Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Commun Signal ; 22(1): 245, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671456

RESUMO

BACKGROUND: The alveolar epithelial type II cell (AT2) and its senescence play a pivotal role in alveolar damage and pulmonary fibrosis. Cell circadian rhythm is strongly associated with cell senescence. Differentiated embryonic chondrocyte expressed gene 1 (DEC1) is a very important circadian clock gene. However, the role of DEC1 in AT2 senescence and pulmonary fibrosis was still unclear. RESULTS: In this study, a circadian disruption model of light intervention was used. It was found that circadian disruption exacerbated pulmonary fibrosis in mice. To understand the underlying mechanism, DEC1 levels were investigated. Results showed that DEC1 levels increased in lung tissues of IPF patients and in bleomycin-induced mouse fibrotic lungs. In vitro study revealed that bleomycin and TGF-ß1 increased the expressions of DEC1, collagen-I, and fibronectin in AT2 cells. Inhibition of DEC1 mitigated bleomycin-induced fibrotic changes in vitro and in vivo. After that, cell senescence was observed in bleomycin-treated AT2 cells and mouse models, but these were prevented by DEC1 inhibition. At last, p21 was confirmed having circadian rhythm followed DEC1 in normal conditions. But bleomycin disrupted the circadian rhythm and increased DEC1 which promoted p21 expression, increased p21 mediated AT2 senescence and pulmonary fibrosis. CONCLUSIONS: Taken together, circadian clock protein DEC1 mediated pulmonary fibrosis via p21 and cell senescence in alveolar epithelial type II cells.


Assuntos
Bleomicina , Senescência Celular , Ritmo Circadiano , Fibrose Pulmonar , Animais , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ritmo Circadiano/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Microb Pathog ; 176: 106017, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736545

RESUMO

The primary replication site of Influenza A virus (IAV) is type II alveolar epithelial cells (AECII), which are central to normal lung function and present important immune functions. Surfactant components are synthesized primarily by AECII, which play a crucial role in host defense against infection. The aim of this study was to analyze if the impact of influenza infection is differential between A(H1N1)pdm09 and A/Victoria/3/75 (H3N2) on costimulatory molecules and ProSP-C expression in AECII from BALB/c mice infected and A549 cell line infected with both strains. Pandemic A(H1N1)pdm09 and A/Victoria/3/75 (H3N2) were used to infect BALB/c mice and the A549 cell line. We evaluated the surface expression of co-stimulatory molecules (CD45/CD31/CD74/ProSP-C) in AECII and A549 cell lines. Our results showed a significant decrease in ProSP-C+ CD31- CD45- and CD74+ CD31- CD45- expression in AECII and A549 cell line with the virus strain A(H1N1)pdm09 versus A/Victoria/3/75 (H3N2) and controls (non-infection conditions). Our findings indicate that changes in the expression of ProSP-C in AECII and A549 cell lines in infection conditions could result in dysfunction leading to decreased lung compliance, increased work of breathing and increased susceptibility to injury.


Assuntos
Alphainfluenzavirus , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Animais , Humanos , Camundongos , Células Epiteliais Alveolares , Vírus da Influenza A Subtipo H3N2 , Tensoativos
3.
Histochem Cell Biol ; 155(2): 261-269, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32880000

RESUMO

Plate bodies are facultative organelles occasionally described in the adult lungs of various species, including sheep and goat. They consist of multiple layers of plate-like cisterns with an electron dense middle bar. The present study was performed to elucidate the three-dimensional (3D) characteristics of this organelle and its presumed function in surfactant protein A (SP-A) biology. Archived material of four adult goat lungs and PFA-fixed lung samples of two adult sheep lungs were used for the morphological and immunocytochemical parts of this study, respectively. 3D imaging was performed by electron tomography and focused ion beam scanning electron microscopy (FIB-SEM). Immuno gold labeling was used to analyze whether plate bodies are positive for SP-A. Transmission electron microscopy revealed the presence of plate bodies in three of four goat lungs and in both sheep lungs. Electron tomography and FIB-SEM characterized the plate bodies as layers of two up to over ten layers of membranous cisterns with the characteristic electron dense middle bar. The membranes of the plates were in connection with the rough endoplasmic reticulum and showed vesicular inclusions in the middle of the plates and a vesicular network at the sides of the organelle. Immuno gold labeling revealed the presence of SP-A in the vesicular network of plate bodies but not in the characteristic plates themselves. In conclusion, the present study clearly proves the connection of plate bodies with the rough endoplasmic reticulum and the presence of a vesicular network as part of the organelle involved in SP-A trafficking.


Assuntos
Células Epiteliais Alveolares/química , Imageamento Tridimensional , Organelas/metabolismo , Organelas/ultraestrutura , Proteína A Associada a Surfactante Pulmonar/metabolismo , Animais , Tomografia com Microscopia Eletrônica , Cabras , Microscopia Eletrônica de Varredura , Organelas/química , Proteína A Associada a Surfactante Pulmonar/química
4.
Am J Respir Cell Mol Biol ; 57(6): 721-732, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28799781

RESUMO

Successful repair and renewal of alveolar epithelial cells (AECs) are critical in prohibiting the accumulation of myofibroblasts in pulmonary fibrogenesis. MicroRNAs (miRNAs) are multifocal regulators involved in lung injury and repair. However, the contribution of miRNAs to AEC2 renewal and apoptosis is incompletely understood. We report that miRNA-29c (miR-29c) expression is lower in AEC2s of individuals with idiopathic pulmonary fibrosis than in healthy lungs. Epithelial cells overexpressing miR-29c show higher proliferative rates and viability. miR-29c protects epithelial cells from apoptosis by targeting forkhead box O3a (Foxo3a). Both overexpression of miR-29c conventionally and AEC2s specifically lead to less fibrosis and better recovery in vivo. Furthermore, deficiency of miR-29c in AEC2s results in higher apoptosis and reduced epithelial renewal. Interestingly, a gene network including a subset of apoptotic genes was coregulated by both Toll-like receptor 4 and miR-29c. Taken together, miR-29c maintains epithelial integrity and promotes recovery from lung injury, thereby attenuating lung fibrosis in mice.


Assuntos
Apoptose , Células Epiteliais/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , MicroRNAs/metabolismo , Mucosa Respiratória/metabolismo , Animais , Células Epiteliais/patologia , Feminino , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Masculino , Camundongos , MicroRNAs/genética , Mucosa Respiratória/patologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 310(2): L114-20, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26545903

RESUMO

Distal lung epithelium is maintained by proliferation of alveolar type II (AT2) cells and, for some daughter AT2 cells, transdifferentiation into alveolar type I (AT1) cells. We investigated if subpopulations of alveolar epithelial cells (AEC) exist that represent various stages in transdifferentiation from AT2 to AT1 cell phenotypes in normal adult lung and if they can be identified using combinations of cell-specific markers. Immunofluorescence microscopy showed that, in distal rat and mouse lungs, ∼ 20-30% of NKX2.1(+) (or thyroid transcription factor 1(+)) cells did not colocalize with pro-surfactant protein C (pro-SP-C), a highly specific AT2 cell marker. In distal rat lung, NKX2.1(+) cells coexpressed either pro-SP-C or the AT1 cell marker homeodomain only protein x (HOPX). Not all HOPX(+) cells colocalize with the AT1 cell marker aquaporin 5 (AQP5), and some AQP5(+) cells were NKX2.1(+). HOPX was expressed earlier than AQP5 during transdifferentiation in rat AEC primary culture, with robust expression of both by day 7. We speculate that NKX2.1 and pro-SP-C colocalize in AT2 cells, NKX2.1 and HOPX or AQP5 colocalize in intermediate or transitional cells, and HOPX and AQP5 are expressed without NKX2.1 in AT1 cells. These findings suggest marked heterogeneity among cells previously identified as exclusively AT1 or AT2 cells, implying the presence of subpopulations of intermediate or transitional AEC in normal adult lung.


Assuntos
Células Epiteliais Alveolares/citologia , Antígenos de Diferenciação/metabolismo , Transdiferenciação Celular/fisiologia , Células Epiteliais/citologia , Alvéolos Pulmonares/citologia , Envelhecimento , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Células Epiteliais/metabolismo , Camundongos , Ratos
6.
Am J Physiol Lung Cell Mol Physiol ; 305(11): L786-94, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24077946

RESUMO

Primary alveolar epithelial cells play a pivotal role in lung research, particularly when focusing on gas exchange, barrier function, and transepithelial transport processes. However, efficient transfection of primary alveolar epithelial cells continues to be a major challenge. In the present study, we applied nucleofection, a novel method of gene and oligonucleotide delivery to the nucleus of cells by electroporation, to achieve highly efficient transfection of primary alveolar epithelial type II (ATII) cells. To quantify the amount of ATII cells effectively transfected, we applied a plasmid expressing GFP and assessed the amount of GFP-expressing cells by flow cytometry. Analysis of the nucleofected ATII cells revealed a concentration-dependent transfection efficiency of up to 50% when using 3-8 µg plasmid DNA without affecting cell viability. Nucleofection of cultured A549 and H441 cells yielded similar transfection rates. Importantly, nucleofection of ATII cells did not interfere with the integrity of ATII monolayers even with use of relatively high concentrations of plasmid DNA. In subsequent studies, we also efficiently delivered small interfering RNAs to ATII cells by nucleofection, thereby silencing Akt and the multiligand receptor megalin, which has been recently shown to play a key role in removal of excess protein from the alveolar space, and effectively inhibited megalin-driven uptake and transcellular transport of albumin in ATII cells. Thus we report successful transfection of primary rat alveolar epithelial cells with both plasmids and oligonucleotides via nucleofection with high viability and consistently good transfection rates without impairing key physiological properties of the cells.


Assuntos
Células Epiteliais Alveolares/fisiologia , Transfecção/métodos , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Sobrevivência Celular , Impedância Elétrica , Eletroporação , Humanos , Masculino , Membrana Nuclear/metabolismo , Plasmídeos/genética , Cultura Primária de Células , RNA Interferente Pequeno/genética , Ratos , Soluções
7.
Cell Rep ; 41(1): 111446, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198267

RESUMO

The plateau pika (Ochotona curzoniae) is native to the Qinghai-Tibet Plateau. In this study, the gene that encodes a heme-binding protein in the pulmonary surfactant (PS) of the pika is identified. The protein is a homotetrameric hemoglobin (δ4) encoded by HBD (δ). HBD is expressed in alveolar epithelial type II (ATII) and type I (ATI) cells, upregulated by hypoxia. δ4 is secreted into alveolar cavities through osmiophilic multilamellar bodies. HBD expression is downregulated by RNAi, which significantly increases hypoxia-inducible factor 1α expression in lung tissue and red blood cells and hemoglobin and blood lactate concentrations but significantly decreases arterial partial pressure of oxygen (PaO2). Our results indicate that plateau pikas physiologically show hypoxemia when HBD expression is downregulated. Therefore, specific HBD expression in the lungs helps plateau pikas to obtain oxygen under hypoxia by maintaining higher PaO2. These findings provide insights into the adaptive mechanisms of plateau pikas to withstand high-altitude environments.


Assuntos
Lagomorpha , Surfactantes Pulmonares , Altitude , Células Epiteliais Alveolares/metabolismo , Animais , Proteínas Ligantes de Grupo Heme , Hemoglobinas/metabolismo , Hipóxia/metabolismo , Lactatos/metabolismo , Lagomorpha/genética , Lagomorpha/metabolismo , Pulmão/metabolismo , Oxigênio/metabolismo , Surfactantes Pulmonares/metabolismo
8.
Cells ; 10(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34831169

RESUMO

Prematurely born infants often require supplemental oxygen that impairs lung growth and results in arrest of alveolarization and bronchopulmonary dysplasia (BPD). The growth hormone (GH)- and insulin-like growth factor (IGF)1 systems regulate cell homeostasis and organ development. Since IGF1 is decreased in preterm infants, we investigated the GH- and IGF1 signaling (1) in newborn mice with acute and prolonged exposure to hyperoxia as well as after recovery in room air; and (2) in cultured murine lung epithelial cells (MLE-12) and primary neonatal lung fibroblasts (pLFs) after treatment with GH, IGF1, and IGF1-receptor (IGF1-R) inhibitor or silencing of GH-receptor (Ghr) and Igf1r using the siRNA technique. We found that (1) early postnatal hyperoxia caused an arrest of alveolarization that persisted until adulthood. Both short-term and prolonged hyperoxia reduced GH-receptor expression and STAT5 signaling, whereas Igf1 mRNA and pAKT signaling were increased. These findings were related to a loss of epithelial cell markers (SFTPC, AQP5) and proliferation of myofibroblasts (αSMA+ cells). After recovery, GH-R-expression and STAT5 signaling were activated, Igf1r mRNA reduced, and SFTPC protein significantly increased. Cell culture studies showed that IGF1 induced expression of mesenchymal (e.g., Col1a1, Col4a4) and alveolar epithelial cell type I (Hopx, Igfbp2) markers, whereas inhibition of IGF1 increased SFTPC and reduced AQP5 in MLE-12. GH increased Il6 mRNA and reduced proliferation of pLFs, whereas IGF1 exhibited the opposite effect. In summary, our data demonstrate an opposite regulation of GH- and IGF1- signaling during short-term/prolonged hyperoxia-induced lung injury and recovery, affecting alveolar epithelial cell differentiation, inflammatory activation of fibroblasts, and a possible uncoupling of the GH-IGF1 axis in lungs after hyperoxia.


Assuntos
Hormônio do Crescimento/metabolismo , Hiperóxia/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Lesão Pulmonar/metabolismo , Transdução de Sinais , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Proliferação de Células , Células Epiteliais/metabolismo , Feminino , Hiperóxia/complicações , Lesão Pulmonar/complicações , Masculino , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Receptores da Somatotropina/metabolismo , Fator de Transcrição STAT5/metabolismo , Fatores de Tempo
9.
Med Hypotheses ; 144: 110020, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32590326

RESUMO

Pulmonary surfactant is considered to be one of the soaps. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the other enveloped viruses become very weak against surfactant. The SARS virus binds to angiotensin-converting enzyme (ACE2) receptor and causes pneumonia. In the lung, the ACE2 receptor sits on the top of lung cells known as alveolar epithelial type II (AE2) cells. These cells play an important role in producing surfactant. Pulmonary surfactant is believed to regulate the alveolar surface tension in mammalian lungs. To our knowledge, AE2 cells are believed to act as immunoregulatory cells; however, pulmonary surfactant itself has not been believed to act as a defender against the enveloped viruses. This study hypothesises that pulmonary surfactant may be a strong defender of enveloped viruses. Therefore, old coronaviruses merely cause pneumonia. On the contrary, new SARS-CoV-2 can suppress the production of surfactant that binds to the ACE2 of AE2 cells. The coronavirus can survive in the lung tissue because of the exhaustion of pulmonary surfactant.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/prevenção & controle , COVID-19/fisiopatologia , Pneumonia Viral/fisiopatologia , Surfactantes Pulmonares/uso terapêutico , SARS-CoV-2 , Ambroxol/uso terapêutico , Bromoexina/uso terapêutico , Ensaios Clínicos como Assunto , Cristalografia por Raios X , Humanos , Modelos Teóricos , Fagocitose , Pregnenodionas/uso terapêutico , Alvéolos Pulmonares/metabolismo , Tensão Superficial , Tensoativos , Tratamento Farmacológico da COVID-19
10.
Exp Ther Med ; 13(4): 1279-1284, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28413467

RESUMO

Hyperoxia therapy for acute lung injury (ALI) may unexpectedly lead to reactive oxygen species (ROS) production and cause additional ALI. Calcitonin gene-related peptide (CGRP) is a 37 amino acid neuropeptide that regulates inflammasome activation. However, the role of CGRP in DNA damage during hyperoxia is unclear. Therefore, the aim of the present study was to investigate the effects of CGRP on DNA damage and the cell death of alveolar epithelial type II cells (AEC II) exposed to 60% oxygen. AEC II were isolated from 19-20 gestational day fetal rat lungs and were exposed to air or to 60% oxygen during treatment with CGRP or the specific CGRP receptor antagonist CGRP8-37. The cells were evaluated using immunofluorescence to examine surfactant protein-C and ROS levels were measured by probing with 2',7'-dichlorofluorescin diacetate. The apoptosis rate and cell cycle of AEC II were analyzed by flow cytometry, and apoptosis was determined by western blotting analysis of activated caspase 3. The DNA damage was confirmed with immunofluorescence of H2AX via high-content analysis. The ROS levels, apoptotic cell number and the expression of γH2AX were markedly increased in the hyperoxia group compared with those in the air group. Concordantly, ROS levels, apoptotic cell number and the expression of γH2AX were significantly lower with a significant arrest of S and G2/M phases in the CGRP/O2 group than in the hyperoxia or CGRP8-37/O2 groups. CGRP was concluded to protect lung epithelium cells against hyperoxic insult, and upregulation of CGRP may be a possible novel therapeutic target to treat hyperoxic lung injury.

11.
Exp Ther Med ; 8(2): 493-498, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25009607

RESUMO

The aim of the present study was to investigate water transport dysfunction in alveolar epithelial type II cells (AECII), which were exposed to hyperoxia, and to investigate the mechanism of pulmonary edema resulting from hyperoxic lung injury. The lung cells of newborn rats were isolated for primary cell culture and divided into control and experimental groups. The control and experimental group cells were placed into a normoxic incubator (oxygen volume fraction, 0.21) or hyperoxic incubator (oxygen volume fraction, 0.9), respectively. Twenty-four, 48 and 72 h after cell attachment, the gene transcription and protein expression levels of aquaporin-1 (AQP1) were detected via quantitative polymerase chain reaction and western blot analysis. Flow cytometry was conducted to detect the volume of the cells in the experimental and control groups. In the present study, it was identified that AQP1 expression and cell volume were greater in the experimental group when compared with the control group. Thus, hyperoxia may disturb the gene expression regulation of AQP1 in AECII, resulting in water transport dysfunction. This may be one of the mechanisms underlying pulmonary edema caused by hyperoxic lung injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA