Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 80(1): 72-86.e7, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910895

RESUMO

Membrane protein biogenesis faces the challenge of chaperoning hydrophobic transmembrane helices for faithful membrane insertion. The guided entry of tail-anchored proteins (GET) pathway targets and inserts tail-anchored (TA) proteins into the endoplasmic reticulum (ER) membrane with an insertase (yeast Get1/Get2 or mammalian WRB/CAML) that captures the TA from a cytoplasmic chaperone (Get3 or TRC40, respectively). Here, we present cryo-electron microscopy reconstructions, native mass spectrometry, and structure-based mutagenesis of human WRB/CAML/TRC40 and yeast Get1/Get2/Get3 complexes. Get3 binding to the membrane insertase supports heterotetramer formation, and phosphatidylinositol binding at the heterotetramer interface stabilizes the insertase for efficient TA insertion in vivo. We identify a Get2/CAML cytoplasmic helix that forms a "gating" interaction with Get3/TRC40 important for TA insertion. Structural homology with YidC and the ER membrane protein complex (EMC) implicates an evolutionarily conserved insertion mechanism for divergent substrates utilizing a hydrophilic groove. Thus, we provide a detailed structural and mechanistic framework to understand TA membrane insertion.


Assuntos
Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Complexos Multiproteicos/metabolismo , Linhagem Celular , Sequência Conservada , Evolução Molecular , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfatidilinositóis/metabolismo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Cell Sci ; 136(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37417332

RESUMO

Protein translocases, such as the bacterial SecY complex, the Sec61 complex of the endoplasmic reticulum (ER) and the mitochondrial translocases, facilitate the transport of proteins across membranes. In addition, they catalyze the insertion of integral membrane proteins into the lipid bilayer. Several membrane insertases cooperate with these translocases, thereby promoting the topogenesis, folding and assembly of membrane proteins. Oxa1 and BamA family members serve as core components in the two major classes of membrane insertases. They facilitate the integration of proteins with α-helical transmembrane domains and of ß-barrel proteins into lipid bilayers, respectively. Members of the Oxa1 family were initially found in the internal membranes of bacteria, mitochondria and chloroplasts. Recent studies, however, also identified several Oxa1-type insertases in the ER, where they serve as catalytically active core subunits in the ER membrane protein complex (EMC), the guided entry of tail-anchored (GET) and the GET- and EMC-like (GEL) complex. The outer membrane of bacteria, mitochondria and chloroplasts contain ß-barrel proteins, which are inserted by members of the BamA family. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of these different types of membrane insertases and discuss their function.


Assuntos
Proteínas de Escherichia coli , Proteínas de Membrana Transportadoras , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas/metabolismo , Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo
3.
J Bacteriol ; : e0000424, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171913

RESUMO

Streptococcus pneumoniae (pneumococcus) causes a wide range of important human infectious diseases, including pneumonia, pneumonia-derived sepsis, otitis media, and meningitis. Pneumococcus produces numerous secreted proteins that are critical for normal physiology and pathogenesis. The membrane targeting and translocation of these secreted proteins are partly mediated by the signal recognition particle (SRP) complex, which consists of 4.5S small cytoplasmic RNA (ScRNA), and the Ffh, and FtsY proteins. Here, we report that pneumococcal ∆scRNA, ∆ffh, and ∆ftsY mutants were significantly impaired in competence induction, competence pili production, exogenous DNA uptake, and genetic transformation. Also, the ∆scRNA mutant was significantly attenuated in the mouse models of bacteremia and pneumonia. Interestingly, unlike the ∆scRNA, both ∆ffh and ∆ftsY mutants had growth defects on Todd-Hewitt Agar, which were alleviated by the provision of free amino acids or serum. Differences in nutritional requirements between ∆ffh and ∆ftsY vs ∆scRNA suggest that Ffh and FtsY may be partially functional in the absence of ScRNA. Finally, the insertase YidC2, which could functionally rescue some SRP mutations in other streptococcal species, was not essential for pneumococcal genetic transformation. Collectively, these results indicate that ScRNA is crucial for the successful development of genetic competence and virulence in pneumococcus. IMPORTANCE: Streptococcus pneumoniae (pneumococcus) causes multiple important infectious diseases in humans. The signal recognition particle (SRP) complex, which comprised 4.5S small cytoplasmic RNA (ScRNA), and the Ffh and FtsY proteins, mediates membrane targeting and translocation of secreted proteins in all organisms. However, the role of SRP and ScRNA has not been characterized during the induction of the competence system for genetic transformation and virulence in pneumococcus. By using a combination of genetic, biochemical, proteomic, and imaging approaches, we demonstrated that the SRP complex plays a significant role in membrane targeting of competence system-regulated effectors important for genetic transformation, virulence during bacteremia and pneumonia infections, and nutritional acquisition.

4.
Fish Shellfish Immunol ; : 109863, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39209005

RESUMO

Aeromonas salmonicida is a common pathogenic bacterial species found in both freshwater and marine fish, leading to significant economic losses in the aquaculture industry. YidC is an accessory to SecYEG and is essential for the SecYEG transporter to insert into the bacterial membrane. However, the roles of the yidC gene on the host immune response remain unclear. Here, we compared the pathogenicity of yidC gene-deleted (ΔyidC) strain and wild-type (SRW-OG1) strain of mesophilic A. salmonicida to Orange-spotted grouper (Epinephelus coioides), and explored the impacts of yidC gene on the immune response of E. coioides to mesophilic A. salmonicida infection by using Red/ET recombineering. In this study, the E. coioides in the Secondary infected group had a 53.9% higher survival rate than those in the Primary infected group. In addition, the adhesion ability of ΔyidC strain decreased by about 83.36% compared with that of the wild-type (SRW-OG1) strain. Further comparison of the biological phenotype of SRW-OG1 and ΔyidC revealed that this yidC gene could regulate the expression of genes related to iron metabolism and have no effect on bacterial growth under the limited iron concentration. In the low concentration of Fe3+ and Fe2+ environment, SRW-OG1 can obtain iron ions by regulating yidC. Based on the above results, yidC gene contributed to the pathogenicity of mesophilic A. salmonicida to E. coioides, deletion of yidC gene promoted the inflammation and immune response of E. coioides to mesophilic A. salmonicida infection.

5.
Fish Shellfish Immunol ; 147: 109410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309489

RESUMO

Nocardia seriolae has been identified as the causative agent of fish nocardiosis, resulting in serious economic losses in aquaculture. With an aim to screen potential candidates for vaccine development against N. seriolae, the in vivo-induced genes of N. seriolae in hybrid snakehead (Channa maculate ♀ × Channa argus ♂) model were profiled via in vivo-induced antigen technology (IVIAT) in the present study, and 6 in vivo-induced genes were identified as follows: IS701 family transposase (is701), membrane protein insertase YidC (yidC), ergothioneine biosynthesis glutamate-cysteine ligase (egtA), molybdopterin respectively-dependent oxidoreductase (mol), phosphoketolase family protein (Ppl), hypothetical protein 6747 (hp6747). Additionally, the yidC was inserted into eukaryotic expression vector pcDNA3.1-myc-his-A to construct a DNA vaccine named as pcDNA-YidC to evaluate immunoprotection in hybrid snakehead after artificial challenge with N. serioale. Results showed that the transcription of yidC was detected in spleen, trunk kidney, muscle and liver in vaccinated fish, suggesting that this antigenic gene can be recombinantly expressed in fish. Meanwhile, indexes of humoral immunity were evaluated in the vaccinated fish through assessing specific-antibody IgM and serum enzyme activities, including lysozyme (LZM), superoxide dismutase (SOD), acid phosphatase (ACP) and alkaline phosphatase (AKP). Quantitative real-time PCR analysis indicated that pcDNA-YidC DNA vaccine could notably enhance the expression of immune-related genes (CD4、CD8α、MHCIIα、TNFα、IL-1ß and MHCIα) in 4 tissues (spleen, trunk kidney, muscle and liver) of the vaccinated fish. Finally, an immuno-protection with a relative survival rate of 65.71 % was displayed in vaccinated fish in comparison to the control groups. Taken together, these results indicate that pcDNA-YidC DNA vaccine could boost strong immune responses in hybrid snakehead and show preferably protective efficacy against N. seriolae, indicating that IVIAT is a helpful strategy to screen the highly immunogenic antigens for vaccine development against fish nocardiosis.


Assuntos
Doenças dos Peixes , Nocardiose , Nocardia , Vacinas de DNA , Animais , Peixes
6.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34162707

RESUMO

During synthesis of membrane proteins, transmembrane segments (TMs) of nascent proteins emerging from the ribosome are inserted into the central pore of the translocon (SecYEG in bacteria) and access the phospholipid bilayer through the open lateral gate formed of two helices of SecY. Here we use single-molecule fluorescence resonance energy transfer to monitor lateral-gate fluctuations in SecYEG embedded in nanodiscs containing native membrane phospholipids. We find the lateral gate to be highly dynamic, sampling the whole range of conformations between open and closed even in the absence of ligands, and we suggest a statistical model-free approach to evaluate the ensemble dynamics. Lateral gate fluctuations take place on both short (submillisecond) and long (subsecond) timescales. Ribosome binding and TM insertion do not halt fluctuations but tend to increase sampling of the open state. When YidC, a constituent of the holotranslocon, is bound to SecYEG, TM insertion facilitates substantial opening of the gate, which may aid in the folding of YidC-dependent polytopic membrane proteins. Mutations in lateral gate residues showing in vivo phenotypes change the range of favored states, underscoring the biological significance of lateral gate fluctuations. The results suggest how rapid fluctuations of the lateral gate contribute to the biogenesis of inner-membrane proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Canais de Translocação SEC/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Transferência Ressonante de Energia de Fluorescência , Cinética , Ligantes , Modelos Biológicos , Conformação Proteica , Canais de Translocação SEC/química
7.
J Biol Chem ; 298(3): 101690, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148995

RESUMO

The YidC family of proteins are membrane insertases that catalyze the translocation of the periplasmic domain of membrane proteins via a hydrophilic groove located within the inner leaflet of the membrane. All homologs have a strictly conserved, positively charged residue in the center of this groove. In Bacillus subtilis, the positively charged residue has been proposed to be essential for interacting with negatively charged residues of the substrate, supporting a hypothesis that YidC catalyzes insertion via an early-step electrostatic attraction mechanism. Here, we provide data suggesting that the positively charged residue is important not for its charge but for increasing the hydrophilicity of the groove. We found that the positively charged residue is dispensable for Escherichia coli YidC function when an adjacent residue at position 517 was hydrophilic or aromatic, but was essential when the adjacent residue was apolar. Additionally, solvent accessibility studies support the idea that the conserved positively charged residue functions to keep the top and middle of the groove sufficiently hydrated. Moreover, we demonstrate that both the E. coli and Streptococcus mutans YidC homologs are functional when the strictly conserved arginine is replaced with a negatively charged residue, provided proper stabilization from neighboring residues. These combined results show that the positively charged residue functions to maintain a hydrophilic microenvironment in the groove necessary for the insertase activity, rather than to form electrostatic interactions with the substrates.


Assuntos
Proteínas de Escherichia coli , Proteínas de Membrana Transportadoras , Bacillus subtilis/enzimologia , Membrana Celular/metabolismo , Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Relação Estrutura-Atividade
8.
Trends Biochem Sci ; 43(3): 151-153, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29310909

RESUMO

Oxa1/Alb3/YidC family members promote the insertion of proteins into the mitochondrial inner membrane, the chloroplast thylakoid membrane, and the bacterial plasma membrane. Remarkably, two recent studies identify new Oxa1 homologs that reside in the endoplasmic reticulum (ER) and function in ER membrane protein biogenesis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Proteínas Mitocondriais , Retículo Endoplasmático , Proteínas de Escherichia coli , Proteínas de Membrana Transportadoras , Membranas Mitocondriais , Proteínas Nucleares
9.
BMC Biol ; 19(1): 266, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911545

RESUMO

BACKGROUND: Protein transporters translocate hydrophilic segments of polypeptide across hydrophobic cell membranes. Two protein transporters are ubiquitous and date back to the last universal common ancestor: SecY and YidC. SecY consists of two pseudosymmetric halves, which together form a membrane-spanning protein-conducting channel. YidC is an asymmetric molecule with a protein-conducting hydrophilic groove that partially spans the membrane. Although both transporters mediate insertion of membrane proteins with short translocated domains, only SecY transports secretory proteins and membrane proteins with long translocated domains. The evolutionary origins of these ancient and essential transporters are not known. RESULTS: The features conserved by the two halves of SecY indicate that their common ancestor was an antiparallel homodimeric channel. Structural searches with SecY's halves detect exceptional similarity with YidC homologs. The SecY halves and YidC share a fold comprising a three-helix bundle interrupted by a helical hairpin. In YidC, this hairpin is cytoplasmic and facilitates substrate delivery, whereas in SecY, it is transmembrane and forms the substrate-binding lateral gate helices. In both transporters, the three-helix bundle forms a protein-conducting hydrophilic groove delimited by a conserved hydrophobic residue. Based on these similarities, we propose that SecY originated as a YidC homolog which formed a channel by juxtaposing two hydrophilic grooves in an antiparallel homodimer. We find that archaeal YidC and its eukaryotic descendants use this same dimerisation interface to heterodimerise with a conserved partner. YidC's sufficiency for the function of simple cells is suggested by the results of reductive evolution in mitochondria and plastids, which tend to retain SecY only if they require translocation of large hydrophilic domains. CONCLUSIONS: SecY and YidC share previously unrecognised similarities in sequence, structure, mechanism, and function. Our delineation of a detailed correspondence between these two essential and ancient transporters enables a deeper mechanistic understanding of how each functions. Furthermore, key differences between them help explain how SecY performs its distinctive function in the recognition and translocation of secretory proteins. The unified theory presented here explains the evolution of these features, and thus reconstructs a key step in the origin of cells.


Assuntos
Proteínas de Escherichia coli , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética
10.
J Biol Chem ; 294(50): 19167-19183, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31699901

RESUMO

The SecYEG translocon constitutes the major protein transport channel in bacteria and transfers an enormous variety of different secretory and inner-membrane proteins. The minimal core of the SecYEG translocon consists of three inner-membrane proteins, SecY, SecE, and SecG, which, together with appropriate targeting factors, are sufficient for protein transport in vitro However, in vivo the SecYEG translocon has been shown to associate with multiple partner proteins, likely allowing the SecYEG translocon to process its diverse substrates. To obtain a global view on SecYEG plasticity in Escherichia coli, here we performed a quantitative interaction proteomic analysis, which identified several known SecYEG-interacting proteins, verified the interaction of SecYEG with quality-control proteins, and revealed several previously unknown putative SecYEG-interacting proteins. Surprisingly, we found that the chaperone complex PpiD/YfgM is the most prominent interaction partner of SecYEG. Detailed analyses of the PpiD-SecY interaction by site-directed cross-linking revealed that PpiD and the established SecY partner protein YidC use almost completely-overlapping binding sites on SecY. Both PpiD and YidC contacted the lateral gate, the plug domain, and the periplasmic cavity of SecY. However, quantitative MS and cross-linking analyses revealed that despite having almost identical binding sites, their binding to SecY is noncompetitive. This observation suggests that the SecYEG translocon forms different substrate-independent subassemblies in which SecYEG either associates with YidC or with the PpiD/YfgM complex. In summary, the results of this study indicate that the PpiD/YfgM chaperone complex is a primary interaction partner of the SecYEG translocon.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Peptidilprolil Isomerase/metabolismo , Canais de Translocação SEC/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/deficiência , Peptidilprolil Isomerase/química , Ligação Proteica , Canais de Translocação SEC/química
11.
J Biol Chem ; 294(49): 18898-18908, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31662434

RESUMO

Bacterial membrane proteins are integrated into membranes through the concerted activities of a series of integration factors, including membrane protein integrase (MPIase). However, how MPIase activity is complemented by other integration factors during membrane protein integration is incompletely understood. Here, using inverted inner-membrane vesicle and reconstituted (proteo)liposome preparations from Escherichia coli cells, along with membrane protein integration assays and the PURE system to produce membrane proteins, we found that anti-MPIase IgG inhibits the integration of both the Sec-independent substrate 3L-Pf3 coat and the Sec-dependent substrate MtlA into E. coli membrane vesicles. MPIase-depleted membrane vesicles lacked both 3L-Pf3 coat and MtlA integration, indicating that MPIase is involved in the integration of both proteins. We developed a reconstitution system in which disordered spontaneous integration was precluded, which revealed that SecYEG, YidC, or both, are not sufficient for Sec-dependent and -independent integration. Although YidC had no effect on MPIase-dependent integration of Sec-independent substrates in the conventional assay system, YidC significantly accelerated the integration when the substrate amounts were increased in our PURE system-based assay. Similar acceleration by YidC was observed for MtlA integration. YidC mutants with amino acid substitutions in the hydrophilic cavity inside the membrane were defective in the acceleration of the Sec-independent integration. Of note, MPIase was up-regulated upon YidC depletion. These results indicate that YidC accelerates the MPIase-dependent integration of membrane proteins, suggesting that MPIase and YidC function sequentially and cooperatively during the catalytic cycle of membrane protein integration.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Lipossomos/metabolismo
12.
Subcell Biochem ; 92: 337-366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214992

RESUMO

The inner membrane of Gram-negative bacteria is a ~6 nm thick phospholipid bilayer. It forms a semi-permeable barrier between the cytoplasm and periplasm allowing only regulated export and import of ions, sugar polymers, DNA and proteins. Inner membrane proteins, embedded via hydrophobic transmembrane α-helices, play an essential role in this regulated trafficking: they mediate insertion into the membrane (insertases) or complete crossing of the membrane (translocases) or both. The Gram-negative inner membrane is equipped with a variety of different insertases and translocases. Many of them are specialized, taking care of the export of only a few protein substrates, while others have more general roles. Here, we focus on the three general export/insertion pathways, the secretory (Sec) pathway, YidC and the twin-arginine translocation (TAT) pathway, focusing closely on the Escherichia coli (E. coli) paradigm. We only briefly mention dedicated export pathways found in different Gram-negative bacteria. The Sec system deals with the majority of exported proteins and functions both as a translocase for secretory proteins and an insertase for membrane proteins. The insertase YidC assists the Sec system or operates independently on membrane protein clients. Sec and YidC, in common with most export pathways, require their protein clients to be in soluble non-folded states to fit through the translocation channels and grooves. The TAT pathway is an exception, as it translocates folded proteins, some loaded with prosthetic groups.


Assuntos
Membrana Celular/enzimologia , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Canais de Translocação SEC/metabolismo , Sistema de Translocação de Argininas Geminadas/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Transporte Proteico
13.
J Bacteriol ; 201(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30322852

RESUMO

Proper envelope biogenesis of Streptococcus mutans, a biofilm-forming and dental caries-causing oral pathogen, requires two paralogs (yidC1 and yidC2) of the universally conserved YidC/Oxa1/Alb3 family of membrane integral chaperones and insertases. The deletion of either paralog attenuates virulence in vivo, but the mechanisms of disruption remain unclear. Here, we determined whether the deletion of yidC affects cell surface properties, extracellular glucan production, and/or the structural organization of the exopolysaccharide (EPS) matrix and biophysical properties of S. mutans biofilm. Compared to the wild type, the ΔyidC2 mutant lacked staining with fluorescent vancomycin at the division septum, while the ΔyidC1 mutant resembled the wild type. Additionally, the deletion of either yidC1 or yidC2 resulted in less insoluble glucan synthesis but produced more soluble glucans, especially at early and mid-exponential-growth phases. Alteration of glucan synthesis by both mutants yielded biofilms with less dry weight and insoluble EPS. In particular, the deletion of yidC2 resulted in a significant reduction in biofilm biomass and pronounced defects in the spatial organization of the EPS matrix, thus modifying the three-dimensional (3D) biofilm architecture. The defective biofilm harbored smaller bacterial clusters with high cell density and less surrounding EPS than those of the wild type, which was stiffer in compression yet more susceptible to removal by shear. Together, our results indicate that the elimination of either yidC paralog results in changes to the cell envelope and glucan production that ultimately disrupts biofilm development and EPS matrix structure/composition, thereby altering the physical properties of the biofilms and facilitating their removal. YidC proteins, therefore, represent potential therapeutic targets for cariogenic biofilm control.IMPORTANCE YidC proteins are membrane-localized chaperone insertases that are universally conserved in all bacteria and are traditionally studied in the context of membrane protein insertion and assembly. Both YidC paralogs of the cariogenic pathogen Streptococcus mutans are required for proper envelope biogenesis and full virulence, indicating that these proteins may also contribute to optimal biofilm formation in streptococci. Here, we show that the deletion of either yidC results in changes to the structure and physical properties of the EPS matrix produced by S. mutans, ultimately impairing optimal biofilm development, diminishing its mechanical stability, and facilitating its removal. Importantly, the universal conservation of bacterial yidC orthologs, combined with our findings, provide a rationale for YidC as a possible drug target for antibiofilm therapies.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Fenômenos Biofísicos , Parede Celular/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Glucanos/metabolismo , Streptococcus mutans/enzimologia , Proteínas de Bactérias/genética , Matriz Extracelular de Substâncias Poliméricas/química , Deleção de Genes , Glucanos/química , Streptococcus mutans/genética , Streptococcus mutans/crescimento & desenvolvimento
14.
FASEB J ; 32(5): 2411-2421, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29295859

RESUMO

The evolutionarily conserved YidC/Oxa1/Alb3 family of proteins represents a unique membrane protein family that facilitates the insertion, folding, and assembly of a cohort of α-helical membrane proteins in all kingdoms of life, yet its underlying mechanisms remain elusive. We report the crystal structures of the full-length Thermotoga maritima YidC (TmYidC) and the TmYidC periplasmic domain (TmPD) at a resolution of 3.8 and 2.5 Å, respectively. The crystal structure of TmPD reveals a ß-supersandwich fold but with apparently shortened ß strands and different connectivity, as compared to the Escherichia coli YidC (EcYidC) periplasmic domain (EcPD). TmYidC in a detergent-solubilized state also adopts a monomeric form and its conserved core domain, which consists of 2 loosely associated α-helical bundles, assemble a fold similar to that of the other YidC homologues, yet distinct from that of the archaeal YidC-like DUF106 protein. Functional analysis using in vivo photo-crosslinking experiments demonstrates that Pf3 coat protein, a Sec-independent YidC substrate, exits to the lipid bilayer laterally via one of the 2 α-helical bundle interfaces: TM3-TM5. Engineered intramolecular disulfide bonds in TmYidC, in combination with complementation assays, suggest that significant rearrangement of the 2 α-helical bundles at the top of the hydrophilic groove is critical for TmYidC function. These experiments provide a more detailed mechanical insight into YidC-mediated membrane protein biogenesis.-Xin, Y., Zhao, Y., Zheng, J., Zhou, H., Zhang, X. C., Tian, C., Huang, Y. Structure of YidC from Thermotoga maritima and its implications for YidC-mediated membrane protein insertion.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Thermotoga maritima/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
15.
Biochem Biophys Res Commun ; 505(1): 141-145, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241934

RESUMO

YidC/Alb3/Oxa1 family proteins are involved in the insertion and assembly of membrane proteins. The core five transmembrane regions of YidC, which are conserved in the protein family, form a positively charged cavity open to the cytoplasmic side. The cavity plays an important role in membrane protein insertion. In all reported structural studies of YidC, the second cytoplasmic loop (C2 loop) was disordered, limiting the understanding of its role. Here, we determined the crystal structure of YidC including the C2 loop at 2.8 Šresolution with R/Rfree = 21.8/27.5. This structure and subsequent molecular dynamics simulation indicated that the intrinsic flexible C2 loop covered the positively charged cavity. This crystal structure provides the coordinates of the complete core region including the C2 loop, which is valuable for further analyses of YidC.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Domínios Proteicos , Estrutura Secundária de Proteína , Membrana Celular/metabolismo , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica
16.
Proc Natl Acad Sci U S A ; 112(49): 15184-9, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26598701

RESUMO

Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Vitamina K Epóxido Redutases/metabolismo , Animais , Cromossomos Bacterianos , Escherichia coli/genética , Mutação , Ratos , Vitamina K Epóxido Redutases/genética
17.
Proc Natl Acad Sci U S A ; 112(16): 5063-8, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25855636

RESUMO

The recently solved crystal structure of YidC protein suggests that it mediates membrane protein insertion by means of an intramembrane cavity rather than a transmembrane (TM) pore. This concept of protein translocation prompted us to characterize the native, membrane-integrated state of YidC with respect to the hydropathic nature of its TM region. Here, we show that the cavity-forming region of the stage III sporulation protein J (SpoIIIJ), a YidC homolog, is indeed open to the aqueous milieu of the Bacillus subtilis cells and that the overall hydrophilicity of the cavity, along with the presence of an Arg residue on several alternative sites of the cavity surface, is functionally important. We propose that YidC functions as a proteinaceous amphiphile that interacts with newly synthesized membrane proteins and reduces energetic costs of their membrane traversal.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Arginina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Escherichia coli/metabolismo , Etilmaleimida/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana Transportadoras/metabolismo , Estrutura Terciária de Proteína , Água/química
18.
Nano Lett ; 17(7): 4478-4488, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28627175

RESUMO

How complex cytoplasmic membrane proteins insert and fold into cellular membranes is not fully understood. One problem is the lack of suitable approaches that allow investigating the process by which polypeptides insert and fold into membranes. Here, we introduce a method to mechanically unfold and extract a single polytopic α-helical membrane protein, the lactose permease (LacY), from a phospholipid membrane, transport the fully unfolded polypeptide to another membrane and insert and refold the polypeptide into the native structure. Insertion and refolding of LacY is facilitated by the transmembrane chaperone/insertase YidC in the absence of the SecYEG translocon. Insertion into the membrane occurs in a stepwise, stochastic manner employing multiple coexisting pathways to complete the folding process. We anticipate that our approach will provide new means of studying the insertion and folding of membrane proteins and to mechanically reconstitute membrane proteins at high spatial precision and stoichiometric control, thus allowing the functional programming of synthetic and biological membranes.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Proteínas de Transporte de Monossacarídeos/química , Simportadores/química , Membrana Celular/fisiologia , Membranas Artificiais , Modelos Moleculares , Fosfolipídeos/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Transporte Proteico , Estresse Mecânico
19.
Biochem Biophys Res Commun ; 487(2): 477-482, 2017 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-28431927

RESUMO

The F0 c subunit of F0F1 ATPase (F0-c) possesses two membrane-spanning stretches with N- and C-termini exposed to the periplasmic (extracellular) side of the cytoplasmic membrane of E. coli. Although F0-c insertion has been extensively analyzed in vitro by means of protease protection assaying, it is unclear whether such assays allow elucidation of the insertion process faithfully, since the membrane-protected fragment, an index of membrane insertion, is a full-length polypeptide of F0-c, which is the same as the protease-resistant conformation without membrane insertion. We found that the protease-resistant conformation could be discriminated from membrane-insertion by including octyl glucoside on protease digestion. By means of this system, we found that F0-c insertion depends on MPIase, a glycolipozyme involved in membrane insertion, and is stimulated by YidC. In addition, we found that acidic phospholipids PG and CL transform F0-c into a protease-resistant form, while MPIase prevents the acquisition of such a protease-resistant conformation.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Bicamadas Lipídicas/química , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/ultraestrutura , Membrana Celular/química , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Relação Estrutura-Atividade
20.
Biochem J ; 473(19): 3341-54, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27435098

RESUMO

Protein secretion and membrane insertion occur through the ubiquitous Sec machinery. In this system, insertion involves the targeting of translating ribosomes via the signal recognition particle and its cognate receptor to the SecY (bacteria and archaea)/Sec61 (eukaryotes) translocon. A common mechanism then guides nascent transmembrane helices (TMHs) through the Sec complex, mediated by associated membrane insertion factors. In bacteria, the membrane protein 'insertase' YidC ushers TMHs through a lateral gate of SecY to the bilayer. YidC is also thought to incorporate proteins into the membrane independently of SecYEG. Here, we show the bacterial holo-translocon (HTL) - a supercomplex of SecYEG-SecDF-YajC-YidC - is a bona fide resident of the Escherichia coli inner membrane. Moreover, when compared with SecYEG and YidC alone, the HTL is more effective at the insertion and assembly of a wide range of membrane protein substrates, including those hitherto thought to require only YidC.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA