Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 670
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 435(2): 113935, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237848

RESUMO

OBJECTIVE: Oral squamous cell carcinoma (OSCC) is a common malignancy with a poor prognosis. This study aimed to determine the influence and underlying mechanisms of CLSPN on OSCC. METHODS: CLSPN expression was tested using quantitative real-time polymerase chain reaction, immunohistochemistry, and western blotting. Flow cytometry, cell counting kit, and colony formation assays were performed to determine OSCC cell apoptosis, viability, and proliferation, respectively. In OSCC cells, the extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose uptake, and lactate production were determined using the corresponding kits. Changes in the protein levels of HK2, PKM2, LDHA, Wnt3a, and ß-catenin were assessed using western blotting. RESULTS: CLSPN expression was increased in OSCC tissues. Overexpression of CLSPN in HSC-2 cells promoted cell proliferation, increased the levels of ECAR, glucose uptake, and lactate production, and increased the protein levels of HK2, PKM2, LDHA, Wnt3a, and ß-catenin, but inhibited OCR levels and apoptosis. The knockdown of CLSPN in CAL27 cells resulted in the opposite results. Moreover, the effects of CLSPN overexpression on glycolysis and OSCC cell proliferation were reversed by Wnt3a knockdown. In vivo, knockdown of CLSPN restrained tumor growth, glycolysis, and the activation of Wnt/ß-catenin signaling. CONCLUSION: CLSPN promoted glycolysis and OSCC cell proliferation, and reduced apoptosis, which was achieved by the activation of Wnt/ß-catenin signaling pathway.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Via de Sinalização Wnt/fisiologia , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , beta Catenina/genética , beta Catenina/metabolismo , Proliferação de Células , Glicólise , Movimento Celular , Lactatos , Glucose , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Cell Mol Life Sci ; 81(1): 57, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279052

RESUMO

The Wnt/ß-catenin pathway is critical to maintaining cell fate decisions. Recent study showed that liquid-liquid-phase separation (LLPS) of Axin organized the ß-catenin destruction complex condensates in a normal cellular state. Mutations inactivating the APC gene are found in approximately 80% of all human colorectal cancer (CRC). However, the molecular mechanism of the formation of ß-catenin destruction complex condensates organized by Axin phase separation and how APC mutations impact the condensates are still unclear. Here, we report that the ß-catenin destruction complex, which is constructed by Axin, was assembled condensates via a phase separation process in CRC cells. The key role of wild-type APC is to stabilize destruction complex condensates. Surprisingly, truncated APC did not affect the formation of condensates, and GSK 3ß and CK1α were unsuccessfully recruited, preventing ß-catenin phosphorylation and resulting in accumulation in the cytoplasm of CRCs. Besides, we propose that the phase separation ability of Axin participates in the nucleus translocation of ß-catenin and be incorporated and concentrated into transcriptional condensates, affecting the transcriptional activity of Wnt signaling pathway.


Assuntos
Complexo de Sinalização da Axina , beta Catenina , Humanos , Complexo de Sinalização da Axina/genética , Proteína Axina/genética , Proteína Axina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Separação de Fases , Mutação/genética , Via de Sinalização Wnt/genética , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo
3.
Apoptosis ; 29(1-2): 210-228, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087046

RESUMO

Epithelial ovarian cancer (EOC) is the leading cause of cancer death all over the world. USP43 functions as a tumor promoter in various malignant cancers. Nevertheless, the biological roles and mechanisms of USP43 in EOC remain unknown. In this study, USP43 was highly expressed in EOC tissues and cells, and high expression of USP43 were associated with a poor prognosis of EOC. USP43 overexpression promoted EOC cell proliferation, enhanced the ability of migration and invasion, decreased cisplatin sensitivity and inhibited apoptosis. Knockdown of USP43 in vitro effectively retarded above malignant progression of EOC. In vivo xenograft tumors, silencing USP43 slowed tumor growth and enhanced cisplatin sensitivity. Mechanistically, USP43 inhibited HDAC2 degradation and enhanced HDAC2 protein stability through its deubiquitylation function. USP43 diminished the sensitivity of EOC cells to cisplatin through activation of the Wnt/ß-catenin signaling pathway mediated by HDAC2. Taken together, the data in this study revealed the functions of USP43 in proliferation, migration, invasion, chemoresistance of EOC cells, and the mechanism of HDAC2-mediated Wnt/ß-catenin signaling pathway. Thus, USP43 might serve as a potential target for the control of ovarian cancer progression.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Cisplatino/farmacologia , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo , Apoptose , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo
4.
Funct Integr Genomics ; 24(2): 40, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383667

RESUMO

As a common malignant tumor, esophageal squamous cell carcinoma (ESCC) is occasionally seen in clinical practice. This type of disease has low incidence rate and mortality. The post-translational modification of small ubiquitin like modifiers (SUMO) can play a crucial role in regulating protein function, and can significantly impact the occurrence and development of diseases. SUMO-specific peptidase (SENP) affects cell activity by regulating the biological function of SUMO. SENP3 belongs to the SENP family, and available data indicate that many malignancies are associated with SENPs, it is currently unclear its role in ESCC. This study indicates that there is a high level of SENP3 expression in ESCC tumor cells. If the expression level of this gene is high, it can have a significant impact on ESCC cell lines and affect physiological activities such as invasion of KYSE170 cells. If the gene is knocked out, this situation will not occur. There is also research data indicating that this gene can effectively activate related signaling pathways, thereby promoting the physiological activities of malignant tumor cells. In a nude mouse xenograft tumor model, KYSE170 cells with SENP3 expression knockdown induced a smaller volume and weight of tumor tissue. Therefore, it can be clearly stated that SENP3 can enable Wnt/ ß- The catenin signaling pathway is stimulated, which in turn affects the physiological activities of ESCC cells, including the invasion process. The results of this article lay the foundation for clinical staff to carry out clinical management.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Wnt/genética
5.
Mol Med ; 30(1): 87, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877413

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS: Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/ß-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/ß-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/ß-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS: S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1ß-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/ß-catenin signaling pathway. CONCLUSIONS: This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/ß-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.


Assuntos
Apoptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Proteína A6 Ligante de Cálcio S100 , Via de Sinalização Wnt , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Apoptose/genética , Humanos , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Animais , Masculino , Feminino , Ratos , Adulto , Pessoa de Meia-Idade , beta Catenina/metabolismo , beta Catenina/genética , Ratos Sprague-Dawley , Modelos Animais de Doenças , Proteínas de Ciclo Celular
6.
J Virol ; 97(11): e0143023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37861335

RESUMO

IMPORTANCE: Being obligate parasites, viruses use various host cell machineries in effectively replicating their genome, along with virus-encoded enzymes. In order to carry out infection and pathogenesis, viruses are known to manipulate fundamental cellular processes in cells and interfere with host gene expression. Several viruses interact with the cellular proteins involved in the Wnt/ß-catenin pathway; however, reports regarding the involvement of protein components of the Wnt/ß-catenin pathway in Chikungunya virus (CHIKV) infection are scarce. Additionally, there are currently no remedies or vaccines available for CHIKV. This is the first study to report that modulation of the Wnt/ß-catenin pathway is crucial for effective CHIKV infection. These investigations deepen the understanding of the underlying mechanisms of CHIKV infection and offer new avenue for developing effective countermeasures to efficiently manage CHIKV infection.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , beta Catenina/metabolismo , Febre de Chikungunya/metabolismo , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Replicação Viral , Via de Sinalização Wnt
7.
Microb Pathog ; 196: 106960, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313132

RESUMO

BACKGROUND: High-risk human papillomavirus (HPV) infection is a major risk factor of HPV-related tumors, especially cervical cancer. To date, there is no specific drug for the treatment of HPV infection. PURPOSE: To explore the role of canonical Wnt signaling pathway in HPV16 infection and to screen inhibitors against HPV16 infection from natural small molecule compounds targeting the canonicalWnt pathway. METHODS: Wnt pathway inhibitor IWP-2 and FH535 were used to inhibit Wnt/ß-catenin signaling pathway. HPV16-GFP pseudovirus infectivity were analyzed by fluorescence microscopy and fluorescence activated cell sorting. A small molecule screening of a total of CFDA-approved 29 natural compounds targeting the Wnt pathway was performed. RESULTS: Wnt signaling pathway inhibitor suppressed HPV16-GFP pseudovirus infection in HaCat cells. Natural small molecule compounds screening identified 6-Gingerol, gossypol, tanshinone II2A, and EGCG as inhibitors of HPV16-GFP pseudovirus infection. CONCLUSION: Wnt signaling pathway is involved in the process of HPV infection of host cells. 6-Gingerol, gossypol, tanshinone II2A, and EGCG inhibited HPV16-GFP pseudovirus infection and suppressed Wnt/ß-catenin pathway in HaCat cells.

8.
Cancer Cell Int ; 24(1): 306, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227913

RESUMO

Clinical trials and studies have implicated that E3 ubiquitin ligase BTBD3 (BTB Domain Containing 3) is a cancer-associated gene. However, the role and underlying mechanism of BTBD3 in colorectal cancer (CRC) is not fully understood yet. Herein, our study demonstrated that the mRNA and protein levels of BTBD3 were decreased in CRC tissues and associated with TYPO3 and Wnt/ß-catenin pathway. Our results showed that circRAE1 knockdown and TYRO3 overexpression activated Wnt/ß-catenin signaling pathway and the EMT process-associated markers, indicating that circRAE1/miR-388-3p/TYRO3 axis exacerbated tumorigenesis of CRC by activating Wnt/ß-catenin signaling pathway. In addition, overexpression of BTBD3 reduced CRC cell migration and invasion in vitro and inhibited tumor growth in vivo. Our data demonstrated that BTBD3 suppressed CRC progression through negative regulation of the circRAE1/miR-388-3p/TYRO3 axis and the Wnt/ß-catenin pathway. Our data further confirmed that BTBD3 bound and ubiquitinated ß-catenin and led to ß-catenin degradation, therefore blocked the Wnt/ß-catenin pathway and suppressed the CRC tumorigenesis. This study explored the mechanism of BTBD3 involved in CRC tumorigenesis and provided a new theoretical basis for the prevention and treatment of CRC.

9.
Cancer Cell Int ; 24(1): 250, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020410

RESUMO

BACKGROUND: Pien Tze Huang (PZH), a traditional Chinese medicine formulation, is recognized for its therapeutic effect on colitis and colorectal cancer. However, its protective role and underlying mechanism in colitis-associated colorectal cancer (CAC) remain to be elucidated. METHODS: A CAC mouse model was established using AOM/DSS. Twenty mice were randomly divided into four groups (n = 5/group): Control, PZH, AOM/DSS, and AOM/DSS + PZH groups. Mice in the PZH and AOM/DSS + PZH group were orally administered PZH (250 mg/kg/d) from the first day of experiment, while the control and AOM/DSS group received an equivalent volume of distilled water. Parameters such as body weight, disease activity index (DAI), colon weight, colon length, colon histomorphology, intestinal tumor formation, serum concentrations of pro-inflammatory cytokines, proliferation and apoptosis in colon tissue were assessed. RNA sequencing was employed to identify the differentially expressed transcripts (DETs) in colonic tissues and related signaling pathways. Wnt/ß-Catenin Pathway-Related genes in colon tissue were detected by QPCR and immunohistochemistry (IHC). RESULTS: PZH significantly attenuated AOM/DSS-induced weight loss, DAI elevation, colonic weight gain, colon shortening, histological damage, and intestinal tumor formation in mice. PZH also notably decreased serum concentration of IL-6, IL-1ß, and TNF-α. Furthermore, PZH inhibited cell proliferation and promote apoptosis in tumor tissues. RNA-seq and KEGG analysis revealed key pathways influenced by PZH, including Wnt/ß-catenin signaling pathway. IHC staining confirmed that PZH suppressed the expression of ß-catenin, cyclin D1 and c-Myc in colonic tissues. CONCLUSIONS: PZH ameliorates AOM/DSS-induced CAC in mice by suppressing the activation of Wnt/ß-catenin signaling pathway.

10.
Mol Cell Biochem ; 479(3): 487-497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37097331

RESUMO

Lymphoma is the most common malignant tumor arising from immune system. Recently, DNA polymerase epsilon subunit 2 (POLE2) was identified to be a tumor promotor in a variety of malignant tumors. However, the biological role of POLE2 in lymphoma is still largely unclear. In our present study, the expression patterns of POLE2 in lymphoma tissues were identified by immunohistochemistry (IHC) staining of human tissue microarray. Cell viability was determined by CCK-8 assay. Cell apoptosis and cycle distribution were evaluated by Annexin V and PI staining, respectively. Cell migration was analyzed by transwell assay. Tumor growth in vivo was observed by a xenograft model of mice. The potential signaling was explored by human phospho-kinase array and immunoblotting. POLE2 was significantly upregulated in human lymphoma tissues and cells. POLE2 knockdown attenuated the proliferation, migration capabilities of lymphoma cells, as well as induced cell apoptosis and cycle arrest. Moreover, POLE2 depletion impaired the tumor growth in mice. Furthermore, POLE2 knockdown apparently inhibited the activation of ß-Catenin and downregulated the expression of Wnt/ß-Catenin signaling-related proteins. POLE2 knockdown suppressed the proliferation and migration of lymphoma cells by inhibiting Wnt/ß-Catenin signaling pathway. POLE2 may serve as a novel therapeutic target for lymphoma.


Assuntos
DNA Polimerase II , Linfoma , Via de Sinalização Wnt , beta Catenina , Animais , Humanos , Camundongos , Apoptose/genética , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linfoma/genética , Via de Sinalização Wnt/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo
11.
Pharmacol Res ; 204: 107200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710241

RESUMO

Targeting specific molecular drivers of tumor growth is a key approach in cancer therapy. Among these targets, the low-density lipoprotein receptor-related protein 6 (LRP6), a vital component of the Wnt signaling pathway, has emerged as an intriguing candidate. As a cell-surface receptor and vital co-receptor, LRP6 is frequently overexpressed in various cancer types, implicating its pivotal role in driving tumor progression. The pursuit of LRP6 as a target for cancer treatment has gained substantial traction, offering a promising avenue for therapeutic intervention. Here, this comprehensive review explores recent breakthroughs in our understanding of LRP6's functions and underlying molecular mechanisms, providing a profound discussion of its involvement in cancer pathogenesis and drug resistance. Importantly, we go beyond discussing LRP6's role in cancer by discussing diverse potential therapeutic approaches targeting this enigmatic protein. These approaches encompass a wide spectrum, including pharmacological agents, natural compounds, non-coding RNAs, epigenetic factors, proteins, and peptides that modulate LRP6 expression or disrupt its interactions. In addition, also discussed the challenges associated with developing LRP6 inhibitors and their advantages over Wnt inhibitors, as well as the drugs that have entered phase II clinical trials. By shedding light on these innovative strategies, we aim to underscore LRP6's significance as a valuable and multifaceted target for cancer treatment, igniting enthusiasm for further research and facilitating translation into clinical applications.


Assuntos
Antineoplásicos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Terapia de Alvo Molecular , Neoplasias , Animais , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
12.
BMC Cardiovasc Disord ; 24(1): 115, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373914

RESUMO

BACKGROUND: Acute myocardial infarction is one of the leading causes of death worldwide. Myocardial ischemia reperfusion (MI/R) injury occurs immediately after the coronary reperfusion and aggravates myocardial ischemia. Whether the Wnt/ß-Catenin pathway is involved in the protection against MI/R injury by DADLE has not been evaluated. Therefore, the present study aimed to investigate the protective effect of DADLE against MI/R injury in a mouse model and to further explore the association between DADLE and the Wnt/ß-Catenin pathway. METHODS: Forty-four mice were randomly allocated to four groups: Group Control (PBS Control), Group D 0.25 (DADLE 0.25 mg/kg), Group D 0.5 (DADLE 0.5 mg/kg), and Group Sham. In the control and DADLE groups, myocardial ischemia injury was induced by occluding the left anterior descending coronary artery (LAD) for 45 min. PBS and DADLE were administrated, respectively, 5 min before reperfusion. The sham group did not go through LAD occlusion. 24 h after reperfusion, functions of the left ventricle were assessed through echocardiography. Myocardial injury was evaluated using TTC double-staining and HE staining. Levels of myocardial enzymes, including CK-MB and LDH, in the serum were determined using ELISA kits. Expression of caspase-3, TCF4, Wnt3a, and ß-Catenin was evaluated using the Western blot assay. RESULTS: The infarct area was significantly smaller in the DADLE groups than in the control group (P < 0.01). The histopathology score and serum levels of myocardial enzymes were significantly lower in the DADLE groups than in the control group (P < 0.01). DADLE significantly improved functions of the left ventricle (P < 0.01), decreased expression of caspase-3 (P < 0.01), TCF4 (P < 0.01), Wnt3a (P < 0.05), and ß-Catenin (P < 0.01) compared with PBS. CONCLUSIONS: The present study showed that DADLE protected the myocardium from MI/R through suppressing the expression of caspase-3, TCF4, Wnt3a, and ß-Catenin and consequently improving functions of the left ventricle in I/R model mice. The TCF4/Wnt/ß-Catenin signaling pathway might become a therapeutic target for MI/R treatment.


Assuntos
Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Ratos , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Via de Sinalização Wnt , Ratos Sprague-Dawley , Leucina Encefalina-2-Alanina/farmacologia , Caspase 3/metabolismo , beta Catenina/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
13.
Exp Cell Res ; 422(1): 113416, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375513

RESUMO

In the previous study, we originally developed cancer stem cells (CSCs) models from mouse induced pluripotent stem cells (miPSCs) by culturing miPSCs in the conditioned medium of cancer cell lines, which mimiced as carcinoma microenvironment. However, the molecular mechanism of conversion in detail remains to be uncovered. Microarray analysis of the CSCs models in this study revealed Dsg2, one of the members of the desmosomal cadherin family, was up-regulated when compared with the original miPSCs. Moreover, the expression of key factors in Wnt/ß-catenin signaling pathway were also found up-regulated in one of the CSCs models, named miPS-LLCcm. An autocrine loop was implied between Dsg2 and Wnt/ß-catenin signaling pathway when miPSCs were treated with Wnt/ß-catenin signaling pathway activators, Wnt3a and CHIR99021, and when the CSCs model were treated with inhibitors, IWR-1 and IWP-2. Furthermore, the ability of proliferation and self-renewal in the CSCs model was markedly decreased in vitro and in vivo when Dsg2 gene was knocked down by shRNA. Our results showed that the Wnt/ß-catenin signaling pathway is activated by the up-regulation of Dsg2 expresssion during the conversion of miPSCs into CSCs implying a potential mechanism of the tranformation of stem cells into malignant phenotype.


Assuntos
Desmogleína 2 , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neoplásicas , Via de Sinalização Wnt , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Células-Tronco Neoplásicas/metabolismo , Regulação para Cima/genética , Via de Sinalização Wnt/genética , Desmogleína 2/genética , Desmogleína 2/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo
14.
Scand Cardiovasc J ; 58(1): 2295785, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38164796

RESUMO

Objective. Myocardial fibrosis (MF) is a common manifestation of end-stage cardiovascular diseases. Triptolide (TP) provides protection against cardiovascular diseases. This study was to explore the functional mechanism of TP in MF rats via the Wnt/ß-catenin pathway. Methods. The MF rat model was established via subcutaneous injection of isoproterenol (ISO) and treated with low/medium/high doses of TP (L-TP/M-TP/H-TP) or Wnt agonist BML-284. Cardiac function was examined by echocardiography. Pathological changes of myocardial tissues were observed by HE and Masson staining. Col-I/Col-III/Vimentin/α-SMA levels were detected by immunohistochemistry, RT-qPCR, and Western blot. Collagen volume fraction content was measured. Expression levels of the Wnt/ß-catenin pathway-related proteins (ß-catenin/c-myc/Cyclin D1) were detected by Western blot. Rat cardiac fibroblasts were utilized for in vitro validation experiments. Results. MF rats had enlarged left ventricle, decreased systolic and diastolic function and cardiac dysfunction, elevated collagen fiber distribution, collagen volume fraction and hydroxyproline content. Levels of Col-I/Col-III/Vimentin/α-SMA, and protein levels of ß-catenin/c-myc/Cyclin D1 were increased in MF rats. The Wnt/ß-catenin pathway was activated in the myocardial tissues of MF rats. TP treatment alleviated impairments of cardiac function and myocardial tissuepathological injury, decreased collagen fibers, collagen volume fraction, Col-I, Col-III, α-SMA and Vimentin levels, HYP content, inhibited Wnt/ß-catenin pathway, with H-TP showing the most significant effects. Wnt agonist BML-284 antagonized the inhibitive effect of TP on MF. TP inhibited the Wnt/ß-catenin pathway to repress the proliferation and differentiation of mouse cardiac fibroblasts in vitro. Conclusions. TP was found to ameliorate ISO-induced MF in rats by inhibiting the Wnt/ß-catenin pathway.


Assuntos
Cardiomiopatias , Doenças Cardiovasculares , Camundongos , Ratos , Animais , Via de Sinalização Wnt , beta Catenina/metabolismo , beta Catenina/farmacologia , Ciclina D1/metabolismo , Ciclina D1/farmacologia , Vimentina/metabolismo , Vimentina/farmacologia , Ratos Sprague-Dawley , Fibrose , Colágeno/farmacologia
15.
J Nanobiotechnology ; 22(1): 425, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030543

RESUMO

Hair follicle (HF) regeneration during wound healing continues to present a significant clinical challenge. Dermal papilla cell-derived exosomes (DPC-Exos) hold immense potential for inducing HF neogenesis. However, the accurate role and underlying mechanisms of DPC-Exos in HF regeneration in wound healing remain to be fully explained. This study, represents the first analysis into the effects of DPC-Exos on fibroblasts during wound healing. Our findings demonstrated that DPC-Exos could stimulate the proliferation and migration of fibroblasts, more importantly, enhance the hair-inducing capacity of fibroblasts. Fibroblasts treated with DPC-Exos were capable of inducing HF neogenesis in nude mice when combined with neonatal mice epidermal cells. In addition, DPC-Exos accelerated wound re-epithelialization and promoted HF regeneration during the healing process. Treatment with DPC-Exos led to increased expression levels of the Wnt pathway transcription factors ß-catenin and Lef1 in both fibroblasts and the dermis of skin wounds. Specifically, the application of a Wnt pathway inhibitor reduced the effects of DPC-Exos on fibroblasts and wound healing. Accordingly, these results offer evidence that DPC-Exos promote HF regeneration during wound healing by enhancing the hair-inducing capacity of fibroblasts and activating the Wnt/ß-catenin signaling pathway. This suggests that DPC-Exos may represent a promising therapeutic strategy for achieving regenerative wound healing.


Assuntos
Proliferação de Células , Exossomos , Fibroblastos , Folículo Piloso , Camundongos Nus , Regeneração , Vibrissas , Via de Sinalização Wnt , Cicatrização , beta Catenina , Animais , Camundongos , Fibroblastos/metabolismo , Exossomos/metabolismo , Vibrissas/fisiologia , beta Catenina/metabolismo , Derme/metabolismo , Movimento Celular , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo
16.
J Appl Toxicol ; 44(4): 542-552, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37908164

RESUMO

Lanthanum (La) is widely used in modern industry and agriculture because of its unique physicochemical properties and is broadly exposed in the population. Some studies have shown that La may have some effects on adipogenesis, but there is a lack of related in vivo evidence. In this study, the effects of La(NO3 )3 on adipogenesis and its associated mechanism were studied using C57BL/6J mouse model. The results showed that La(NO3 )3 exposure caused a decrease in body weight and the percentage of fat content in mice. In addition, the adipose marker molecules and specific adipogenic transcription factors decreased in both white adipose tissue (WAT) and brown adipose tissue (BAT). Detection of signaling pathway-related molecules revealed that canonical wnt/ß-catenin pathway-related molecules were upregulated in both adipose tissues. In summary, in vivo exposure to La(NO3 )3 might inhibited adipogenesis in mice, possibly through upregulation of the canonical Wnt/ß-catenin signaling pathway.


Assuntos
Adipogenia , Lantânio , Camundongos , Animais , Lantânio/toxicidade , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt , beta Catenina/metabolismo , Diferenciação Celular
17.
J Integr Neurosci ; 23(7): 131, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39082287

RESUMO

Stroke is a prominent contributor to mortality and impairment on a global scale. Ischemic stroke accounts for approximately 80% of stroke cases and is caused by occlusion of cerebral blood vessels. Enhancing neurogenesis through the modulation of the neural stem cell niche in the adult brain is a promising therapeutic strategy for individuals afflicted with ischemic stroke. Neurogenesis results in the generation of newborn neurons that serve as replacements for deceased neural cells within the ischemic core, thereby playing a significant role in the process of neural restoration subsequent to cerebral ischemia. Research has shown that activation of the Wnt/ß-catenin pathway can augment neurogenesis following cerebral ischemia, suggesting that this pathway is a potentially beneficial therapeutic target for managing ischemic stroke. This review provides an extensive analysis of the current knowledge regarding the involvement of the Wnt/ß-catenin pathway in promoting neurogenesis, thereby offering a promising avenue for therapeutic intervention in the context of ischemic stroke or other neurological impairments.


Assuntos
AVC Isquêmico , Células-Tronco Neurais , Neurogênese , Via de Sinalização Wnt , Humanos , Via de Sinalização Wnt/fisiologia , Animais , AVC Isquêmico/metabolismo , AVC Isquêmico/terapia , Neurogênese/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Nicho de Células-Tronco/fisiologia , Células-Tronco Adultas/fisiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia
18.
Genomics ; 115(5): 110684, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454937

RESUMO

This study aims to elucidate the effect of ARHGAP9 on lung adenocarcinoma (LUAD) metastasis, and preliminarily explore its molecular mechanism. As a result, we found that ARHGAP9 was downregulated and correlated with poor prognosis of LUAD. ARHGAP9 knockdown promoted LUAD cell proliferation, migration and invasion, inhibited cell apoptosis and reduced G0G1 cell cycle arrest, in contrast to the results of ARHGAP9 overexpression. Further RNA sequencing analysis demonstrated that ARHGAP9 knockdown in H1299 cells significantly reduced DKK2 (dickkopf related protein 2) expression. Silencing ARHGAP9 in H1299 cells while overexpressing DKK2, DKK2 reversed the promoted effects of ARHGAP9 knockdown on LUAD cell proliferation, migration and invasion. Meanwhile, the activity of Wnt/ß-catenin signaling pathway was also reduced. Taken together, these data indicated that ARHGAP9 knockdown promoted LUAD metastasis by activating Wnt/ß-catenin signaling pathway via suppressing DKK2. This may provide a new strategy for LUAD treatment.

19.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4178-4187, 2024 Aug.
Artigo em Zh | MEDLINE | ID: mdl-39307750

RESUMO

This study aimed to investigate the regulatory mechanism of Linggui Zhugan Decoction(LGZGD)-medicated serum on the fibrosis of cardiac fibroblasts(CFs) and the protein expression of the Wnt/ß-catenin signaling pathway. Blank serum and LGZGD-medicated serum were prepared, and primary CFs were isolated and cultured using trypsin-collagenase digestion and differential adhesion method. Immunofluorescence labeling was used to identify primary CFs. Cells were divided into normal control group, model group, 20% blank serum group, and 5%, 10%, and 20% LGZGD-medicated serum groups. Except for the normal control group, all other groups were stimulated with hydrogen peroxide(H_2O_2) after pretreatment with 20% blank serum or 5%, 10%, 20% LGZGD-medicated serum for 12 hours to establish a model of fibrosis in primary CFs. Scratch healing assay was used to observe cell migration ability. ELISA was used to detect the content of collagen type Ⅰ(Col Ⅰ) and type Ⅲ(Col Ⅲ). Western blot was used to detect the protein expression of α-smooth muscle actin(α-SMA), Wnt1, glycogen synthase kinase 3ß(GSK-3ß), phosphorylated GSK-3ß(p-GSK-3ß), ß-catenin, and nuclear ß-catenin. RT-qPCR was used to detect the gene expression of ß-catenin and matrix metalloproteinase 9(MMP9), and immunofluorescence technique was used to detect the expression and localization of key proteins α-SMA and ß-catenin. CFs with Wnt1 overexpression were prepared and treated with H_2O_2. The following groups were set up: normal control group, model group, 20% LGZGD-medicated serum group, empty plasmid+20% LGZGD-medicated serum group, and Wnt1 overexpression+20% LGZGD-medicated serum group. ELISA was used to detect the content and ratio of Col Ⅰ and Col Ⅲ. Western blot was used to detect the protein expression of α-SMA, Wnt1, GSK-3ß, p-GSK-3ß, ß-catenin, and nuclear ß-catenin. RT-qPCR was used to detect the gene expression of ß-catenin and MMP9. Immunofluorescence staining showed that CFs expressed Vimentin positively, appearing green, with blue nuclei and purity greater than 90%, which were identified as primary CFs. RESULTS:: showed that compared with the normal control group, CFs in the model group had enhanced healing rate, increased content of Col Ⅰ and Col Ⅲ, increased ratio of Col Ⅰ/Col Ⅲ, upregulated protein expression of α-SMA, Wnt1, p-GSK-3ß, ß-catenin, nuclear ß-catenin, decreased GSK-3ß expression, elevated mRNA expression of ß-catenin and MMP9, and enhanced fluorescence intensity and expression of ß-catenin and α-SMA. Compared with the model group, 5%, 10%, 20% LGZGD-medicated serum significantly inhibited cell migration ability, reduced the content of Col Ⅰ and Col Ⅲ, decreased ratio of Col Ⅰ/Col Ⅲ, downregulated protein expression of α-SMA, Wnt1, p-GSK-3ß, ß-catenin, nuclear ß-catenin, increased GSK-3ß expression, decreased mRNA expression of ß-catenin and MMP9, and reduced fluorescence intensity and expression of ß-catenin and α-SMA. Compared with the empty plasmid+20% LGZGD-medicated serum group, the effect of LGZGD-medicated serum was significantly reversed after overexpression of Wnt1. LGZGD can reduce excessive deposition of collagen fibers, inhibit excessive proliferation of fibroblasts, and improve the process of myocardial fibrosis. The improvement of myocardial fibrosis by LGZGD is related to the regulation of the Wnt/ß-catenin pathway, reduction of collagen deposition, and protection of myocardial cells.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose , Miocárdio , Ratos Sprague-Dawley , Via de Sinalização Wnt , beta Catenina , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Ratos , beta Catenina/metabolismo , beta Catenina/genética , Miocárdio/metabolismo , Miocárdio/patologia , Masculino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Células Cultivadas
20.
Infect Immun ; 91(11): e0033723, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37815369

RESUMO

Chlamydia psittaci is a human pathogen that causes atypical pneumonia after zoonotic transmission. We confirmed that C. psittaci infection induces oxidative stress in human bronchial epithelial (HBEs) cells and explored how this is regulated through miR-184 and the Wnt/ß-catenin signaling pathway. miR-184 mimic, miR-184 inhibitor, FOXO1 siRNA, or negative control sequence was transfected into HBE cells cultured in serum-free medium using Lipofectamine 2000. Then, prior to the cells were infected with C. psittaci 6BC, and the cells were treated with or without 30 µM Wnt/ß-catenin inhibitor ICG-001. Quantification of reactive oxygen species, malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione was carried out according to the manufacturer's protocol using a corresponding assay kit. The outcome of both protein and gene was measured by western blotting or real-time fluorescence quantitative PCR. In C. psittaci-infected HBE cells, miR-184 was upregulated, while one of its target genes, FOXO1, was downregulated. ROS and MDA levels increased, while SOD and GSH contents decreased after C. psittaci infection. When miR-184 expression was downregulated, the level of oxidative stress caused by C. psittaci infection was reduced, and the Wnt/ß-catenin signaling pathway was inhibited. The opposite results were seen when miR-184 mimic was used. Transfecting with FOXO1 siRNA reversed the effect of miR-184 inhibitor. Moreover, when the Wnt/ß-catenin-specific inhibitor ICG-001 was used, the level of oxidative stress induced by C. psittaci infection was significantly suppressed. miR-184 can target FOXO1 to promote oxidative stress in HBE cells following C. psittaci infection by activation of the Wnt/ß-catenin signaling pathway.


Assuntos
Chlamydophila psittaci , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , RNA Interferente Pequeno/metabolismo , Estresse Oxidativo , Proliferação de Células/genética , Superóxido Dismutase/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA