Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499070

RESUMO

Carboxymethyl-dextran (CMD)-coated iron oxide nanoparticles (IONs) are of great interest in nanomedicine, especially for applications in drug delivery. To develop a magnetically controlled drug delivery system, many factors must be considered, including the composition, surface properties, size and agglomeration, magnetization, cytocompatibility, and drug activity. This study reveals how the CMD coating thickness can influence these particle properties. ION@CMD are synthesized by co-precipitation. A higher quantity of CMD leads to a thicker coating and a reduced superparamagnetic core size with decreasing magnetization. Above 12.5−25.0 g L−1 of CMD, the particles are colloidally stable. All the particles show hydrodynamic diameters < 100 nm and a good cell viability in contact with smooth muscle cells, fulfilling two of the most critical characteristics of drug delivery systems. New insights into the significant impact of agglomeration on the magnetophoretic behavior are shown. Remarkable drug loadings (62%) with the antimicrobial peptide lasioglossin and an excellent efficiency (82.3%) were obtained by covalent coupling with the EDC/NHS (N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide) method in comparison with the adsorption method (24% drug loading, 28% efficiency). The systems showed high antimicrobial activity with a minimal inhibitory concentration of 1.13 µM (adsorption) and 1.70 µM (covalent). This system successfully combines an antimicrobial peptide with a magnetically controllable drug carrier.


Assuntos
Dextranos , Nanopartículas de Magnetita , Dextranos/química , Nanopartículas de Magnetita/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos , Tamanho da Partícula
2.
Colloids Surf B Biointerfaces ; 228: 113428, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37379701

RESUMO

Coated iron oxide nanoparticles (IONs) are promising candidates for various applications in nanomedicine, including imaging, magnetic hyperthermia, and drug delivery. The application of IONs in nanomedicine is influenced by factors such as biocompatibility, surface properties, agglomeration, degradation behavior, and thrombogenicity. Therefore, it is essential to investigate the effects of coating material and thickness on the behavior and performance of IONs in the human body. In this study, IONs with a carboxymethyl dextran (CMD) coating and two thicknesses of silica coating (TEOS0.98, and TEOS3.91) were screened and compared to bare iron oxide nanoparticles (BIONs). All three coated particles showed good cytocompatibility (>70%) when tested with smooth muscle cells over three days. To investigate their potential long term behavior inside the human body, the Fe2+ release and hydrodynamic diameters of silica-coated and CMD (carboxymethyl dextrane)-coated IONs were analyzed in simulated body fluids for 72 h at 37 °C. The ION@CMD showed moderate agglomeration of around 100 nm in all four simulated fluids and dissolved faster than the silica-coated particles in artificial exosomal fluid and artificial lysosomal fluid. The particles with silica coating agglomerated in all tested simulated media above 1000 nm. Increased thickness of the silica coating led to decreased degradation of particles. Additionally, CMD coating resulted in nanoparticles with the least prothrombotic activity, and the thick silica coating apparently decreased the prothrombotic properties of nanoparticles compared to BIONs and ION@TEOS0.98. For magnetic resonance applications, ION@CMD and ION@TEOS3.91 showed comparatively high relaxation rates R2 values. In magnetic particle imaging experiments ION@TEOS3.91 yielded the highest normalized signal to noise ratio values and in magnetic hyperthermia studies, ION@CMD and ION@TEOS0.98 showed similar specific loss power. These findings demonstrate the potential of coated IONs in nanomedicine and emphasize the importance of understanding the effect of coating material and thickness on their behavior and performance in the human body.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Humanos , Dióxido de Silício , Tamanho da Partícula , Nanopartículas Magnéticas de Óxido de Ferro , Íons
3.
Pharmaceuticals (Basel) ; 14(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923229

RESUMO

New drug delivery systems are a potential solution for administering drugs to reduce common side effects of traditional methods, such as in cancer therapy. Iron oxide nanoparticles (IONs) can increase the drugs' biological activity through high binding efficiency and magnetically targeted drug delivery. Understanding the adsorption and release process of a drug to the carrier material plays a significant role in research to generate an applicable and controlled drug delivery system. This contribution focuses on the binding patterns of the peptide lasioglossin III from bee venom on bare IONs. Lasioglossin has a high antimicrobial behavior and due to its cationic properties, it has high binding potential. Considering the influence of pH, the buffer type, the particle concentration, and time, the highest drug loading of 22.7% is achieved in phosphate-buffered saline. Analysis of the desorption conditions revealed temperature and salt concentration sensitivity. The nanoparticles and peptide-ION complexes are analyzed with dynamic light scattering, zeta potential, and infrared spectroscopy. Additionally, cytotoxicity experiments performed on Escherichia coli show higher antimicrobial activity of bound lasioglossin than of the free peptide. Therefore, bare IONs are an interesting platform material for the development of drug-delivery carriers for cationic peptides.

4.
Colloids Surf B Biointerfaces ; 178: 479-487, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30925371

RESUMO

Continuing efforts to develop stimuli-responsive polymers (SRPs) as novel smart materials/biomaterials are anticipated to upgrade the quality life of humans. The details of the molecular, physico chemical and biophysical interactions between SRPs and proteins are not fully understood. Indeed, protein - polymer interactions play a major role in a wide range of biomedical/biomaterial applications. In this regard, we have demonstrated the influence of proteins (ß-lactoglobulin (BLG) and stem bromelain (BM) as biological stimuli) on the phase transition behavior of biomedical thermoresponsive poly(N-isopropylacrylamide) (PNIPAM). In order to predict these, we have used a set of biophysical techniques to unveil the influence of biological stimuli on the phase transition behavior of PNIPAM. Absorption spectroscopy, steady-state fluorescence spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) were operated at room temperature to examine the changes in absorbance, fluorescence intensity, molecular interactions and surface morphologies, respectively. Furthermore, temperature dependent fluorescence spectroscopy and dynamic light scattering (DLS) studies were also performed to analyze conformational changes, agglomeration behavior, particle size, coil to globule transition and phase behavior. The significant variations obtained in the phase transition temperature values, conformational changes and agglomeration behavior clearly reflects the different molecular interplay induced in presence of biological stimuli. The results demonstrated that the added proteins act as biological stimuli via preferential interactions between the amide group of the polymer and water molecules. The present study can be useful for the design and development of the next generation smart responsive materials/biomaterials.


Assuntos
Polímeros/química , Bromelaínas/química , Difusão Dinâmica da Luz , Lactoglobulinas/química , Microscopia Eletroquímica de Varredura , Transição de Fase , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Temperatura de Transição
5.
Nanomaterials (Basel) ; 8(7)2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986430

RESUMO

Monitoring of low levels of chlorsulfuron in environmental water samples is important. Although several detection methods have been developed, they all have some drawbacks, such as being time-consuming, requiring expensive instruments and experienced operators, and consuming large volumes of organic solvents. There is an urgent need for a simple, rapid, and inexpensive detection method for chlorsulfuron. Herein, such a method was developed using anti-aggregation of gold nanoparticles (AuNPs) in the presence of acetamiprid in agricultural irrigation water samples. Aggregation of the AuNPs was induced by acetamiprid, and this produced a distinct color change from Bordeaux red to blue. However, the strong hydrogen bonding interaction between chlorsulfuron and acetamiprid could inhibit AuNP aggregation. The effect of chlorsulfuron on the anti-agglomeration behavior of AuNPs was monitored by ultraviolet⁻visiblespectroscopy (UV-Vis) and the naked eye over a concentration range 0.1⁻100 mg/L. The detection limit for chlorsulfuron was 0.025 mg/L (signal-to-noise ratio of three). This colorimetric method was successfully applied to the determination of chlorsulfuron in spiked tap water and agricultural irrigation water with satisfactory recoveries (76.3%⁻94.2%).

6.
Sci Total Environ ; 521-522: 183-90, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25835376

RESUMO

Once released into the aquatic environment, nanoparticles (NPs) are expected to interact (e.g., dissolve, agglomerate, settle), with important consequences for particle fate and toxicity. However, a clear understanding of how environmental factors influence the toxicity and fate of NPs in the environment is still in its infancy. In this study, a second order central composite circumscribed design (CCCD) was employed to systematically explore how different combinations of pH, hardness, and natural organic matter (NOM) in receiving water affect the hydrodynamic diameter, surface charge (zeta potential), and release of free Cu(2+) from CuO-NPs under a range of environmentally realistic conditions. The results clearly showed that all three CuO-NP properties varied markedly as functions of pH, hardness and dissolved NOM, confirming that agglomeration and the extent of release of free Cu(2+) largely depend on the surrounding environmental conditions. The response of hydrodynamic diameter, but not zeta potential, to water quality parameters was highly time dependent, showing very different patterns on day 2 and day 10. The approach used in this study can contribute to improving understanding of how, and to what extent, environmental factors affect the physicochemical properties of CuO-NPs once they enter aquatic environments. This understanding can help to predict the conditions under which CuO-NPs are likely to become problematic, which can inform management and mitigation actions.


Assuntos
Cobre/química , Nanopartículas Metálicas/química , Modelos Químicos , Cobre/análise , Nanopartículas Metálicas/análise , Solubilidade , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA