Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Altern Lab Anim ; 52(5): 247-260, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39121342

RESUMO

The likelihood that potential new drugs will successfully navigate the current translational pipeline is poor, with fewer than 10% of drug candidates making this transition successfully, even after their entry into clinical trials. Prior to this stage, candidate drugs are typically evaluated by using models of increasing complexity, beginning with basic in vitro cell culture studies and progressing through to animal studies, where many of these candidates are lost due to lack of efficacy or toxicology concerns. There are many reasons for this poor translation, but interspecies differences in functional and physiological parameters undoubtedly contribute to the problem. Improving the human-relevance of early preclinical in vitro models may help translatability, especially when targeting more nuanced species-specific cell processes. The aim of the current study was to define a set of guidelines for the effective transition of human primary cells of multiple lineages to more physiologically relevant, translatable, animal-free in vitro culture conditions. Animal-derived biomaterials (ADBs) were systematically replaced with non-animal-derived alternatives in the in vitro cell culture systems, and the impact of the substitutions subsequently assessed by comparing the kinetics and phenotypes of the cultured cells. ADBs were successfully eliminated from primary human dermal fibroblast, uterine fibroblast, pulmonary fibroblast, retinal endothelial cell and peripheral blood mononuclear cell culture systems, and the individual requirements of each cell subtype were defined to ensure the successful transition toward growth under animal-free culture conditions. We demonstrate that it is possible to transition ('humanise') a diverse set of human primary cell types by following a set of simple overarching principles that inform the selection, and guide the evaluation of new, improved, human-relevant in vitro culture conditions.


Assuntos
Materiais Biocompatíveis , Humanos , Animais , Cultura Primária de Células/métodos , Alternativas aos Testes com Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos
2.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339088

RESUMO

Three-dimensional (3D) bioprinting is one of the most promising methodologies that are currently in development for the replacement of animal experiments. Bioprinting and most alternative technologies rely on animal-derived materials, which compromises the intent of animal welfare and results in the generation of chimeric systems of limited value. The current study therefore presents the first bioprinted liver model that is entirely void of animal-derived constituents. Initially, HuH-7 cells underwent adaptation to a chemically defined medium (CDM). The adapted cells exhibited high survival rates (85-92%) after cryopreservation in chemically defined freezing media, comparable to those preserved in standard medium (86-92%). Xeno-free bioink for 3D bioprinting yielded liver models with high relative cell viability (97-101%), akin to a Matrigel-based liver model (83-102%) after 15 days of culture. The established xeno-free model was used for toxicity testing of a marine biotoxin, okadaic acid (OA). In 2D culture, OA toxicity was virtually identical for cells cultured under standard conditions and in CDM. In the xeno-free bioprinted liver model, 3-fold higher concentrations of OA than in the respective monolayer culture were needed to induce cytotoxicity. In conclusion, this study describes for the first time the development of a xeno-free 3D bioprinted liver model and its applicability for research purposes.


Assuntos
Bioimpressão , Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
3.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835154

RESUMO

Xeno-free three-dimensional cultures are gaining attention for mesenchymal stem cell (MSCs) expansion in clinical applications. We investigated the potential of xeno-free serum alternatives, human serum and human platelet lysate, to replace the current conventional use of foetal bovine serum for subsequent MSCs microcarrier cultures. In this study, Wharton's Jelly MSCs were cultured in nine different media combinations to identify the best xeno-free culture media for MSCs culture. Cell proliferation and viability were identified, and the cultured MSCs were characterised in accordance with the minimal criteria for defining multipotent mesenchymal stromal cells by the International Society for Cellular Therapy (ISCT). The selected culture media was then used in the microcarrier culture of MSCs to determine the potential of a three-dimensional culture system in the expansion of MSCs for future clinical applications, and to identify the immunomodulatory potential of cultured MSCs. Low Glucose DMEM (LG) + Human Platelet (HPL) lysate media appeared to be good candidates for replacing conventional MSCs culture media in our monolayer culture system. MSCs cultured in LG-HPL achieved high cell yield, with characteristics that remained as described by ISCT, although the overall mitochondrial activity of the cells was lower than the control and the subsequent effects remained unknown. MSC microcarrier culture, on the other hand, showed comparable cell characteristics with monolayer culture, yet had stagnated cell proliferation, which is potentially due to the inactivation of FAK. Nonetheless, both the MSCs monolayer culture and the microcarrier culture showed high suppressive activity on TNF-α, and only the MSC microcarrier culture has a better suppression of IL-1 secretion. In conclusion, LG-HPL was identified as a good xeno-free media for WJMSCs culture, and although further mechanistic research is needed, the results show that the xeno-free three-dimensional culture maintained MSC characteristics and improved immunomodulatory activities, suggesting the potential of translating the monolayer culture into this culture system in MSC expansion for future clinical application.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Meios de Cultura , Geleia de Wharton/citologia , Geleia de Wharton/metabolismo , Técnicas de Cultura de Células em Três Dimensões/métodos
4.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139360

RESUMO

This study aimed to develop a novel culture method for rat adipose-derived stem cells (rADSC) and evaluate their osteogenic potential. The rADSC cultured in xeno-free culture medium (XF-rADSCs) or conventional culture medium containing fetal bovine serum (FBS-rADSCs) were combined with micropieces of xeno-free recombinant collagen peptide to form 3-dimensional aggregates (XF-rADSC-CellSaic or FBS-rADSC-CellSaic). Both FBS-rADSC and XF-ADSC in CellSaic exhibited multilineage differentiation potential. Compared to FBS-rADSC-CellSaic, XF-rADSC-CellSaic accelerated and promoted osteogenic differentiation in vitro. When transplanted into rat mandibular congenital bone defects, the osteogenically differentiated XF-rADSC-CellSaic induced regeneration of bone tissue with a highly maturated structure compared to FBS-rADSC-CellSaic. In conclusion, XF-rADSC-CellSaic is a feasible 3-dimensional platform for efficient bone formation.


Assuntos
Tecido Adiposo , Osteogênese , Ratos , Animais , Células Cultivadas , Adipócitos , Diferenciação Celular , Células-Tronco , Proliferação de Células
5.
Altern Lab Anim ; 50(5): 330-338, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35983799

RESUMO

Cell culture techniques are strongly connected with modern scientific laboratories and production facilities. Thus, choosing the most suitable medium for the cells involved is vital, not only directly to optimise cell viability but also indirectly to maximise the reliability of the experiments performed with the cells. Fetal bovine or calf serum (FBS or FCS, respectively) is the most commonly used cell culture medium supplement, providing various nutritional factors and macromolecules essential for cell growth. Yet, the use of FBS encompasses a number of disadvantages. Scientifically, one of the most severe disadvantages is the lot-to-lot variability of animal sera that hampers reproducibility. Therefore, transitioning from the use of these ill-defined, component-variable, inconsistent, xenogenic, ethically questionable and even potentially infectious media supplements, is key to achieving better data reproducibility and thus better science. To demonstrate that the transition to animal component-free cell culture is possible and achievable, we highlight three different scenarios and provide some case studies of each, namely: i) the adaptation of single cell lines to animal component-free culture conditions by the replacement of FBS and trypsin; ii) the adaptation of multicellular models to FBS-free conditions; and (iii) the replacement of FBS with human platelet lysate (hPL) for the generation of primary stem/stromal cell cultures for clinical purposes. By highlighting these examples, we aim to foster and support the global movement towards more consistent science and provide evidence that it is indeed possible to step out of the currently smouldering scientific reproducibility crisis.


Assuntos
Células-Tronco Mesenquimais , Animais , Bovinos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Reprodutibilidade dos Testes , Tripsina
6.
Biotechnol Bioeng ; 118(2): 979-991, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33205831

RESUMO

Scalable processes are requisite for the robust biomanufacturing of human pluripotent stem cell (hPSC)-derived therapeutics. Toward this end, we demonstrate the xeno-free expansion and directed differentiation of human embryonic and induced pluripotent stem cells to definitive endoderm (DE) in a controlled stirred suspension bioreactor (SSB). Based on previous work on converting hPSCs to insulin-producing progeny, differentiation of two hPSC lines was optimized in planar cultures yielding up to 87% FOXA2+ /SOX17+ cells. Next, hPSCs were propagated in an SSB with controlled pH and dissolved oxygen. Cultures displayed a 10- to 12-fold increase in cell number over 5-6 days with the maintenance of pluripotency (>85% OCT4+ ) and viability (>85%). For differentiation, SSB cultures yielded up to 89% FOXA2+ /SOX17+ cells or ~ 8 DE cells per seeded hPSC. Specification to DE cell fate was consistently more efficient in the bioreactor compared to planar cultures. Hence, a tunable strategy is established that is suitable for the xeno-free manufacturing of DE cells from different hPSC lines in scalable SSBs. This study advances bioprocess development for producing a wide gamut of human DE cell-derived therapeutics.


Assuntos
Reatores Biológicos , Endoderma/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Linhagem Celular , Endoderma/citologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
7.
Cells Tissues Organs ; 210(1): 31-44, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33873188

RESUMO

Mesenchymal stromal cells and the derived conditioned media represent an area of tremendous medical interest and, among other clinical applications, are currently being extensively explored for wound healing. The aim of this study was to comparatively evaluate the wound healing potential of xeno-free human umbilical cord-derived mesenchymal stromal cells (MSCs) and the conditioned media (CM) in a full-thickness excision wound model in rats. The evaluation parameters included rate of wound healing, serum cytokine analyses, collagen content, histopathology, and hyperspectral imaging as an independent qualitative and quantitative tool. Both the cell-based and cell-free approaches scored better in lower inflammation, as evidenced in lower IL-10 and stable IL-6 levels, and improved rate of wound healing (p < 0.0001). More importantly, no adverse reaction or rejection was observed although human MSCs and CM were used in a xenogeneic model. The presence of hFGF, hHGF, hGCSF, hIL-1Ra, hVEGF, and hIL-6 in the secretome may elucidate the regenerative potential of the xeno-free cell-based and cell-free approaches which have translational value for advanced wound care. The results revealed the therapeutic potential of both the cell-based and cell-free approaches for wound healing.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Meios de Cultivo Condicionados/farmacologia , Humanos , Ratos , Secretoma , Cicatrização
8.
J Assist Reprod Genet ; 37(9): 2137-2150, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32671735

RESUMO

PURPOSE: Our purpose was to identify human ovarian extracellular matrix (ECM) components that would support in vitro culture of human ovarian tissue and be compatible with possible future clinical applications. We characterized ovarian expression of laminins and selected three laminin tripeptides for culture experiments to be compared with Matrigel, an undefined and animal-based mixture of ECM components. METHODS: Expression of the 12 laminin genes was determined on transcript and protein levels using cortical tissue samples (n = 6), commercial ovary RNA (n = 1), follicular fluid granulosa cells (n = 20), and single-cell RNA-sequencing data. Laminin 221 (LN221), LN521, LN511, and their mixture were chosen for a 7-day culture experiment along with Matrigel using tissue from 17 patients. At the end of the culture, follicles were evaluated by scoring and counting from serial tissue sections, apoptosis measured using in situ TUNEL assay, proliferation by Ki67 staining, and endocrine function by quantifying steroids in culture media using UPLC-MS/MS. RESULTS: Approximately half of the cells in ovarian cortex expressed at least one laminin gene. The overall most expressed laminin α-chains were LAMA2 and LAMA5, ß-chains LAMB1 and LAMB2, and γ-chain LAMC1. In culture experiments, LN221 enhanced follicular survival compared with Matrigel (p < 0.001), whereas tissue cultured on LN521 had higher proportion of secondary follicles (p < 0.001). LN511 and mixture of laminins did not support the cultures leading to lower follicle densities and higher apoptosis. All cultures produced steroids and contained proliferating cells. CONCLUSIONS: LN221 and LN521 show promise in providing xeno-free growth substrates for human ovarian tissue cultures, which may help in further development of folliculogenesis in vitro for clinical practices. The system could also be used for identification of adverse effects of chemicals in ovaries.


Assuntos
Matriz Extracelular/química , Laminina/farmacologia , Ovário/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos , Adulto , Cromatografia Líquida , Colágeno/química , Colágeno/farmacologia , Meios de Cultura/farmacologia , Combinação de Medicamentos , Matriz Extracelular/genética , Feminino , Células da Granulosa , Humanos , Laminina/química , Pessoa de Meia-Idade , Folículo Ovariano , Ovário/efeitos dos fármacos , Proteoglicanas/química , Proteoglicanas/farmacologia , RNA-Seq , Análise de Célula Única , Espectrometria de Massas em Tandem
9.
J Neurosci Res ; 97(7): 828-845, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30891830

RESUMO

Oligodendrocytes (OLs) show heterogeneous properties that depend on their location in the central nervous system (CNS). In this regard, the investigation of oligodendrocyte precursor cells (OPCs) derived from human pluripotent stem cells (hPSCs) should be reconsidered, particularly in cases of brain-predominant disorders for which brain-derived OPCs are more appropriate than spinal cord-derived OPCs. Furthermore, animal-derived components are responsible for culture variability in the derivation and complicate clinical translation. In the present study, we established a xeno-free system to induce forebrain OPCs from hPSCs. We induced human forebrain neural stem cells (NSCs) on Laminin 511-E8 and directed the differentiation to the developmental pathway for forebrain OLs with SHH and FGF signaling. OPCs were characterized by the expression of OLIG2, NKX2.2, SOX10, and PDGFRA, and subsequent maturation into O4+ cells. In vitro characterization showed that >85% of the forebrain OPCs (O4+ ) underwent maturation into OLs (MBP+ ) 3 weeks after mitogen removal. Upon intracranial transplantation, the OPCs survived, dispersed in the corpus callosum, and matured into (GSTπ+ ) OLs in the host brains 3 months after transplantation. These findings suggest our xeno-free induction of forebrain OPCs from hPSCs could accelerate clinical translation for brain-specific disorders.


Assuntos
Células Precursoras de Oligodendrócitos/transplante , Células-Tronco Pluripotentes/metabolismo , Prosencéfalo/transplante , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Linhagem Celular , Expressão Gênica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Células-Tronco Neurais/metabolismo , Proteínas Nucleares , Células Precursoras de Oligodendrócitos/metabolismo , Prosencéfalo/metabolismo , Ratos , Fatores de Transcrição
10.
Cell Tissue Res ; 375(2): 437-449, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30284087

RESUMO

A xeno-free method for ex vivo generation of red blood cells (RBCs) is attempted in order to replicate for large-scale production and clinical applications. An efficient milieu was formulated using injectable drugs substituting the animal-derived components in the culture medium. Unfractionated mononuclear cells isolated from human umbilical cord blood were used hypothesizing that the heterogeneous cell population could effectively contribute to erythroid cell generation. The strategy adopted includes a combination of erythropoietin and other injectable drugs under low oxygen levels, which resulted in an increase in the number of mature RBCs produced in vitro. The novelty in this study is the addition of supplements to the medium in a stage-specific manner for the differentiation of unfractionated umbilical cord blood mononuclear cells (MNCs) into erythropoietic lineage. The erythropoietic lineage was well established by day 21, wherein the mean cell count of RBCs was found to be 21.36 ± 0.9 × 108 and further confirmed by an upregulated expression of CD235a+ specific to RBCs. The rationale was to have a simple method to produce erythroid cells from umbilical cord blood isolates in vitro by mitigating the effects of multiple erythroid-activating agents and batch to batch variability.


Assuntos
Técnicas de Cultura de Células/métodos , Eritrócitos/citologia , Sangue Fetal/citologia , Leucócitos Mononucleares/citologia , Células Cultivadas , Contagem de Eritrócitos , Feminino , Humanos , Imunofenotipagem , Oxigênio/metabolismo , Preservação Biológica
11.
Hum Reprod ; 34(11): 2297-2310, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743397

RESUMO

STUDY QUESTION: Does the X chromosome inactivation (XCI) of Klinefelter syndrome (KS)-derived human induced pluripotent stem cells (hiPSCs) correspond to female human pluripotent stem cells (hPSCs) and reflect the KS genotype? SUMMARY ANSWER: Our results demonstrate for the first time that KS-derived hiPSCs show similar XCI behavior to female hPSCs in culture and show biological relevance to KS genotype-related clinical features. WHAT IS KNOWN ALREADY: So far, assessment of XCI of KS-derived hiPSCs was based on H3K27me3 staining and X-inactive specific transcript gene expression disregarding the at least three XCI states (XaXi with XIST coating, XaXi lacking XIST coating, and XaXe (partially eroded XCI)) that female hPSCs display in culture. STUDY DESIGN, SIZE, DURATION: The study used hiPSC lines generated from two azoospermic patients with KS and included two healthy male (HM) and one healthy female donor. PARTICIPANTS/MATERIALS, SETTING, METHODS: In this study, we derived hiPSCs by reprograming fibroblasts with episomal plasmids and applying laminin 521 as culture substrate. hiPSCs were characterized by karyotyping, immunocytochemistry, immunohistochemistry, quantitative PCR, teratoma formation, and embryoid body differentiation. XCI and KS hiPSC relevance were assessed by whole genome transcriptomics analysis and immunocytochemistry plus FISH of KS, HM and female fibroblast, and their hiPSC derivatives. MAIN RESULTS AND THE ROLE OF CHANCE: Applying whole genome transcriptomics analysis, we could identify differentially expressed genes (DEGs) between KS and HM donors with enrichment in gene ontology terms associated with fertility, cardiovascular development, ossification, and brain development, all associated with KS genotype-related clinical features. Furthermore, XCI analysis based on transcriptomics data, RNA FISH, and H3K27me3 staining revealed variable XCI states of KS hiPSCs similar to female hiPSCs, showing either normal (XaXi) or eroded (XaXe) XCI. KS hiPSCs with normal XCI showed nevertheless upregulated X-linked genes involved in nervous system development as well as synaptic transmission, supporting the potential use of KS-derived hiPSCs as an in vitro model for KS. LIMITATIONS, REASONS FOR CAUTION: Detailed clinical information for patients included in this study was not available. Although a correlation between DEGs and the KS genotype could be observed, the biological relevance of these cells has to be confirmed with further experiments. In addition, karyotype analysis for two hiPSC lines was performed at passage 12 but not repeated at a later passage. Nevertheless, since all XCI experiments for those lines were performed between passage 11 and 15 the authors expect no karyotypic changes for those experiments. WIDER IMPLICATIONS OF THE FINDINGS: As KS patients have variable clinical phenotypes that are influenced by the grade of aneuploidy, mosaicism, origin of the X chromosome, and XCI 'escapee' genes, which vary not only among individuals but also among different tissues within the same individual, differentiated KS hiPSCs could be used for a better understanding of KS pathogenesis. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by grants from the Knut and Alice Wallenberg Foundation (2016.0121 and 2015.0096), Ming Wai Lau Centre for Reparative Medicine (2-343/2016), Ragnar Söderberg Foundation (M67/13), Swedish Research Council (2013-32485-100360-69), the Centre for Innovative Medicine (2-388/2016-40), Kronprinsessan Lovisas Förening För Barnasjukvård/Stiftelsen Axel Tielmans Minnesfond, Samariten Foundation, Jonasson Center at the Royal Institute of Technology, Sweden, and Initial Training Network Marie Curie Program 'Growsperm' (EU-FP7-PEOPLE-2013-ITN 603568). The authors declare no conflicts of interest.


Assuntos
Azoospermia/genética , Cromossomos Humanos X , Síndrome de Klinefelter/genética , Células-Tronco Pluripotentes/citologia , Inativação do Cromossomo X , Adulto , Diferenciação Celular , Feminino , Fibroblastos/metabolismo , Genótipo , Histonas/metabolismo , Humanos , Masculino , Fenótipo , Fatores Sexuais , Teratoma/metabolismo , Transcriptoma
12.
Biotechnol Bioeng ; 116(10): 2598-2609, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31286475

RESUMO

The expansion of human peripheral blood endothelial progenitor cells to obtain therapeutically relevant endothelial colony-forming cells (ECFCs) has been commonly performed on xeno-derived extracellular matrix proteins. For cellular therapy applications, xeno-free culture conditions are desirable to improve product safety and reduce process variability. We have previously described a novel fluorophore-tagged RGD peptide (RGD-TAMRA) that enhanced the adhesion of mature endothelial cells in vitro. To investigate whether this peptide can replace animal-derived extracellular matrix proteins in the isolation and expansion of ECFCs, peripheral blood mononuclear cells from 22 healthy adult donors were seeded on RGD-TAMRA-modified polystyrene culture surfaces. Endothelial colony formation was significantly enhanced on RGD-TAMRA-modified surfaces compared to the unmodified control. No phenotypic differences were detected between ECFCs obtained on RGD-TAMRA compared to ECFCs obtained on rat-tail collagen-coated surfaces. Compared with collagen-coated surfaces and unmodified surfaces, RGD-TAMRA surfaces promoted ECFC adhesion, cell spreading, and clonal expansion. This study presents a platform that allows for a comprehensive in vitro evaluation of peptide-based biofunctionalization as a promising avenue for ex vivo ECFC expansion.


Assuntos
Células Sanguíneas/citologia , Separação Celular , Células Progenitoras Endoteliais/citologia , Oligopeptídeos/química , Poliestirenos/química , Células Sanguíneas/metabolismo , Células Progenitoras Endoteliais/metabolismo , Feminino , Humanos , Masculino , Propriedades de Superfície
13.
Adv Exp Med Biol ; 1123: 119-150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016598

RESUMO

Adipose stem cells (ASCs) are the basis of procedures intended for tissue regeneration. These cells are heterogeneous, owing to various factors, including the donor age, sex, body mass index, and clinical condition; the isolation procedure (liposuction or fat excision); the place from where the cells were sampled (body site and depth of each adipose depot); culture surface; type of medium (whether supplemented with fetal bovine serum or xeno-free), that affect the principal phenotypic features of ASCs. The features related to ASCs heterogeneity are relevant for the success of therapeutic procedures; these features include proliferation capacity, differentiation potential, immunophenotype, and the secretome. These are important characteristics for the success of regenerative tissue engineering, not only because of their effects upon the reconstruction and healing exerted by ASCs themselves, but also because of the paracrine signaling of ASCs and its impact on recipient tissues. Knowledge of sources of heterogeneity will be helpful in the standardization of ASCs-based procedures. New avenues of research could include evaluation of the effects of the use of more homo1geneous ASCs for specific purposes, the study of ASCs-recipient interactions in heterologous cell transplantation, and the characterization of epigenetic changes in ASCs, as well as investigations of the effect of the metabolome upon ASCs behavior in culture.


Assuntos
Tecido Adiposo/citologia , Células-Tronco/citologia , Adipócitos , Diferenciação Celular , Humanos
14.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443173

RESUMO

Three-dimensional clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. We demonstrated previously that C-MSCs can be transplanted into bone defect regions with no artificial scaffold to induce bone regeneration. To apply C-MSCs in a clinical setting as a reliable bone regenerative therapy, the present study aimed to generate C-MSCs in xeno-free/serum-free conditions that can exert successful bone regenerative properties and to monitor interactions between grafted cells and host cells during bone healing processes. Human bone marrow-derived MSCs were cultured in xeno-free/serum-free medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. Then, C-MSCs were transplanted into an immunodeficient mouse calvarial defect model. Transplantation of C-MSCs induced bone regeneration in a time-dependent manner. Immunofluorescence staining showed that both donor human cells and host mice cells contributed to bone reconstruction. Decellularized C-MSCs implantation failed to induce bone regeneration, even though the host mice cells can infiltrate into the defect area. These findings suggested that C-MSCs generated in xeno-free/serum-free conditions can induce bone regeneration via direct and indirect osteogenesis.


Assuntos
Regeneração Óssea/fisiologia , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Regeneração Óssea/genética , Diferenciação Celular/fisiologia , Masculino , Camundongos , Camundongos SCID , Osteogênese/fisiologia , Engenharia Tecidual , Microtomografia por Raio-X
15.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671863

RESUMO

Spermatogonial stem cell (SSC) transplantation therapy is a promising strategy to renew spermatogenesis for prepubertal boys whose fertility is compromised. However, propagation of SSCs is required due to a limited number of SSCs in cryopreserved testicular tissue. This propagation must be done under xeno-free conditions for clinical application. SSCs were propagated from infant testicular tissue (7 mg and 10 mg) from two boys under xeno-free conditions using human platelet lysate and nutrient source. We verified SSC-like cell clusters (SSCLCs) by quantitative real-time polymerase chain reaction (PCR) and immune-reaction assay using the SSC markers undifferentiated embryonic cell transcription factor 1 (UTF1), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), GDNF receptor alpha-1 (GFRα-1) Fα and promyelocytic leukaemia zinc finger protein (PLZF). The functionality of the propagated SSCs was investigated by pre-labelling using green fluorescent Cell Linker PKH67 and xeno-transplantation of the SSCLCs into busulfan-treated, therefore sterile, immunodeficient mice. SSC-like cell clusters (SSCLCs) appeared after 2 weeks in primary passage. The SSCLCs were SSC-like as the UTF1, UCHL1, GFRα1 and PLZF were all positive. After 2.5 months' culture period, a total of 13 million cells from one sample were harvested for xenotransplantation. Labelled human propagated SSCs were identified and verified in mouse seminiferous tubules at 3-6 weeks, confirming that the transplanted cells contain SSCLCs. The present xeno-free clinical culture protocol allows propagation of SSCs from infant boys.


Assuntos
Reprodução/fisiologia , Espermatogênese/fisiologia , Espermatogônias/fisiologia , Células-Tronco/fisiologia , Animais , Bussulfano , Criopreservação , Expressão Gênica , Células Germinativas/citologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Lactente , Masculino , Homens , Camundongos , Camundongos Nus , Proteínas Nucleares/metabolismo , Compostos Orgânicos , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Túbulos Seminíferos/metabolismo , Espermatogônias/citologia , Células-Tronco/citologia , Testículo/citologia , Testículo/metabolismo , Transativadores/metabolismo , Transplante Heterólogo , Ubiquitina Tiolesterase/metabolismo
16.
Biochem Biophys Res Commun ; 503(4): 3128-3133, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30166060

RESUMO

INTRODUCTION: Reconstruction of respiratory epithelium is critical for the fabrication of bioengineered airway implants. Epithelial differentiation is typically achieved using bovine pituitary extract (BPE). Due to the xenogenic nature and undefined composition of BPE, an alternative for human clinical applications, devoid of BPE, must be developed. The goal of this study was to develop two different BPE-free media, with and without select pituitary hormone (PH), which could initiate epithelial differentiation for use in human implantation. METHODS: The ability of the two BPE-free media to initiate epithelial differentiation of adherent, non-expanded stromal-vascular cells grown on porcine small intestinal submucosa was compared to traditional BPE-containing media (M1). Nanostring® was used to measure differences in gene expression of stemness (MSC), basal cell (basal), and ciliated markers (muco-cil), and staining was performed support the gene data. RESULTS: Compared to baseline, both BPE-free media upregulated epithelial and stemness genes, however this was to a lower degree than BPE-containing media. In general, the expression of basal cell markers (COL17A1, DSG3, ITGA6, KRT6A, LOXL2) and secreted mucous proteins (PLUNC, MUC5B, SCGB2A1) was upregulated. The gene expression of ciliated markers C9orf24, TUBA3 and DNCL2B but not of the key transcription factor for cilagenesis FOXJ1 were upregulated, indicating that mucus-secreting cell differentiation occurs more rapidly than ciliogenesis. The ability of the adherent stromal vascular cells to upregulate gene expression of both epithelial and stemness markers suggests maintenance of the self-renewal capacity of undifferentiated and/or basal cell-like cells contributing to proliferation and ensuring a persisting source of cells for regenerative medicine applications. CONCLUSION: This study provides the initial step to defining a BPE-free epithelial differentiation medium for clinical translation. Thus, either of the proposed BPE-free medium are viable alternatives to BPE-containing medium for partial epithelial differentiation for human translational applications.


Assuntos
Tecido Adiposo/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Meios de Cultura/farmacologia , Células Epiteliais/citologia , Hormônios Hipofisários/farmacologia , Células Estromais/citologia , Tecido Adiposo/efeitos dos fármacos , Adulto , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/química , Células Epiteliais/efeitos dos fármacos , Feminino , Humanos , Pessoa de Meia-Idade , Hormônios Hipofisários/química , Células Estromais/efeitos dos fármacos
17.
Cytotherapy ; 20(4): 556-563, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29429942

RESUMO

BACKGROUND: Bone Marrow MSCs are an appealing source for several cell-based therapies. Many bioreactors, as the Quantum Cell Expansion System, have been developed to generate a large number of MSCs under Good Manufacturing Practice conditions by using Human Platelet Lysate (HPL). Previously we isolated in the human bone marrow a novel cell population, named Mesodermal Progenitor Cells (MPCs), which we identified as precursors of MSCs. MPCs could represent an important cell source for regenerative medicine applications. As HPL gives rise to a homogeneus MSC population, limiting the harvesting of other cell types, in this study we investigated the efficacy of pooled human AB serum (ABS) to provide clinically relevant numbers of both MSCs and MPCs for regenerative medicine applications by using the Quantum System. METHODS: Bone marrow aspirates were obtained from healthy adult individuals undergoing routine total hip replacement surgery and used to generate primary cultures in the bioreactor. HPL and ABS were tested as supplements to culture medium. Morphological observations, cytofluorimetric analysis, lactate and glucose level assessment were performed. RESULTS: ABS gave rise to both heterogeneous MSC and MPC population. About 95% of cells cultured in HPL showed a fibroblast-like morphology and typical mesenchymal surface markers, but MPCs were scarcely represented. DISCUSSION: The use of ABS appeared to sustain a large scale MSC production, as well as the recovery of a subset of MPCs, and resulted a suitable alternative to HPL in the cell generation based on the Quantum System.


Assuntos
Reatores Biológicos , Coleta de Amostras Sanguíneas/métodos , Células da Medula Óssea/citologia , Técnicas de Cultura de Células/instrumentação , Terapia Baseada em Transplante de Células e Tecidos/métodos , Soro/fisiologia , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/fisiologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Meios de Cultura/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Dados Preliminares , Células-Tronco/citologia , Células-Tronco/fisiologia
18.
Cytotherapy ; 20(4): 576-588, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29496462

RESUMO

BACKGROUND AIMS: In vitro engineered adipose tissue is in great demand to treat lost or damaged soft tissue or to screen for new drugs, among other applications. However, today most attempts depend on the use of animal-derived sera. To pave the way for the application of adipose tissue-engineered products in clinical trials or as reliable and robust in vitro test systems, sera should be completely excluded from the production process. In this study, we aimed to develop an in vitro adipose tissue model in the absence of sera and maintain its function long-term. METHODS: Human adipose tissue-derived stem cells were expanded and characterized in a xeno- and serum-free environment. Adipogenic differentiation was induced using a completely defined medium. Developed adipocytes were maintained in a completely defined maturation medium for additional 28 days. In addition to cell viability and adherence, adipocyte-specific markers such as perilipin A expression or leptin release were evaluated. RESULTS: The defined differentiation medium enhanced cell adherence and lipid accumulation at a significant level compared with the corresponding negative control. The defined maturation medium also significantly supported cell adherence and functional adipocyte maturation during the long-term culture period. CONCLUSIONS: The process described here enables functional adipocyte generation and maintenance without the addition of unknown or animal-derived constituents, achieving an important milestone in the introduction of adipose tissue-engineered products into clinical trials or in vitro screening.


Assuntos
Adipócitos/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Meios de Cultura Livres de Soro/química , Meios de Cultura Livres de Soro/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fatores de Tempo
19.
Cytotherapy ; 19(8): 990-1001, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28566211

RESUMO

BACKGROUND AIMS: Human amniotic mesenchymal stromal cells (hAMSCs) are a potent and attractive stem cell source for use in regenerative medicine. However, the safe uses of therapeutic-grade MSCs are equally as important as the efficiency of MSCs. To provide efficient, clinic-compliant (safe for therapeutic use) MSCs, hAMSC lines that completely eliminate the use of animal products and have been characterized for carcinogenicity and biosafety are required. METHODS: Here, we have efficiently generated 10 hAMSC lines under human umbilical cord blood serum (hUCS)-supplemented medium (xeno-free culture) and fetal bovine serum (FBS)-supplemented medium (standard culture) and investigated carcinogenicity and immunosuppressive properties in the resultant hAMSC lines. All hAMSC lines were examined for efficiency (growth kinetics, cryopreservation, telomere length, phenotypic characterization, differentiation potential), carcinogenicity (proto-oncogene and tumor suppressor gene and epigenomic stability) and safety (immunosuppressive properties). RESULTS: Stem cell characteristics between the xeno-free hAMSC lines and the cell lines generated using the standard culture system showed no differences. Xeno-free hAMSC lines displayed normal growth proliferation potential, morphological, karyotypic, phenotypic differentiation properties and telomere lengths. Additionally, they retained normal immunosuppressive effects. As a marker of carcinogenicity and biosafety, proto-oncogenes expression levels showed no differences in xeno-free hAMSCs, and we detected no SNP mutations on hotspot codons of the P53 tumor suppressor gene and stable epigenomic imprinting in xeno-free hAMSC lines. CONCLUSIONS: Xeno-free hAMSC lines retain essential stem cell characteristics, with a high degree of certainty for meeting biosafety and carcinogenicity standards for a xeno-free system supplemented with allogenic hUCS. The cell lines are suitable and valuable for therapeutic purposes.


Assuntos
Âmnio/citologia , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa/métodos , Animais , Bovinos , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Criopreservação/métodos , Meios de Cultura , Feminino , Regulação da Expressão Gênica , Genes Supressores de Tumor , Impressão Genômica , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/fisiologia , Oncogenes , Gravidez , Proto-Oncogene Mas , Células-Tronco/citologia , Células-Tronco/fisiologia , Telômero
20.
Cytotherapy ; 19(2): 155-169, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28017599

RESUMO

The cell therapy industry is a fast-growing industry targeted toward a myriad of clinical indications. As the cell therapy industry matures and clinical trials hit their pivotal Phase 3 studies, there will be a significant need for scale-up, process validation, and critical raw material quality assurance. Part of the well discussed challenges of upscaling manufacturing processes there is a less discussed issue relating to the availability of raw materials in the needed quality and quantities. The FDA recently noted that over 80% of the 66 investigational new drug (IND) applications for mesenchymal stem cell (MSC) products analyzed described the use of FBS during manufacturing. Accumulated data from the past years show an acceleration in serum consumption by at least 10%-15% annually, which suggests that the global demand for serum may soon exceed the supply. Ongoing concerns of safety issues due to risks of various pathogen contaminations, as well as issues related to the aforementioned serum variability that can affect final product reproducibility, are strong motivators to search for serum substitutes or serum-free media. it is important to note that there are no accepted definitions for most of these terms which leads to misleading's and misunderstandings, where the same term might be defined differently by different vendors, manufacturer, and users. It is the drug developer's responsibility to clarify what the supplied labels mean and to identify the correct questions and audits to ensure quality. The paper reviews the available serum replacements, main components, basic strategies for replacement of serum and suggests definitions.


Assuntos
Técnicas de Cultura de Células/normas , Terapia Baseada em Transplante de Células e Tecidos/normas , Consenso , Meios de Cultura Livres de Soro/normas , Meios de Cultura/química , Meios de Cultura/normas , Técnicas de Cultura de Células/métodos , Humanos , Células-Tronco Mesenquimais/citologia , Reprodutibilidade dos Testes , Soro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA