 (VSX2) [c.773delA; p.Lys258SerfsX44] that was heterozygous in the unaffected brother and parents and absent in 100 healthy ethnically matched controls and on-line databases. Previously reported VSX2 mutations have affected the DNA-binding domains and only been associated with microphthalmia. Unlike previously reported mutations, the current VSX2 mutation is downstream to the protein's DNA binding domains. CONCLUSIONS: The phenotype of this girl is unique and suggests a normal regulatory role for VSX2 in iris, zonule, and cone-rod development. For a consanguineous family with suspected recessive ocular disease but without a clear candidate gene, autozygome-guided exome analysis is a powerful technique, even when only a single patient is affected.
Assuntos
Mutação da Fase de Leitura , Proteínas de Homeodomínio/genética , Subluxação do Cristalino/genética , Retinose Pigmentar/genética , Fatores de Transcrição/genética , Biometria , Pré-Escolar , Consanguinidade , Eletrorretinografia , Éxons/genética , Feminino , Homozigoto , Humanos , Subluxação do Cristalino/patologia , Miopia Degenerativa/genética , Linhagem , Fenótipo , Retinose Pigmentar/diagnóstico , Análise de Sequência de DNARESUMO
PURPOSE: To study the putative association of Membrane frizzled related protein (MFRP) and Visual system homeobox protein (VSX2) gene variants with axial length (AL) in myopia. METHOD: A total of 189 samples with (N = 98) and without (N = 91) myopia were genotyped for the MRFP and VSX2 variations in ABI Prism 3100 AVANT genetic analyzer. Genotype/haplotype analysis was performed using PLINK, Haploview and THESIAS softwares. RESULTS: Fifteen variations were observed in the MFRP gene of which, rs36015759 (c.492C > T, T164T) in exon 5 was distributed at a high frequency in the controls and significantly associated with a low risk for myopia (P = 4.10 ∗ e(- 07) OR < 1.0). An increased frequency for the coding haplotype block [CGTCGG] harboring rs36015759 was observed in controls (31%) than cases (8%) that also correlated with a decreased mean AL (- 1.35085; P = 0.000444) by THESIAS analysis. The 'T' allele of rs36015759 was predicted to abolish the binding site for splicing enhancer (SRp40) by FASTSNP analysis. CONCLUSION: Myopia is a complex disorder influenced by genetic and environmental factors. Our work shows evidence of association of a specific MFRP haplotype which was more prevalent in controls with decreased AL. However, replication and functional studies are warranted to confirm these findings.