Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(1)2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29351223

RESUMO

Recently, with the development of artificial intelligence technologies and the popularity of mobile devices, walking detection and step counting have gained much attention since they play an important role in the fields of equipment positioning, saving energy, behavior recognition, etc. In this paper, a novel algorithm is proposed to simultaneously detect walking motion and count steps through unconstrained smartphones in the sense that the smartphone placement is not only arbitrary but also alterable. On account of the periodicity of the walking motion and sensitivity of gyroscopes, the proposed algorithm extracts the frequency domain features from three-dimensional (3D) angular velocities of a smartphone through FFT (fast Fourier transform) and identifies whether its holder is walking or not irrespective of its placement. Furthermore, the corresponding step frequency is recursively updated to evaluate the step count in real time. Extensive experiments are conducted by involving eight subjects and different walking scenarios in a realistic environment. It is shown that the proposed method achieves the precision of 93.76 % and recall of 93.65 % for walking detection, and its overall performance is significantly better than other well-known methods. Moreover, the accuracy of step counting by the proposed method is 95.74 % , and is better than both of the several well-known counterparts and commercial products.


Assuntos
Caminhada , Algoritmos , Atenção , Análise de Fourier , Humanos , Smartphone
2.
Pervasive Mob Comput ; 21: 62-74, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26213528

RESUMO

This work describes an automatic method to recognize the position of an accelerometer worn on five different parts of the body: ankle, thigh, hip, arm and wrist from raw accelerometer data. Automatic detection of body position of a wearable sensor would enable systems that allow users to wear sensors flexibly on different body parts or permit systems that need to automatically verify sensor placement. The two-stage location detection algorithm works by first detecting time periods during which candidates are walking (regardless of where the sensor is positioned). Then, assuming that the data refer to walking, the algorithm detects the position of the sensor. Algorithms were validated on a dataset that is substantially larger than in prior work, using a leave-one-subject-out cross-validation approach. Correct walking and placement recognition were obtained for 97.4% and 91.2% of classified data windows, respectively.

3.
Med Biol Eng Comput ; 61(9): 2341-2352, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37069465

RESUMO

Walking activity and gait parameters are considered among the most relevant mobility-related parameters. Currently, gait assessments have been mainly analyzed in laboratory or hospital settings, which only partially reflect usual performance (i.e., real world behavior). In this study, we aim to validate a robust walking detection algorithm using a single foot-worn inertial measurement unit (IMU) in real-life settings. We used a challenging dataset including 18 individuals performing free-living activities. A multi-sensor wearable system including pressure insoles, multiple IMUs, and infrared distance sensors (INDIP) was used as reference. Accurate walking detection was obtained, with sensitivity and specificity of 98 and 91% respectively. As robust walking detection is needed for ambulatory monitoring to complete the processing pipeline from raw recorded data to walking/mobility outcomes, a validated algorithm would pave the way for assessing patient performance and gait quality in real-world conditions.


Assuntos
Marcha , Caminhada , Humanos , , Monitorização Ambulatorial , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA