Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125700

RESUMO

Chronic lipid overconsumption, associated with the Western diet, causes excessive cardiac lipid accumulation, insulin resistance, and contractile dysfunction, altogether termed lipotoxic cardiomyopathy (LCM). Existing treatments for LCM are limited. Traditional Chinese Medicine (TCM) has been shown as beneficial in diabetes and its complications. The following compounds-Resveratrol, Quercetin, Berberine, Baicalein, and Isorhamnetin-derived from TCM and often used to treat type 2 diabetes. However, virtually nothing is known about their effects in the lipid-overexposed heart. Lipid-induced insulin resistance was generated in HL-1 cardiomyocytes and adult rat cardiomyocytes by 24 h exposure to high palmitate. Upon simultaneous treatment with each of the TCM compounds, we measured myocellular lipid accumulation, insulin-stimulated fatty acid and glucose uptake, phosphorylation levels of AKT and ERK1/2, plasma membrane appearance of GLUT4 and CD36, and expression of oxidative stress-/inflammation-related genes and contractility. In lipid-overloaded cardiomyocytes, all the selected TCM compounds prevented lipid accumulation. These compounds also preserved insulin-stimulated CD36 and GLUT4 translocation and insulin-stimulated glucose uptake in an Akt-independent manner. Moreover, all the TCM compounds prevented and restored lipid-induced contractile dysfunction. Finally, some (not all) of the TCM compounds inhibited oxidative stress-related SIRT3 expression, and others reduced inflammatory TNFα expression. Their ability to restore CD36 trafficking makes all these TCM compounds attractive natural supplements for LCM treatment.


Assuntos
Medicina Tradicional Chinesa , Miócitos Cardíacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Animais , Ratos , Medicina Tradicional Chinesa/métodos , Resistência à Insulina , Contração Miocárdica/efeitos dos fármacos , Glucose/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Camundongos , Linhagem Celular , Antígenos CD36/metabolismo , Antígenos CD36/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Masculino
2.
Can J Physiol Pharmacol ; 100(12): 1106-1114, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223651

RESUMO

In this study, we wanted to verify whether the effect of insulin on calcium homeostasis depends on the heart's development stage. Using a quantitative 3D confocal microscopy, we tested the effect of a high insulin concentration (100 µU) in freshly cultured ventricular cardiomyocytes from newborn and adult rats. Our results showed that the cytosolic basal level of calcium was higher in newborn cardiomyocytes with no change in the nuclear basal calcium level compared with the adult cardiomyocytes; in addition, insulin induced a slow increase of cytosolic and nuclear calcium in newborn ventricular cardiomyocytes, followed by two phases. However, the first phase of slow cytosolic and nuclear calcium increase was absent in adult rat ventricular cardiomyocytes. Furthermore, the time to the onset of increase of cytosolic and nuclear calcium was longer in newborn cardiomyocytes compared with adults. Moreover, the time to peak of the calcium transient was shorter in newborns than in adult cardiomyocytes. These results demonstrate that insulin differently regulates calcium homeostasis in newborns than in adult cardiomyocytes. Thus, newborn rat cardiomyocytes, commonly used in research as a model for adult cardiomyocytes, should be used with caution when dealing with insulin in normal and disease conditions.


Assuntos
Cálcio , Miócitos Cardíacos , Ratos , Animais , Cálcio/farmacologia , Insulina/farmacologia , Células Cultivadas , Ventrículos do Coração
3.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807195

RESUMO

(1) Background: The exact mechanism(s) underlying pathological changes in a heart in transition to hypertrophy and failure are not yet fully understood. However, alterations in cardiac energy metabolism seem to be an important contributor. We characterized an in vitro model of adrenergic stimulation-induced cardiac hypertrophy for studying metabolic, structural, and functional changes over time. Accordingly, we investigated whether metabolic interventions prevent cardiac structural and functional changes; (2) Methods: Primary rat cardiomyocytes were treated with phenylephrine (PE) for 16 h, 24 h, or 48 h, whereafter hypertrophic marker expression, protein synthesis rate, glucose uptake, and contractile function were assessed; (3) Results: 24 h PE treatment increased expression of hypertrophic markers, phosphorylation of hypertrophy-related signaling kinases, protein synthesis, and glucose uptake. Importantly, the increased glucose uptake preceded structural and functional changes, suggesting a causal role for metabolism in the onset of PE-induced hypertrophy. Indeed, PE treatment in the presence of a PAN-Akt inhibitor or of a GLUT4 inhibitor dipyridamole prevented PE-induced increases in cellular glucose uptake and ameliorated PE-induced contractile alterations; (4) Conclusions: Pharmacological interventions, forcing substrate metabolism away from glucose utilization, improved contractile properties in PE-treated cardiomyocytes, suggesting that targeting glucose uptake, independent from protein synthesis, forms a promising strategy to prevent hypertrophy and hypertrophy-induced cardiac dysfunction.


Assuntos
Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Metabolismo Energético , Glucose/metabolismo , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Fenilefrina/farmacologia , Fosforilação , Ratos , Transdução de Sinais/efeitos dos fármacos
4.
Cell Physiol Biochem ; 54(5): 809-824, 2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32857934

RESUMO

BACKGROUND/AIMS: High-molecular-weight advanced glycation end-products (HMW-AGEs) are abundantly present in our Western diet. There is growing evidence reporting that HMW-AGEs contribute to the development of cardiovascular dysfunction in vivo, next to the well-known low-molecular-weight AGEs. The goal of our study is to assess the ultrastructure and function of cardiomyocytes after chronic exposure to HMW-AGEs. A better understanding of underlying mechanisms is essential to create new opportunities for further research on the specific role of HMW-AGEs in the development and progression of cardiovascular diseases. METHODS: Adult male rats were randomly assigned to daily intraperitoneal injection for six weeks with either HMW-AGEs (20 mg/kg/day) or a control solution. Hemodynamic measurements were performed at sacrifice. Single cardiomyocytes from the left ventricle were obtained by enzymatic dissociation through retrograde perfusion of the aorta. Unloaded cell shortening, time to peak and time to 50% relaxation were measured during field stimulation and normalized to diastolic length. L-type Ca2+ current density (ICaL) and steady-state inactivation of ICaL were measured during whole-cell ruptured patch clamp. Myofilament functional properties were measured in membrane-permeabilized cardiomyocytes. Ultrastructural examination of cardiac tissue was performed using electron microscopy. RESULTS: Rats injected with HMW-AGEs displayed in vivo cardiac dysfunction, characterized by significant changes in left ventricular peak rate pressure rise and decline accompanied with an increased heart mass. Single cardiomyocytes isolated from the left ventricle revealed concentric hypertrophy, indicated by the increase in cellular width. Unloaded fractional cell shortening was significantly reduced in cells derived from the HMW-AGEs group and was associated with slower kinetics. Peak L-type Ca2+ current density was significantly decreased in the HMW-AGEs group.L-type Ca2+ channel availability was significantly shifted towards more negative potentials after HMW-AGEs injection. The impact of HMW-AGEs on myofilament function was measured in membrane-permeabilized cardiomyocytes showing a reduction in passive force, maximal Ca2+ activated force and rate of force development. Ultrastructural examination of cardiac tissue demonstrated adverse structural remodeling in HMW-AGEs group characterized by a disruption of the cyto-architecture, a decreased mitochondrial density and altered mitochondrial function. CONCLUSION: Our data indicate that HMW-AGEs induce structural and functional cellular remodeling via a different working mechanism as the well-known LMW-AGEs. Results of our research open the door for new strategies targeting HMW-AGEs to improve cardiac outcome.


Assuntos
Acetaldeído/análogos & derivados , Produtos Finais de Glicação Avançada/efeitos adversos , Miócitos Cardíacos/efeitos dos fármacos , Acetaldeído/efeitos adversos , Acetaldeído/metabolismo , Animais , Aorta/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Diástole/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Cardiopatias/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Ratos , Ratos Sprague-Dawley , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia
5.
Int J Clin Exp Med ; 8(9): 15514-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26629042

RESUMO

OBJECTIVE: To explore the effect (expression and implication) of hypoxia-inducible factor-1α (HIF-1α) silence induced by siRNA on the myocardial ischemia-reperfusion-induced insulin resistance in adult rats. METHODS: One-step enzymolysis method was used to isolate adult rat cardiomyocytes; adult rat cardiomyocytes were cultured; HIF-1α gene-specific Si-RNA was constructed and transfected into rat cardiomyocytes using liposome method. Myocardial IRI model was prepared. HIF-1α and glucose transporter 4 (GLUT-4) mRNA expression was detected by RT-PCR; distribution of GLUT-4 protein expression in adult rat cardiomyocytes was detected by immunofluorescence; Western blot was used for the detection of HIF-1α protein expression; isotope tracer assay was used to detect the changes in cell glucose (Glu) uptake rate. RESULTS: This method can stably get 85% to 90% active calcium tolerant adult rat cardiac myocytes, and the cultured cells were proved to be cardiomyocytes. After experiencing ischemia-reperfusion injury, HIF-1α mRNA expression levels in adult rat hypoxia cardiomyocytes had different degrees of increase compared with the control group (compared with the control group, P < 0.05). Compared with the model group, HIF-1α mRNA expression levels after ischemia and reperfusion in HIF-1αsi-RNA group and empty-vector group were lower than that in the control group and the model group; the expression reached the peak after 60 min of reperfusion, which did not change significantly in the control group. Expression of HIF-1α protein in myocardial cells was quite low in the control group; in the model group and intervention group, only after hypoxia-ischemia for 60 min, expression bands could be detected; especially in the model group, the expression had been increased until 60 min after reperfusion and began to decline from the time point of 180 min after reperfusion, but was still higher than that in the control group; in the intervention and empty-vector groups, it also increased rapidly at 60 min, but the expression was significantly lower than that in the model group; at 180 min after reperfusion, its protein expression peaked; while at 8 h after reperfusion, all the expression was extremely low. Compared with the control group, Glut4 mRNA expression in model group, transfected group and empty-vector group was reduced at the time points of T1-T4 (P < 0.05); the decline was the most significant at the time points of T1 and T2, followed by slightly increase at T3 and gradual recovery at T4; Compared with model group, Glut4 mRNA expression in transfection group was significantly reduced (P < 0.05); the decline was the most obvious at T1-T2, and then there was an increasing trend and it was recovered at T5 point. After experiencing ischemia, GLUT-4 protein expression changing trend was as follows: it was significantly reduced on the cell membrane, which was the most obvious from T1 to T3 and began to improve at T3, but still had not reached the level in the control group; it had been reached the levels of the control group at T5. After HIF-1αsi-RNA transfection and ischemia, GLUT-4 protein expression was increased in plasma and reduced on cell membrane; the decline was slightly improved at T3 and recovered to control distribution level at T5. After cardiac ischemia-reperfusion, glucose uptake rate decreased to varying degrees in myocardial cells and reached the lowest value after 60 min of ischemia, then gradually increased. After 8 h of reperfusion, the level in model group returned to the control level; compared with the model group, glucose concentration increased more serious in transfection group and empty-vector group after reperfusion. CONCLUSION: HIF-1α played a central regulatory role in this mechanism; HIF-1α may be one of the molecular mechanisms triggering myocardial IR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA