Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365946

RESUMO

Firefighters, paramedics, nursing staff, and other occupational groups are in constant need of fast and proper cleaning of their professional workwear, not only during a pandemic. Thus, laundry technology needs to become more efficient and automated. Unfortunately, some steps of the cleaning process, such as finding and removing foreign items from pockets or belts, are still completed manually. This is not just time-consuming but potentially dangerous for the workers due to the hazardous nature of items such as scissors, scalpels, or syringes. Additionally, some items may damage the garments by staining or harm the laundry machines, causing malfunctions and process failure. On the one hand, these foreign items are often hidden inside the clothes, making detection very challenging with conventional superficial sensors. On the other hand, these items can be diverse and cannot be detected by metal detectors alone. X-ray transmission has proven to be a powerful tool for detecting items inside of objects. The dual-energy approach (DE-XRT) even allows obtaining quantitative information about the chemical composition of the measured materials. In this study, working garments were accompanied and filled with realistic foreign items. The potential of DE-XRT to detect those items was successfully shown.


Assuntos
Lavanderia , Humanos , Raios X , Radiografia , Indústrias
2.
Sensors (Basel) ; 22(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35808488

RESUMO

With their wide application in industrial fields, the denoising and/or filtering of line-scan images is becoming more important, which also affects the quality of their subsequent recognition or classification. Based on the application of single source dual-energy X-ray transmission (DE-XRT) line-scan in-line material sorting and the different horizontal and vertical characteristics of line-scan images, an improved adaptive Kalman-median filter (IAKMF) was proposed for several kinds of noises of an energy integral detector. The filter was realized through the determination of the off-line noise total covariance, the covariance distribution coefficient between the process noise and measurement noise, the adaptive covariance scale coefficient, calculation scanning mode and single line median filter. The experimental results show that the proposed filter has the advantages of simple code, good real-time control, high precision, small artifacts, convenience and practicality. It can take into account the filtering of high-frequency random noise, the retention of low-frequency real signal fluctuation and the preservation of shape features. The filter also has a good practical application value and can be improved and extended to other line-scan image filtering scenarios.

3.
Sensors (Basel) ; 21(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918163

RESUMO

Dual and multi energy X-ray transmission imaging (DE-/ME-XRT) are powerful tools to acquire quantitative material characteristics of diverse samples without destruction. As those X-ray imaging techniques are based on the projection onto the imaging plane, only two-dimensional data can be obtained. To acquire three-dimensional information and a complete examination on topology and spatial trends of materials, computed tomography (CT) can be used. In combination, these methods may offer a robust non-destructive testing technique for research and industrial applications. For example, the iron ore mining and processing industry requires the ratio of economic iron minerals to siliceous waste material for resource and reserve estimations, and for efficient sorting prior to beneficiation, to avoid equipment destruction due to highly abrasive quartz. While XRT provides information concerning the thickness, areal density and mass fraction of iron and the respective background material, CT may deliver size, distribution and orientation of internal structures. Our study shows that the data provided by XRT and CT is reliable and, together with data processing, can be successfully applied for distinguishing iron oxide rich parts from waste. Furthermore, heavy element bearing minerals such as baryte, uraninite, galena and monazite can be detected.

4.
J Synchrotron Radiat ; 25(Pt 4): 1144-1152, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979176

RESUMO

The development of magnetic nanostructures for applications in spintronics requires methods capable of visualizing their magnetization. Soft X-ray magnetic imaging combined with circular magnetic dichroism allows nanostructures up to 100-300 nm in thickness to be probed with resolutions of 20-40 nm. Here a new iterative tomographic reconstruction method to extract the three-dimensional magnetization configuration from tomographic projections is presented. The vector field is reconstructed by using a modified algebraic reconstruction approach based on solving a set of linear equations in an iterative manner. The application of this method is illustrated with two examples (magnetic nano-disc and micro-square heterostructure) along with comparison of error in reconstructions, and convergence of the algorithm.

5.
J Synchrotron Radiat ; 25(Pt 2): 425-431, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488922

RESUMO

Results of computer simulations of the transmission of an X-ray beam through a two-dimensional photonic crystal as well as the propagation of an X-ray beam in free space behind the photonic crystal are reported. The photonic crystal consists of a square lattice of silicon cylinders of diameter 0.5 µm. The amount of matter in the path of the X-ray beam rapidly decreases at the sides of the cylinder projections. Therefore the transmission is localized near the boundaries, and appears like a channeling effect. The iterative method of computer simulations is applied. This method is similar to the multi-slice method that is widely used in electron microscopy. It allows a solution to be obtained with acceptable accuracy. A peculiarity in the intensity distribution inside the Talbot period zT in free space was found when the intensity is approximately equal to the initial value at a distance 0.46zT, and it is shifted by half a period at distance 0.5zT. The reason for this effect is the existence of a periodic phase of the wavefunction of radiation inside the intensity peaks. Simulations with zero phase do not show this effect. Symmetry rules for the Talbot effect are discussed.

6.
Lab Anim ; 55(1): 30-42, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32460606

RESUMO

Changes in bone mineral content of calcium (Ca), phosphorous (P), magnesium and potassium for male and female Wistar rats during their development from 3 weeks old to adulthood (27 weeks old) were measured. Bone mineral content was related to areal bone mineral density (BMD) which was measured in vivo at the femoral neck using a calibrated X-ray transmission system to obtain basal curves as a function of the age of the specimen. Diagnostic curves were built to determine low BMD (osteopaenia) and osteoporosis in female rats fed a Ca-depleted diet (50%) based on the obtained data and the criteria established by the World Health Organization. Bone mineral content is directly related to sex and age, but P did not change throughout the experimental period. P content did not exhibit significant changes with growing, while Ca was greatest in male rats, producing significant differences in the Ca:P ratio. Male rats reach the Ca:P ratio peak before female rats. However, areal BMD does not follow the same trend. On the other hand, osteoporosis produced a 45% decrease in this parameter for young and mature adults. These results make Z-score values available to diagnose bone-mass losses and hence the possibility of improving the conditions of non-contact measurement of BMD in vivo. This technique can be used for future experiments with Wistar rats.


Assuntos
Densidade Óssea , Fêmur/fisiologia , Osteoporose/fisiopatologia , Ratos/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Ratos Wistar
7.
Materials (Basel) ; 12(2)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658431

RESUMO

Carbon fiber-reinforced composite has an excellent X-ray transmission rate as well as specific modulus and strength. The major components of medical devices, X-ray systems, and computed tomography (CT) equipment that require superior X-ray transmission performance also require structural performance for deformation. Therefore, medical components consist of a sandwich composite structure with carbon fiber composites applied as a face material. The X-ray transmission ratios of face material and foam material were measured according to thickness, and the relation equation for thickness and X-ray transmission rate was derived. The X-ray transmission rate for the sandwich composite structure consisting of face and core material was measured and the relationship between the X-ray transmission rate and the dimension for thickness of sandwich cradle was derived. Using the optimization process, the thicknesses of face and core materials for sandwich cradles were determined to minimize the cost of used materials. They also met the criteria that the deflection should not be more than 20 mm, and the X-ray transmission rate of the cradle should be equal to or greater than that of aluminum at 1.5 mm thickness. The sequence pattern of face material was proposed through structural analysis. The face material of the sandwich cradle was manufactured by a resin infusion and vacuum bagging method, followed by inserting the core between the cured faces. Next, the sandwich cradle assembly was completed and re-cured. The sandwich cradle met the criteria that the deflection at the end was 19.04 mm and the X-ray transmission was 78.7% greater than the X-ray transmission of 1.5 mm aluminum.

8.
Materials (Basel) ; 12(7)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939821

RESUMO

The keyhole digging process associated with variable polarity plasma arc (VPPA) welding remains unclear, resulting in poor control of welding stability. The VPPA pressure directly determines the dynamics of the keyhole and weld pool in the digging process. Here, through a high speed camera, high frequency pulsed diode laser light source and X-ray transmission imaging system, we reveal the potential physical phenomenon of a keyhole weld pool. The keyhole depth changes periodically corresponding to the polarity conversion period if the current is same in the electrode negative (EN) phase and electrode positive (EP) phase. There exist three distinct regimes of keyhole and weld pool behavior in the whole digging process, due to the arc pressure attenuation and energy accumulation effect. The pressure in the EP phase is smaller than that of the EN phase, causing the fluctuation of the weld pool free surface. Based on the influence mechanism of energy and momentum transaction, the arc pressure output is balanced by separately adjusting the current in each polarity. Finally, the keyhole fluctuation during the digging process is successfully reduced and welding stability is well controlled.

9.
Mater Sci Eng C Mater Biol Appl ; 33(8): 4952-7, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24094209

RESUMO

Characteristics of X-ray transmissions were investigated for epoxy composites filled with 2-10 vol% WO3 loadings using synchrotron X-ray absorption spectroscopy (XAS) at 10-40 keV. The results obtained were used to determine the equivalent X-ray energies for the operating X-ray tube voltages of mammography and radiology machines. The results confirmed the superior attenuation ability of nano-sized WO3-epoxy composites in the energy range of 10-25 keV when compared to their micro-sized counterparts. However, at higher synchrotron radiation energies (i.e., 30-40 keV), the X-ray transmission characteristics were similar with no apparent size effect for both nano-sized and micro-sized WO3-epoxy composites. The equivalent X-ray energies for the operating X-ray tube voltages of the mammography unit (25-49 kV) were in the range of 15-25 keV. Similarly, for a radiology unit operating at 40-60 kV, the equivalent energy range was 25-40 keV, and for operating voltages greater than 60 kV (i.e., 70-100 kV), the equivalent energy was in excess of 40 keV. The mechanical properties of epoxy composites increased initially with an increase in the filler loading but a further increase in the WO3 loading resulted in deterioration of flexural strength, modulus and hardness.


Assuntos
Compostos de Epóxi/química , Óxidos/química , Proteção Radiológica/instrumentação , Tungstênio/química , Dureza , Tamanho da Partícula , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA