Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(16): 4783-4793, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579172

RESUMO

Human impacts, particularly nutrient pollution and land-use change, have caused significant declines in the quality and quantity of freshwater resources. Most global assessments have concentrated on species diversity and composition, but effects on the multifunctionality of streams and rivers remain unclear. Here, we analyse the most comprehensive compilation of stream ecosystem functions to date to provide an overview of the responses of nutrient uptake, leaf litter decomposition, ecosystem productivity, and food web complexity to six globally pervasive human stressors. We show that human stressors inhibited ecosystem functioning for most stressor-function pairs. Nitrate uptake efficiency was most affected and was inhibited by 347% due to agriculture. However, concomitant negative and positive effects were common even within a given stressor-function pair. Some part of this variability in effect direction could be explained by the structural heterogeneity of the landscape and latitudinal position of the streams. Ranking human stressors by their absolute effects on ecosystem multifunctionality revealed significant effects for all studied stressors, with wastewater effluents (194%), agriculture (148%), and urban land use (137%) having the strongest effects. Our results demonstrate that we are at risk of losing the functional backbone of streams and rivers if human stressors persist in contemporary intensity, and that freshwaters are losing critical ecosystem services that humans rely on. We advocate for more studies on the effects of multiple stressors on ecosystem multifunctionality to improve the functional understanding of human impacts. Finally, freshwater management must shift its focus toward an ecological function-based approach and needs to develop strategies for maintaining or restoring ecosystem functioning of streams and rivers.


Assuntos
Ecossistema , Rios , Agricultura , Efeitos Antropogênicos , Cadeia Alimentar , Humanos
2.
Ecol Appl ; 30(5): e02107, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32096578

RESUMO

Urban streams are often severely impaired due to channelization, high loads of nutrients and contaminants, and altered land cover in the watershed. Physical restoration of stream channels is widely used to offset the effects of urbanization on streams, with the goal of improving ecosystem structure and function. However, these efforts are rarely guided by strategic analysis of the factors that mediate the responsiveness of stream ecosystems to restoration. Given that ecological gradients from headwater streams to mainstem rivers are ubiquitous, we posited that location within a river network could mediate the benefits of channel restoration. We studied existing stream restorations in Milwaukee, Wisconsin, to determine (1) whether restorations improve ecosystem function (e.g., nutrient uptake, whole-stream metabolism) and (2) how ecosystem responses vary by position in the urban river network. We quantified a suite of physicochemical and biological metrics in six pairs of contiguous restored and concrete channel reaches, spanning gradients in baseflow discharge (19-196 L/s) and river network position (i.e., headwater to mainstem). Hydrology differed dramatically between the restored and concrete reaches; water velocity was reduced 2- to 13-fold while water residence time was 50-5,000% greater in adjacent restored reaches. Restored reaches had shorter nutrient uptake lengths for ammonium, nitrate, and phosphate, as well as higher whole-stream metabolism. Furthermore, the majority of reaches were autotrophic (i.e., gross primary production > ecosystem respiration), which is not common in stream ecosystems. The difference in ecosystem functioning between restored and unrestored reaches was generally largest in headwaters and declined to equivalence in mainstem restorations. Our results suggest that headwater sites offer higher return on investment compared to larger downstream channels, where ecosystem responsiveness is low. If this pattern proves to be general, the scaling of ecosystem responses with river size could be integrated into planning guidelines for urban stream restorations to enhance the societal and ecological benefits of these expensive interventions.


Assuntos
Ecossistema , Rios , Nitratos , Água , Wisconsin
3.
Water Res ; 247: 120842, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37950952

RESUMO

The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration. Here we used the inert noble gas argon to parse out biological from physical processes in stream metabolism calculations. We coupled the O2:Ar ratio determined by gas chromatography in grab samples with in-situ oxygen concentrations measured by an optode to estimate aquatic plant photosynthesis and ecosystem respiration during supersaturation events through a parsimonious approach. The results compared well with a more complicated two-station model based on O2 mass balances in non-supersatured water, and with associated changes in dissolved CO2 (or dissolved inorganic carbon). This new method provides an independent approach to evaluate alternative corrections of dissolved oxygen data (e.g. through the use of total dissolved gases) in long term studies. The use of photosynthesis-irradiance models allows the determination of light parameters such as the onset of light saturation or low light use efficiency, which could be used for inverse modelling. The use of the O2:Ar approach to correct for oversaturation may become more applicable with the emergence of portable mass inlet mass spectrometers (MIMS). Photosynthesis was modest (2.9-5.8 g O2 m2 day-1) compared to other rivers with submerged vegetation, likely indicating nutrient co-limitations (CO2, inorganic N and P). Respiration was very low (-2.1 to -3.9 g O2 m2 day-1) likely due to a lack of allochthonous carbon supply and sandy sediment.


Assuntos
Ecossistema , Água , Humanos , Água/química , Dióxido de Carbono/metabolismo , Oxigênio/análise , Gases/química , Fotossíntese , Carbono , Respiração
4.
Water Res ; 83: 205-16, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26150069

RESUMO

Estimating respiration and photosynthesis rates in streams usually requires good knowledge of reaeration at the given locations. For this purpose, gas-tracer tests can be conducted, and reaeration rate coefficients are determined from the decrease in gas concentration along the river stretch. The typical procedure for analysis of such tests is based on simplifying assumptions, as it neglects dispersion altogether and does not consider possible fluctuations and trends in the input signal. We mathematically derive the influence of these non-idealities on estimated reaeration rates and how they are propagated onto the evaluation of aerobic respiration and photosynthesis rates from oxygen monitoring. We apply the approach to field data obtained from a gas-tracer test using propane in a second-order stream in Southwest Germany. We calculate the reaeration rate coefficients accounting for dispersion as well as trends and uncertainty in the input signals and compare them to the standard approach. We show that neglecting dispersion significantly underestimates reaeration, and results between sections cannot be compared if trends in the input signal of the gas tracer are disregarded. Using time series of dissolved oxygen and the various estimates of reaeration, we infer respiration and photosynthesis rates for the same stream section, demonstrating that the bias and uncertainty of reaeration using the different approaches significantly affects the calculation of metabolic rates.


Assuntos
Monitoramento Ambiental/métodos , Oxigênio/metabolismo , Fotossíntese , Rios/química , Alemanha , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA