Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 278: 116406, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728941

RESUMO

Cadmium contamination inevitably affects the microbially mediated transformation of nitrogen in soils with wheat straw return. The responses of nitrogen functional microorganisms to cadmium in acidic and alkaline soils under wheat straw returned are still unclear. In this study, quantitative polymerase chain reaction (qPCR) and sequencing of nitrifying and denitrifying bacteria were performed to investigate the effects of wheat straw application on nitrogen conversion in different Cd-contaminated soils during an incubation experiment. Results showed that the presence of Cd decreased the abundance of hao gene catalyzing nitrification and norB gene catalyzing denitrification process, resulting the accumulation of NH4+-N and reduction of NO3--N in the acidic soils. Additionally, Cd-contamination stimulates the nitrification catalyzed by bacterial amoA gene and thus reduced the NH4+-N content in the alkaline soils. Meanwhile, Cd dominated the decrease of NO3--N content by promoting denitrification process catalyzed by nirS gene. Among all nitrifying and denitrifying microorganisms, Nitrosospira are tolerant to Cd stress under alkaline condition but sensitive to acidic condition, which dominantly harbored hao gene in the acidic soils and bacterial amoA gene in the alkaline soils. This study aimed to provide reasonable information for the rational adoption of wheat straw returning strategies to realize nitrogen regulation in Cd-contaminated farmland soil.


Assuntos
Cádmio , Desnitrificação , Nitrificação , Microbiologia do Solo , Poluentes do Solo , Triticum , Cádmio/análise , Cádmio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Nitrogênio/metabolismo , Solo/química , Bactérias/metabolismo , Bactérias/genética , Ciclo do Nitrogênio
2.
Front Plant Sci ; 15: 1273774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352646

RESUMO

Introduction: The panicle fertilization strategy for japonica and indica rice under wheat straw return (SR) has not been updated, especially on the elaboration of their impacts on spikelet differentiation and degeneration. This study aimed to verify the hypothesis that SR increases spikelet number by reducing spikelet degeneration and to explore the possibility of simplifying panicle fertilization. Methods: In three consecutive years, four varieties of japonica and indica rice were field-grown in Yangzhou, Jiangsu Province, China. Six panicle fertilization rates and split treatments were applied to SR and no straw return (NR) conditions. Results: The results showed that SR promoted rice yield significantly by 3.77%, and the highest yields were obtained under the T2 (split panicle fertilization at the panicle initiation (PI) and spikelet primordium differentiation (SPD) stages) and T1 (panicle fertilization only at the PI stage) treatments, for indica and japonica rice, respectively. Correlation and path analysis revealed that the number of spikelets per panicle was the most attributable to yield variation. SR significantly increased the concentration of alkali hydrolyzable N in the soil 40 days after rice transplantation, significantly increased the nitrogen accumulation per stem (NA) during the SPD-pollen mother cell meiosis (PMC) stage, and increased the brassinosteroids level in the young panicles at the PMC stage. SR also reduced the degeneration rate of spikelets (DRS) and increased the number of surviving spikelets (NSS). The dry matter accumulation per stem was more important to increasing the NA in japonica rice at the PMC stage, whereas NA was more affected by the N content than the dry matter accumulation in indica rice. In japonica rice, panicle N application once only at the PI stage combined with the N released from SR was enough to improve the plant N content, reduce the DRS, and increase the NSS. For indica rice, split application of N panicle fertilization at both the PI and SPD stages was still necessary to achieve a maximum NSS. Discussion: In conclusion, under wheat SR practice, panicle fertilization could be simplified to once in japonica rice with a significant yield increase, whereas equal splits might still be optimal for indica rice.

3.
Microorganisms ; 10(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35336243

RESUMO

Roots hold complex microbial communities at the soil-root interface, which can affect plant nutrition, growth, and health. Although the composition of plant microbiomes has been extensively described for various plant species and environments, little is known about the effect of wheat straw return (WSR) on the soybean root microbiota. We used Illumina-based 16S rRNA and ITS amplicon sequencing to track changes in bacterial and fungal microbiota in bulk soil and soybean rhizosphere, rhizoplane, s1and endosphere during the third and fourth years after implementing WSR in a wheat-soybean rotation system. The results revealed that WSR had a greater impact on fungal communities than bacterial communities, particularly in bulk soil, rhizosphere, and rhizoplane. WSR enriched the relative abundance of cellulose-degrading fungi (e.g., Acremonium, Trichoderma, and Myrmecridium, among which Trichoderma also had antimicrobial activity), saprotroph (e.g., Exophiala), and nitrogen cycling bacteria (e.g., Chryseolinea). Furthermore, WSR depleted the relative abundance of pathogenic fungi (e.g., Fusarium and Alternaria). These data revealed for the first time that WSR had diverse effects on soybean root-associated microbial community composition, not only in soil but also in the rhizosphere, rhizoplane, and endosphere.

4.
Front Microbiol ; 10: 1811, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440226

RESUMO

Returning straw to soil is an effective way to sustain or improve soil quality and crop yields. However, a robust understanding of the impact of straw return on the composition of the soil microbial communities under field conditions has remained elusive. In this study, we characterized the effects of wheat straw return on soil bacterial and fungal communities in a wheat-soybean rotation system over a 3-year period, using Illumina-based 16S rRNA, and internal transcribed region (ITS) amplicon sequencing. Wheat straw return significantly affected the α-diversity of the soil bacterial, but not fungal, community. It enhanced the relative abundance of the bacterial phylum Proteobacteria and the fungal phylum Zygomycota, but reduced that of the bacterial phylum Acidobacteria, and the fungal phylum Ascomycota. Notably, it enriched the relative abundance of nitrogen-cycling bacterial genera such as Bradyrhizobium and Rhizobium. Preliminary analysis of soil chemical properties indicated that straw return soils had significantly higher total nitrogen (TN) contents than no straw return soils. In addition, the relative abundance of fungal genera containing pathogens was significantly lower in straw return soils relative to control soils, such as Fusarium, Alternaria, and Myrothecium. These results suggested a selection effect from the 3-year continuous straw return treatment and the soil bacterial and fungal communities were moderately changed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA