Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(15): e2217372120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37014861

RESUMO

Historically, those ecological communities thought to be dominated by competitive interactions among their component species have been assumed to exhibit transitive competition, that is, a hierarchy of competitive strength from most dominant to most submissive. A surge of recent literature takes issue with this assumption and notes that some species in some communities are intransitive, where a rock/scissors/paper arrangement characterizes some components of some communities. We here propose a merging of these two ideas, wherein an intransitive subgroup of species connects with a distinct subcomponent that is organized hierarchically, such that the expected eventual takeover by the dominant competitor in the hierarchy is thwarted, and the entire community can be sustained. This means that the combination of transitive and intransitive structures can maintain many species even when competition is strong. Here, we develop this theoretical framework using a simple variant on the Lotka-Volterra competition equations to illustrate the process. We also present data for the ant community in a coffee agroecosystem in Puerto Rico, that appears to be organized in this way. A detailed study on one typical coffee farm illustrates an intransitive loop of three species that seems to maintain a distinct competitive community of at least 13 additional species.

2.
New Phytol ; 242(4): 1798-1813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38155454

RESUMO

It is well understood that agricultural management influences arbuscular mycorrhizal (AM) fungi, but there is controversy about whether farmers should manage for AM symbiosis. We assessed AM fungal communities colonizing wheat roots for three consecutive years in a long-term (> 14 yr) tillage and fertilization experiment. Relationships among mycorrhizas, crop performance, and soil ecosystem functions were quantified. Tillage, fertilizers and continuous monoculture all reduced AM fungal richness and shifted community composition toward dominance of a few ruderal taxa. Rhizophagus and Dominikia were depressed by tillage and/or fertilization, and their abundances as well as AM fungal richness correlated positively with soil aggregate stability and nutrient cycling functions across all or no-tilled samples. In the field, wheat yield was unrelated to AM fungal abundance and correlated negatively with AM fungal richness. In a complementary glasshouse study, wheat biomass was enhanced by soil inoculum from unfertilized, no-till plots while neutral to depressed growth was observed in wheat inoculated with soils from fertilized and conventionally tilled plots. This study demonstrates contrasting impacts of low-input and conventional agricultural practices on AM symbiosis and highlights the importance of considering both crop yield and soil ecosystem functions when managing mycorrhizas for more sustainable agroecosystems.


Assuntos
Produtos Agrícolas , Ecossistema , Fertilizantes , Micorrizas , Microbiologia do Solo , Solo , Triticum , Micorrizas/fisiologia , Solo/química , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Biomassa , Raízes de Plantas/microbiologia , Fatores de Tempo , Biodiversidade
3.
Glob Chang Biol ; 30(6): e17380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38925582

RESUMO

Bumble bees are integral pollinators of native and cultivated plant communities, but species are undergoing significant changes in range and abundance on a global scale. Climate change and land cover alteration are key drivers in pollinator declines; however, limited research has evaluated the cumulative effects of these factors on bumble bee assemblages. This study tests bumble bee assemblage (calculated as richness and abundance) responses to climate and land use by modeling species-specific habitat requirements, and assemblage-level responses across geographic regions. We integrated species richness, abundance, and distribution data for 18 bumble bee species with site-specific bioclimatic, landscape composition, and landscape configuration data to evaluate the effects of multiple environmental stressors on bumble bee assemblages throughout 433 agricultural fields in Florida, Indiana, Kansas, Kentucky, Maryland, South Carolina, Utah, Virginia, and West Virginia from 2018 to 2020. Distinct east versus west groupings emerged when evaluating species-specific habitat associations, prompting a detailed evaluation of bumble bee assemblages by geographic region. Maximum temperature of warmest month and precipitation of driest month had a positive impact on bumble bee assemblages in the Corn Belt/Appalachian/northeast, southeast, and northern plains regions, but a negative impact on the mountain region. Further, forest land cover surrounding agricultural fields was highlighted as supporting more rich and abundant bumble bee assemblages. Overall, climate and land use combine to drive bumble bee assemblages, but how those processes operate is idiosyncratic and spatially contingent across regions. From these findings, we suggested regionally specific management practices to best support rich and abundant bumble bee assemblages in agroecosystems. Results from this study contribute to a better understanding of climate and landscape factors affecting bumble bees and their habitats throughout the United States.


Assuntos
Mudança Climática , Ecossistema , Animais , Abelhas/fisiologia , Estados Unidos , Biodiversidade , Agricultura , Polinização
4.
Ecol Appl ; 34(3): e2956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426805

RESUMO

Gastrointestinal helminth parasites undergo part of their life cycle outside their host, such that developmental stages interact with the soil and dung fauna. These interactions are capable of affecting parasite transmission on pastures yet are generally ignored in current models, empirical studies and practical management. Dominant methods of parasite control, which rely on anthelmintic medications for livestock, are becoming increasingly ineffective due to the emergence of drug-resistant parasite populations. Furthermore, consumer and regulatory pressure on decreased chemical use in agriculture and the consequential disruption of biological processes in the dung through nontarget effects exacerbates issues with anthelmintic reliance. This presents a need for the application and enhancement of nature-based solutions and biocontrol methods. However, successfully harnessing these options relies on advanced understanding of the ecological system and interacting effects among biotic factors and with immature parasite stages. Here, we develop a framework linking three key groups of dung and soil fauna-fungi, earthworms, and dung beetles-with each other and developmental stages of helminths parasitic in farmed cattle, sheep, and goats in temperate grazing systems. We populate this framework from existing published studies and highlight the interplay between faunal groups and documented ecological outcomes. Of 1756 papers addressing abiotic drivers of populations of these organisms and helminth parasites, only 112 considered interactions between taxa and 36 presented data on interactions between more than two taxonomic groups. Results suggest that fungi reduce parasite abundance and earthworms may enhance fungal communities, while competition between dung taxa may reduce their individual effect on parasite transmission. Dung beetles were found to impact fungal populations and parasite transmission variably, possibly tied to the prevailing climate within a specific ecological context. By exploring combinations of biotic factors, we consider how interactions between species may be fundamental to the ecological consequences of biocontrol strategies and nontarget impacts of anthelmintics on dung and soil fauna and how pasture management alterations to promote invertebrates might help limit parasite transmission. With further development and parameterization the framework could be applied quantitatively to guide, prioritize, and interpret hypothesis-driven experiments and integrate biotic factors into established models of parasite transmission dynamics.


Assuntos
Anti-Helmínticos , Besouros , Parasitos , Animais , Bovinos , Ovinos , Solo/química , Fezes , Ruminantes
5.
Naturwissenschaften ; 111(2): 17, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498200

RESUMO

Modern agricultural practices are suspected to play a major role in the ongoing erosion of biodiversity. In order to assess whether this biodiversity loss is linked to past habitat modifications (e.g. land consolidation) or to current consequences of modern agriculture (e.g. use of agrochemicals), it remains essential to monitor species that have persisted in agricultural landscapes to date. In this study, we assessed the presence, abundance and recent population trends of one such species, the spined toad (Bufo spinosus) along a gradient of habitats from preserved (forests) to highly agricultural sites in rural Western France. Our results showed that both presence and abundance of spined toads were markedly lower in reproductive ponds surrounded by intensive agriculture. The most salient result of our study is the ongoing decline of this species in farmland habitats. Indeed, this result suggests that unknown factors are currently affecting a widespread terrestrial amphibian previously thought to persist in agricultural landscapes. These factors have recently induced strong population declines over the course of a few years. Future investigations are required to identify these factors at a time when anthropogenic activities are currently leading to unprecedented rates of biodiversity loss.


Assuntos
Agricultura , Ecossistema , Animais , Biodiversidade , Florestas , Anuros
6.
J Environ Manage ; 362: 121219, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838532

RESUMO

At least 87% of angiosperm species require animal vectors for their reproduction, while more than two-thirds of major global food crops depend on zoogamous pollination. Pollinator insects are a wide variety of organisms that require diverse biotic and abiotic resources. Many factors have contributed to a serious decrease in the abundance of populations and diversity of pollinator species over the years. This decline is alarming, and the European Union has taken several actions aimed at counteracting it by issuing new conservation policies and standardizing the actions of member countries. In 2019, the European Green Deal was presented, aiming to restore 100% of Europe's degraded land by 2050 through financial and legislative instruments. Moreover, the Common Agricultural Policies have entailed greening measures for the conservation of habitats and beneficial species for more than 10 years. The new CAP (CAP 23-27) reinforces conservation objectives through strategic plans based on eco-schemes defined at the national level by the member countries, and some states have specifically defined eco-schemes for pollinator conservation. Here, we review the framework of EU policies, directives, and regulations, which include measures aimed at protecting pollinators in agricultural, urban, and peri-urban environments. Moreover, we reviewed the literature reporting experimental works on the environmental amelioration for pollinators, particularly those where CAP measures were implemented and evaluated, as well as studies conducted in urban areas. Among CAP measures, several experimental works have considered the sowing and management of entomophilous plants and reported results important for environmental ameliorations. Some urban, peri-urban and wasteland areas have been reported to host a considerable number of pollinators, especially wild bees, and despite the lack of specific directives, their potential to contribute to pollinator conservation could be enhanced through targeted actions, as highlighted by some studies.


Assuntos
Conservação dos Recursos Naturais , Polinização , Europa (Continente) , Animais , Ecossistema , Agricultura , Política , Insetos , União Europeia
7.
Annu Rev Entomol ; 68: 13-29, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36130040

RESUMO

Conservation biological control aims to enhance populations of natural enemies of insect pests in crop habitats, typically by intentional provision of flowering plants as food resources. Ideally, these flowering plants should be inherently attractive to natural enemies to ensure that they are frequently visited. We review the chemical ecology of floral resources in a conservation biological control context, with a focus on insect parasitoids. We highlight the role of floral volatiles as semiochemicals that attract parasitoids to the food resources. The discovery that nectar-inhabiting microbes can be hidden players in mediating parasitoid responses to flowering plants has highlighted the complexity of the interactions between plants and parasitoids. Furthermore, because food webs in agroecosystems do not generally stop at the third trophic level, we also consider responses of hyperparasitoids to floral resources. We thus provide an overview of floral compounds as semiochemicals from a multitrophic perspective, and we focus on the remaining questions that need to be addressed to move the field forward.


Assuntos
Vespas , Animais , Vespas/fisiologia , Ecologia , Cadeia Alimentar , Insetos/fisiologia , Ecossistema
8.
Proc Biol Sci ; 290(2000): 20230897, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37282535

RESUMO

Modern agriculture has drastically changed global landscapes and introduced pressures on wildlife populations. Policy and management of agricultural systems has changed over the last 30 years, a period characterized not only by intensive agricultural practices but also by an increasing push towards sustainability. It is crucial that we understand the long-term consequences of agriculture on beneficial invertebrates and assess if policy and management approaches recently introduced are supporting their recovery. In this study, we use large citizen science datasets to derive trends in invertebrate occupancy in Great Britain between 1990 and 2019. We compare these trends between regions of no- (0%), low- (greater than 0-50%) and high-cropland (greater than 50%) cover, which includes arable and horticultural crops. Although we detect general declines, invertebrate groups are declining most strongly in high-cropland cover regions. This suggests that even in the light of improved policy and management over the last 30 years, the way we are managing cropland is failing to conserve and restore invertebrate communities. New policy-based drivers and incentives are required to support the resilience and sustainability of agricultural ecosystems. Post-Brexit changes in UK agricultural policy and reforms under the Environment Act offer opportunities to improve agricultural landscapes for the benefit of biodiversity and society.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , União Europeia , Reino Unido , Biodiversidade , Agricultura , Invertebrados , Produtos Agrícolas
9.
Glob Chang Biol ; 29(8): 2203-2226, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36607175

RESUMO

Although soil ecological stoichiometry is constrained in natural ecosystems, its responses to anthropogenic perturbations are largely unknown. Inputs of inorganic fertilizer and crop residue are key cropland anthropogenic managements, with potential to alter their soil ecological stoichiometry. We conducted a global synthesis of 682 data pairs to quantify the responses of soil carbon (C), nitrogen (N), and phosphorus (P) and grain yields to combined inputs of crop residue plus inorganic fertilizer compared with only inorganic fertilizer application. Crop residue inputs enhance soil C (10.5%-12%), N (7.63%-9.2%), and P (2.62%-5.13%) contents, with an increase in C:N (2.51%-3.42%) and C:P (7.27%-8.00%) ratios, and grain yields (6.12%-8.64%), indicating that crop residue alleviated soil C limitation caused by inorganic fertilizer inputs alone and was able to sustain balanced stoichiometry. Moreover, the increase in soil C and C:N(P) ratio reached saturation in ~13-16 years after crop residue return, while grain yield increase trend discontinued. Furthermore, we identified that the increased C, N, and P contents and C:N(P) ratios were regulated by the initial pH and C content, and the increase in grain yield was not only related to soil properties, but also negatively related to the amount of inorganic N fertilizer input to a greater extent. Given that crop residual improvement varies with soil properties and N input levels, we propose a predictive model to preliminary evaluate the potential for crop residual improvement. Particularly, we suggest that part of the global budget should be used to subsidize crop residue input management strategies, achieving to a win-win situation for agricultural production, ecological protection, and climate change mitigation.


Assuntos
Fertilizantes , Solo , Solo/química , Ecossistema , Agricultura , Nitrogênio/análise , Carbono
10.
Glob Chang Biol ; 29(11): 3177-3192, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36897740

RESUMO

Organic carbon and aggregate stability are key features of soil quality and are important to consider when evaluating the potential of agricultural soils as carbon sinks. However, we lack a comprehensive understanding of how soil organic carbon (SOC) and aggregate stability respond to agricultural management across wide environmental gradients. Here, we assessed the impact of climatic factors, soil properties and agricultural management (including land use, crop cover, crop diversity, organic fertilization, and management intensity) on SOC and the mean weight diameter of soil aggregates, commonly used as an indicator for soil aggregate stability, across a 3000 km European gradient. Soil aggregate stability (-56%) and SOC stocks (-35%) in the topsoil (20 cm) were lower in croplands compared with neighboring grassland sites (uncropped sites with perennial vegetation and little or no external inputs). Land use and aridity were strong drivers of soil aggregation explaining 33% and 20% of the variation, respectively. SOC stocks were best explained by calcium content (20% of explained variation) followed by aridity (15%) and mean annual temperature (10%). We also found a threshold-like pattern for SOC stocks and aggregate stability in response to aridity, with lower values at sites with higher aridity. The impact of crop management on aggregate stability and SOC stocks appeared to be regulated by these thresholds, with more pronounced positive effects of crop diversity and more severe negative effects of crop management intensity in nondryland compared with dryland regions. We link the higher sensitivity of SOC stocks and aggregate stability in nondryland regions to a higher climatic potential for aggregate-mediated SOC stabilization. The presented findings are relevant for improving predictions of management effects on soil structure and C storage and highlight the need for site-specific agri-environmental policies to improve soil quality and C sequestration.


Assuntos
Carbono , Solo , Solo/química , Agricultura , Sequestro de Carbono
11.
Ecol Appl ; 33(2): e2801, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36546604

RESUMO

Agricultural expansion and intensification are major drivers of global change. Quantifying the importance of different processes governing the assembly of local communities in agroecosystems is essential to guide the conservation effort allocated to enhancing habitat connectivity, improving habitat quality or managing species interactions. We used multiple detection methods to record the occurrence of medium-sized and large-sized mammals in three managed landscapes of a heterogeneous Mediterranean region. Then we used a joint species distribution model to evaluate the relative influence of dispersal limitation, environmental filtering, and interspecific interactions on the local assembly of mammal communities in 4-km2 plots. The partitioning of the explained variation in species occurrence was attributed on average 99% to environmental filters and 1% to dispersal filters. No role was attributed to biotic filters, in agreement with the scarce support for strong competition or other negative interactions found after a literature review. Four principal environmental factors explained on average 63% of variance in species occurrence and operated mainly at the landscape scale. The amount of shrub cover in the neighboring landscape was the most influential factor favoring mammal occurrence and accounted for nearly one-third of the total variance. The proportion of intensively managed croplands and proxies of human activity within landscape samples limited mammal presence. At the microhabitat scale (~80 m2 plots) the mean percentage area deprived of woody vegetation also had a negative effect. Functional traits such as body mass or social behavior accounted for a substantial fraction of the variation attributed to environmental factors. We concluded that multiscale environmental filtering governed local community assembly, whereas the role of dispersal limitation and interspecific interactions was negligible. Our results suggest that further removal of shrubland, the expansion of intensive agriculture, and the increase of human activity are expected to result in species losses. The fact that community integrity responds to a single type of ecological process simplifies practical recommendations. Management strategies should focus on the conservation and restoration of shrubland, adopting alternatives to intensive schemes of agricultural production, and minimizing recreational and other human activities in remnant natural habitats within agroecosystems or mosaic landscapes.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Mamíferos , Agricultura/métodos , Região do Mediterrâneo
12.
Microb Ecol ; 86(4): 2703-2715, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507489

RESUMO

Soil microorganisms play key roles in soil nutrient transformations and have a notable effect on plant growth and health. Different plant genotypes can shape soil microbial patterns via the secretion of root exudates and volatiles, but it is uncertain how a difference in soil microorganisms induced by crop cultivars will respond to short-term seasonal variations. A field experiment was conducted to assess the changes in soil bacterial communities of seven rhizoma peanut (Arachis glabrata Benth, RP) cultivars across two growing seasons, April (Spring season) and October (Fall season). Soils' bacterial communities were targeted using 16S rRNA gene amplicon sequencing. Bacterial community diversity and taxonomic composition among rhizoma peanut cultivars were significantly affected by seasons, cultivars, and their interactions (p < 0.05). Alpha diversity, as estimated by the OTU richness and Simpson index, was around onefold decrease in October than in April across most of the RP cultivars, while the soils from Arblick and Latitude had around one time higher alpha diversity in both seasons compared with other cultivars. Beta diversity differed significantly in April (R = 0.073, p < 0.01) and October (R = 0.084, p < 0.01) across seven cultivars. Bacterial dominant taxa (at phylum and genus level) were strongly affected by seasons and varied towards more dominant groups that have functional potentials involved in nutrient cycling from April to October. A large shift in water availability induced by season variations in addition to host cultivar's effects can explain the observed patterns in diversity, composition, and co-occurrence of bacterial taxa. Overall, our results demonstrate an overriding effect of short-term seasonal variations on soil bacterial communities associated with different crop cultivars. The findings suggest that season-induced shifts in environmental conditions could exert stronger impacts on soil microorganisms than the finer-scale rhizosphere effect from crop cultivars, and consequently influence largely microbe-mediated soil processes and crop health in agricultural ecosystems.


Assuntos
Arachis , Solo , Estações do Ano , Arachis/microbiologia , Ecossistema , RNA Ribossômico 16S/genética , Bactérias/genética , Microbiologia do Solo
13.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230947

RESUMO

Arbuscular mycorrhizal fungi (AMF) are effective natural alternatives to assist plants in improving crop productivity and immunity against pests and diseases. However, a comprehensive idea of the variables under which they show optimum activity, especially concerning particular soil, climate, geography, and crop characteristics, has yet to be adequately standardized. Since paddy is the staple food for half of the world's population, such standardization is highly significant globally. Research concerning determinants affecting AMF functioning in rice is limited. However, the identified variables include external variables such as abiotic, biotic, and anthropogenic factors and internal variables such as plant and AMF characteristics. Among the abiotic factors, edaphic factors like soil pH, phosphorus availability, and soil moisture significantly affect AMF functioning in rice. In addition, anthropogenic influences such as land use patterns, flooding, and fertilizer regimes also affect AMF communities in rice agroecosystems. The principal objective of the review was to analyse the existing literature on AMF concerning such variables generally and to assess the specific research requirements on variables affecting AMF in rice. The ultimate goal is to identify research gaps for applying AMF as a natural alternative in the sustainable agriculture of paddy with optimum AMF symbiosis enhancing rice productivity.


Assuntos
Micorrizas , Oryza , Raízes de Plantas/microbiologia , Microbiologia do Solo , Fungos , Agricultura , Solo , Oryza/microbiologia
14.
Environ Res ; 237(Pt 2): 117034, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673123

RESUMO

Acephate is a pesticide classified as moderately toxic, and its metabolite methamidophos is highly toxic for mammals and birds; even so, it is one of the most used insecticides in pest control for agricultural and domestic use. Acephate toxicity affects both target and non-target organisms and causes serious damage to the environment. There are several studies on different perspectives of acephate, such as monitoring, toxicity, and modeling. In this sense, this research aims to identify the structure of intellectual production on acephate and analyze the gaps and trends of scientific production on acephate through a scientometric analysis. The data was obtained from the Web of Science database, and after the refinement, 1.085 documents were used. A temporal pattern of the main research objectives is displayed. Most selected studies evaluated acephate efficiency, followed by toxicity and residue detection methods. The USA, China, India, Brazil, and Japan had the highest number of publications on acephate. The keywords most utilized were pesticides, toxicity, insecticide resistance, and residue. Research involving acephate requires greater attention from areas such as ecotoxicology, biochemistry, genetics, and biotechnology. There needed to be more discussions on chronic toxicity, genotoxicity, and cytotoxicity. Moreover, few studies about metabolic and biochemical pathways and genes related to acephate action and biodegradation were scarce.

15.
Phytopathology ; 113(3): 365-380, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36256745

RESUMO

Phytopathology is a highly complex scientific discipline. Initially, its focus was on the study of plant-pathogen interactions in agricultural and forestry production systems. Host-pathogen interactions in natural plant communities were generally overlooked until the 1970s when plant pathologists and evolutionary biologists started to take an interest in these interactions, and their dynamics in natural plant populations, communities, and ecosystems. This article introduces the general principles of plant pathosystems, provides a basic critical overview of current knowledge of host-pathogen interactions in natural plant pathosystems, and shows how this knowledge is important for future developments in plant pathology especially as it applies in cropping systems, ecology, and evolutionary biology. Plant pathosystems can be further divided according to the structure and origin of control, as autonomous (wild plant pathosystems, WPPs) or deterministic (crop plant pathosystems, CPPs). WPPs are characterized by the disease triangle and closed-loop (feedback) controls, and CPPs are characterized by the disease tetrahedron and open-loop (non-feedback) controls. Basic general, ecological, genetic, and population structural and functional differences between WPPs and CPPs are described. It is evident that we lack a focus on long-term observations and research of diseases and their dynamics in natural plant populations, metapopulations, communities, ecosystems, and biomes, as well as their direct or indirect relationships to CPPs. Differences and connections between WPPs and CPPs, and why, and how, these are important for agriculture varies. WPP and CPP may be linked by strong biological interactions, especially where the pathogen is in common. This is demonstrated through a case study of lettuce (Lactuca spp., L. serriola and L. sativa) and lettuce downy mildew (Bremia lactucae). In other cases where there is no such direct biological linkage, the study of WPPs can provide a deeper understanding of how ecology and genetics interacts to drive disease through time. These studies provide insights into ways in which farming practices may be changed to limit disease development. Research on interactions between pathosystems, the "cross-talk" of WPPs and CPPs, is still very limited and, as shown in interactions between wild and cultivated Lactuca spp.-B. lactucae associations, can be highly complex. The implications and applications of this knowledge in plant breeding, crop management, and disease control measures are considered. This review concludes with a discussion of theoretical, general and specific aspects, challenges and limits of future WPP research, and application of their results in agriculture.


Assuntos
Ecossistema , Oomicetos , Doenças das Plantas/genética , Melhoramento Vegetal , Plantas , Oomicetos/genética , Lactuca
16.
Ecotoxicol Environ Saf ; 263: 115274, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499389

RESUMO

Polyethylene microplastics have been detected in farmland soil, irrigation water, and soil organisms in agroecosystems, while plastic mulching is suggested as a crucial source of microplastic pollution in the agroecosystem. Plastic mulch can be broken down from plastic mulch debris to microplastics through environmental aging and degradation process in farmlands, and the colonization of polyethylene-degrading microorganisms on polyethylene microplastics can eventually enzymatically depolymerize the polyethylene molecular chains with CO2 release through the tricarboxylic acid cycle. The selective colonization of microplastics by soil microorganisms can cause changes in soil microbial community composition, and it can consequently elicit changes in enzyme activities and nutrient element content in the soil. The biological uptake of polyethylene microplastics and the associated disturbance of energy investment are the main mechanisms impacting soil-dwelling animal development and behavior. As polyethylene microplastics are highly hydrophobic, their presence among soil particles can contribute to soil water repellency and influence soil water availability. Polyethylene microplastics have been shown to cause impacts on crop plant growth, as manifested by the effects of polyethylene microplastics on soil properties and soil biota in the agroecosystems. This review reveals the degradation process, biological impacts, and associated mechanisms of polyethylene microplastics in agroecosystems and could be a critical reference for their risk assessment and management.


Assuntos
Microplásticos , Poluentes do Solo , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Agricultura , Polietileno/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo/química
17.
J Environ Manage ; 344: 118617, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453298

RESUMO

The abandonment of rice terraces in hilly agroecosystems in recent decades has caused substantial changes in microbial characteristics and their impact on microbial necromass carbon (MNC) and soil organic carbon (SOC). Nevertheless, the regulatory mechanisms and impact pathways of MNC remain unclear. Here, soil samples were collected from 0 to 120 cm soil profiles in rice terraces, dry land (DL), and forest land (FL) for analysis. After converting rice terraces to DL and FL, MNC decreased significantly by 31.12% and 38.33%, while SOC decreased significantly by 51.26% and 29.87% respectively. These reductions are due to the loss of terrace management practices and associated functions. There were no significant changes in bacterial necromass carbon (BNC), whereas fungal necromass carbon (FNC) experienced a significant decrease. As a result, the decline in SOC may be primarily attributed to the reduction in FNC. BNC and FNC were regulated by bacterial life history strategies and fungal biomass, respectively. However, bacterial copiotrophs experienced a significant reduction after rice terrace abandonment. The regulation of BNC may be influenced by other factors, potentially offsetting the negative impact of abandonment. Dissolved organic carbon and bulk density were the primary control factors for bacterial community composition and fungal biomass, respectively. Additionally, the impact of soil layers on the alterations in MNC and SOC was more significant compared to the abandonment of rice terraces. These findings indicate that short-term abandonment of rice terraces results in a decrease in SOC, potentially compromising the ecological service function of the hilly agroecosystems. In the face of rapid population growth and global warming, it is crucial to minimize terrace abandonment and enhance utilization rates. This approach will effectively support sustainable terrace management and ecological services.


Assuntos
Carbono , Oryza , Carbono/análise , Solo , Biomassa , Florestas , Bactérias , Microbiologia do Solo
18.
Environ Manage ; 71(1): 170-178, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34994818

RESUMO

This study assessed the influence of soil organic carbon (SOC) accumulation and climate variability on crop yields in Kongwa District, central Tanzania. In doing so, climate data and soil samples were collected from Mnyakongo and Ugogoni villages through soil sampling, interviews and surveys. Walkley-Black method, Mann-Kendall test, and MS Excel were used to analyze SOC, climate, crop yields respectively. The results exhibited that the accumulation of SOC was significantly greater in soils under organic fertilization (1.15 and 0.80 MgC ha-1 at soil 0-20 cm and 20-30 cm depth) than under no-fertilization (0.35 and 0.30 MgC ha-1 at 0-20 cm and 20-30 cm) and decreased with increasing soil depths. Under these two soil treatments, the average yields for maize, sorghum and millet were almost 1.8 tn ha-1 under organic fertilization and 0.6 tn ha-1 under no-fertilization. Specifically, maize yields ranged from 1.5 to 2.2 tn ha-1, while both sorghum and millet had 1.1-1.7 tn ha-1. Therefore, yields were significantly higher under organic fertilizations than under no-fertilizations. Besides, the mean annual rainfall or temperature (1980‒2020) fluctuated at a decreasing (R2 = 0.21) or an increasing trend (R2 = 0.30). Comparatively, the yields for maize, sorghum or millet fluctuated at a decreasing trend at R2 = 0.07, 0.05, or 0.85, respectively. Correspondingly, it was found that the temporal increase in rainfall and temperature had positive (R2 ~0.5) and negative (R2 ~0.3) correlations with crop yields, respectively. In contrast, the decline in rain's intensity and frequency had negative impacts on crop yields. Thus, both SOC and climate correlated with crop yields.


Assuntos
Carbono , Solo , Agricultura/métodos , Tanzânia , Produtos Agrícolas , Zea mays
19.
Emerg Infect Dis ; 28(7): 1393-1402, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35731160

RESUMO

In Argentina, the Pampa ecoregion has been almost completely transformed into agroecosystems. To evaluate the environmental (agricultural area, tree coverage, distance to the nearest water body and urban site) and biological (dove, cowbird, and sparrow abundance) effects on free-ranging bird exposure to St. Louis encephalitis virus (SLEV) and West Nile virus (WNV), we used generalized linear mixed models. For 1,019 birds sampled during 2017-2019, neutralizing antibodies were found against SLEV in samples from 60 (5.8%) birds and against WNV for 21 (2.1%). The best variable for explaining SLEV seroprevalence was agricultural area, which had a positive effect; however, for WNV, no model was conclusive. Our results suggest that agroecosystems in the La Pampa ecoregion increase the exposure of avian hosts to SLEV, thus potentially increasing virus activity.


Assuntos
Doenças das Aves , Encefalite de St. Louis , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Argentina/epidemiologia , Aves , Vírus da Encefalite de St. Louis , Encefalite de St. Louis/epidemiologia , Encefalite de St. Louis/veterinária , Estudos Soroepidemiológicos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária
20.
Glob Chang Biol ; 28(6): 2146-2157, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34984772

RESUMO

Land use is a key factor driving changes in soil carbon (C) cycle and contents worldwide. The priming effect (PE)-CO2 emissions from changed soil organic matter decomposition in response to fresh C inputs-is one of the most unpredictable phenomena associated with C cycling and related nutrient mobilization. Yet, we know very little about the influence of land use on soil PE across contrasting environments. Here, we conducted a continental-scale study to (i) determine the PE induced by 13 C-glucose additions to 126 cropland and seminatural (forests and grasslands) soils from 22 European countries; (ii) compare PE magnitude in soils under various crop types (i.e., cereals, nonpermanent industrial crops, and orchards); and (iii) model the environmental factors influencing PE. On average, PEs were negative in seminatural (with values ranging between -60 and 26 µg C g-1 soil after 35 days of incubation; median = -11) and cropland (from -55 to 27 µC g-1 soil; median = -4.3) soils, meaning that microbial communities preferentially switched from soil organic C decomposition to glucose mineralization. PE was significantly less negative in croplands compared with seminatural ecosystems and not influenced by the crop type. PE was driven by soil basal respiration (reflecting microbial activity), microbial biomass C, and soil organic C, which were all higher in seminatural ecosystems compared with croplands. This cross European experimental and modeling study elucidated that PE intensity is dependent on land use and allowed to clarify the factors regulating this important C cycling process.


Assuntos
Microbiota , Solo , Biomassa , Carbono , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA