Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Chem Biodivers ; : e202402059, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301595

RESUMO

Leishmaniasis is a vector-borne, parasitic disease affecting millions of people and animals worldwide. Current therapeutic options have proven to be ineffective in both treating the disease and preventing its spread. As a result, new drugs must be developed to effectively combat this disease. In this study, a series of 14 ethylene glycol analogues of benzothiadiazine-1,1-dioxide were synthesised to investigate their antileishmanial potential and cytotoxicity. Analogue 9, 2-(2-phenoxyethyl)-2H-benzo[e][1,2,4]thiadiazine-1,1-dioxide, was identified as the most inhibitory compound as it was observed to moderately inhibit the growth of L. major (IC50 103 µM) and L. donovani (IC50 153 µM) promastigotes. However, in general, the series presented with low biological activity, which may be attributed to reduced target affinity and/or undesired cell culture protein binding.

2.
Arch Pharm (Weinheim) ; 357(3): e2300440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38048546

RESUMO

Leishmaniasis is an emerging tropical infectious disease caused by a protozoan parasite of the genus Leishmania. In this work, the molecular hybridization between a trimethoxy chalcone and a sulfonamide group was used to generate a series of sulfonamide-chalcones. A series of eight sulfonamide-chalcone hybrids were made with good yields (up to 95%). These sulfonamide-chalcones were tested against promastigotes of Leishmania amazonensis and cytotoxicity against mouse macrophages, which showed good antileishmanial activity with IC50 = 1.72-3.19 µM. Three of them (10c, 10g, and 10h) were also highly active against intracellular amastigotes and had a good selectivity index (SI > 9). Thus, those three compounds were docked in the cytosolic tryparedoxin peroxidase (cTXNPx) enzyme of the parasite, and molecular dynamics simulations were carried out. This enzyme was selected as a target protein for the sulfonamide-chalcones due to the fact of the anterior report, which identified a strong and stable interaction between the chalcone NAT22 (6) and the cTXNPx. In addition, a prediction of the drug-likeness, and the pharmacokinetic profile of all compounds were made, demonstrating a good profile of those chalcones.


Assuntos
Antiprotozoários , Chalcona , Chalconas , Animais , Camundongos , Chalconas/farmacologia , Chalcona/farmacologia , Relação Estrutura-Atividade , Antiprotozoários/farmacologia , Sulfanilamida , Sulfonamidas/farmacologia
3.
J Basic Microbiol ; 64(5): e2300490, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38227394

RESUMO

Currently, zinc oxide (ZnO) particles are used in nanotechnology to destroy a wide range of microorganisms. Although pentavalent antimony compounds are used as antileishmanial drugs, they are associated with several limitations and side effects. Therefore, it is always desirable to try to find new and effective treatments. The aim of this research is to determine the antileishmanial effect of ZnO particles in comparison to the Antimoan Meglumine compound on promastigotes and amastigotes of Leishmania major (MRHO/IR/75/ER). After the extraction and purification of macrophages from the peritoneal cavity of C57BL/6 mice, L. major parasites were cultured in Roswell Park Memorial Institute-1640 culture medium containing fetal bovine serum (FBS) 10% and antibiotic. In this experimental study, the effect of different concentrations of nanoparticles was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) colorimetric method, in comparison to the glucantime on promastigotes, amastigotes and healthy macrophages in the culture medium. The amount of light absorption of the obtained color from the regeneration of tetrazolium salt to the product color of formazan by the parasite was measured by an enzyme-linked immunosorbent assay (ELISA) reader, and the IC50 value was calculated. IC50 after 24 h of incubation was calculated as IC50 = 358.6 µg/mL. The results showed, that the efficacy of ZnO nanoparticles was favorable and dose-dependent. The concentration of 500 µg/mL of ZnO nanoparticles induced 84.67% apoptosis after 72. Also, the toxicity of nanoparticles was less than the drug. Nanoparticles exert their cytotoxic effects by inducing apoptosis. They can be suitable candidates in the pharmaceutical industry in the future.


Assuntos
Antiprotozoários , Leishmania major , Antimoniato de Meglumina , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Animais , Leishmania major/efeitos dos fármacos , Camundongos , Antiprotozoários/farmacologia , Antimoniato de Meglumina/farmacologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Macrófagos/parasitologia , Macrófagos/efeitos dos fármacos , Concentração Inibidora 50 , Macrófagos Peritoneais/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Nanopartículas Metálicas/química
4.
Int J Mol Sci ; 25(19)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39408911

RESUMO

Indazoles have previously been identified as molecules with antiprotozoal activity. In this study, we evaluate the in vitro activity of thirteen 3-alkoxy-1-benzyl-5-nitroindazole derivatives (series D) against L. amazonensis, L. infantum, and L. mexicana. In vitro, cytotoxicity against mouse peritoneal macrophages and growth inhibitory activity in promastigotes were evaluated for all compounds, and those showing adequate activity and selectivity were tested against intracellular amastigotes. Transmission and scanning electron microscopy were employed to study the effects of 3-alkoxy-1-benzyl-5-nitroindazole and 2-benzyl-5-nitroindazolin-3-one derivatives on promastigotes of L. amazonensis. Compounds NV6 and NV8 were active in the two life stages of the three species, with the latter showing the best indicators of activity and selectivity. 3-alkoxy-1-benzyl-5-nitroindazole derivatives (series D) showed in vitro activity comparable to that of amphotericin B against the promastigote stage of Leishmania spp. Two compounds were also found to be active the amastigote stage. Electron microscopy studies confirmed the antileishmanial activity of the indazole derivatives studied and support future research on this family of compounds as antileishmanial agents.


Assuntos
Antiprotozoários , Indazóis , Macrófagos Peritoneais , Indazóis/farmacologia , Indazóis/química , Animais , Camundongos , Antiprotozoários/farmacologia , Antiprotozoários/química , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Leishmania/efeitos dos fármacos , Leishmania/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C
5.
Cell Immunol ; 386: 104692, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870122

RESUMO

Adjuvants represent a promising strategy to improve vaccine effectiveness against infectious diseases such as leishmaniasis. Vaccination with the invariant natural killer T cell ligand α-galactosylceramide (αGalCer) has been used successfully as adjuvant, generating a Th1-biased immunomodulation. This glycolipid enhances experimental vaccination platforms against intracellular parasites including Plasmodium yoelii and Mycobacterium tuberculosis. In the present study, we assessed the protective immunity induced by a single-dose intraperitoneal injection of αGalCer (2 µg) co-administrated with a lysate antigen of amastigotes (100 µg) against Leishmania mexicana infection in BALB/c mice. The prophylactic vaccination led to 5.0-fold reduction of parasite load at the infection site, compared to non-vaccinated mice. A predominant pro-inflammatory response was observed in challenged vaccinated mice, represented by a 1.9 and 2.8-fold-increase of IL-1ß and IFN-γ producing cells, respectively, in the lesions, and by 23.7-fold-increase of IFN-γ production in supernatants of restimulated splenocytes, all compared to control groups. The co-administration of αGalCer also stimulated the maturation of splenic dendritic cells and modulated a Th1-skewed immune response, with high amounts of IFN-γ production in serum. Furthermore, peritoneal cells of αGalCer-immunized mice exhibited an elevated expression of Ly6G and MHCII. These findings indicate that αGalCer improves protection against cutaneous leishmaniasis, supporting evidence for its potential use as adjuvant in Leishmania-vaccines.


Assuntos
Leishmania mexicana , Leishmaniose Cutânea , Camundongos , Animais , Camundongos Endogâmicos BALB C , Imunidade Celular , Adjuvantes Imunológicos/farmacologia , Antígenos de Protozoários
6.
Mol Divers ; 27(6): 2555-2575, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36417095

RESUMO

Leishmaniasis includes a range of parasitic diseases caused by numerous types of the protozoan kinetoplastid parasite. Fungal and bacterial pathogens have led to infectious illnesses causing some main public health problem in current years. A series of dihydropyridine and tetrahydropyrimidine derivatives having fluoro, bromo, and nitro substituents at para-phenyl ring on C4 of dihydropyridine and tetrahydropyrimidine rings were synthesized. Then, anti-leishmanial and antimicrobial potencies of compounds were assessed. All compounds were synthesized via Hantzsch and Biginelli reactions. All derivatives were evaluated for their anti-leishmanial and antimicrobial activities. Moreover, docking and molecular dynamics simulation calculations of the compounds in PRT1 binding site were performed to report the results of anti-leishmanial and antimicrobial activities. Compounds 4a and 4b showed the highest anti-amastigote and anti-promastigote activities. Compound 4a revealed the highest antimicrobial activity against E. coli, P. aeruginosa, and C. albicans strains. In addition, compound 4c showed the highest activity against S. aureus. The fluoro, bromo, and nitro substituents in para-position of phenyl group at C4 of dihydropyridine and tetrahydropyrimidine moieties as well as the bulk and length of the chain linking to the ester moieties are essential for anti-leishmanial and anti-microbial activities of these derivatives. Low cytotoxicity was shown by most of derivatives against macrophages. The molecular docking studies were in agreement with in vitro assay. Moreover, hydrogen binds, RMSF, RMSD, and Rg, strongly showed the steady binding of 4a and 4b compounds in PRT1 active site.


Assuntos
Anti-Infecciosos , Leishmania , Nifedipino , Simulação de Acoplamento Molecular , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/química , Candida albicans
7.
Cell Immunol ; 375: 104529, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500334

RESUMO

Visceral leishmaniasis is one of the deadliest parasitic diseases in the world. In the absence of an efficient and cost-effective drugs, development of an effective vaccine is the need of the day. In spite of several efforts, a successful vaccine against the disease has been elusive. We have evaluated immunoprophylactic efficacy of recombinant dipeptidycarboxypeptidase (rLdDCP), predominantly expressed in amastigotes, in chronic hamster model. rLdDCP induced in vitro lymphoproliferation and NO production in cured hamsters. Immunization with rLdDCP alone, or with BCG, caused significant reduction in parasite load suggesting strong protective response. The molecule also augmented the CMI response as depicted by an increased lymphocyte proliferation, NO production, DTH responses and increased levels of IgG2 in immunized hamsters. The vaccinated hamsters exhibited a surge in IFN-γ, TNF-α, IL-12 and iNOS levels but down-regulation of IL-10 and IL-4. Thus, the results suggest the potentiality of the rLdDCP as a strong candidate vaccine.


Assuntos
Leishmania donovani , Vacinas contra Leishmaniose , Leishmaniose Visceral , Vacinas , Animais , Antígenos de Protozoários , Cricetinae , Interleucina-12 , Células Th1
8.
Exp Parasitol ; 236-237: 108249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35318066

RESUMO

Significant overlaps in the geographical distribution of malaria and leishmaniasis increase the risk for comorbidity, which can affect treatment efficacy, cotreatment compatibility and disease progression. These concerns are also exacerbated by the existing shortcomings of malaria and leishmaniasis treatments. There is, therefore, a pressing need for new anti-infective drugs for both individual diseases and coinfections. The in vitro antileishmanial activity of previously synthesized antiplasmodial aminoquinoline-chalcone hybrids was evaluated. Hybrid 6, featuring a N-methyl-1,3-propylene diamine linker between pharmacophores, was 11-fold more potent in anti-amastigote activity against Leishmania major, responsible for cutaneous leishmaniasis, the most common form of the disease, in comparison to chloroquine. Hybrid 7, with a 2,2-(ethylenedioxy)bis(ethylamine) linker, was nearly 7-fold more active in anti-amastigote activity against Leishmania donovani, responsible for visceral leishmaniasis, the most lethal form of the infection. Although these two hybrids were less potent than the clinically used antileishmanial, amphotericin B, they still qualify as hits against both Plasmodium and Leishmania strains. Accordingly, this may lend them as potential agents against Leishmania-Plasmodium coinfections, which will require further investigation using in vitro co-cultures and subsequent in vivo testing for confirmation.


Assuntos
Antimaláricos , Antiprotozoários , Chalcona , Chalconas , Coinfecção , Leishmania donovani , Leishmaniose Cutânea , Malária , Aminoquinolinas/farmacologia , Aminoquinolinas/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antiprotozoários/uso terapêutico , Antiprotozoários/toxicidade , Chalconas/uso terapêutico , Humanos , Leishmaniose Cutânea/tratamento farmacológico , Malária/tratamento farmacológico
9.
Parasitol Res ; 121(10): 2891-2899, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35939146

RESUMO

Leishmania (Viannia) braziliensis is the main species responsible for American tegumentary leishmaniasis in Brazil. Nevertheless, the use of this parasite species to study Leishmania infection in the murine model has been less conducted when compared with other Leishmania species. The control of murine infection with Leishmania has been associated with nitric oxide (NO) produced by inducible NO synthase (iNOS) from M1 macrophages, while arginase expressed by M2 macrophages is related to Leishmania proliferation. Here we use three different strains of L. (V.) braziliensis and one strain of L. (L.) major to study a 9-day infection of macrophages in vitro. Wild-type bone marrow-derived macrophages (BMDM) supported the proliferation of L. (L) major amastigotes from the 3rd day after infection, while all strains of L. (V.) braziliensis did not proliferate even inside IL-4-treated or iNOS knockout (KO) macrophages. The arginase activity was higher in iNOS KO than IL-4-treated macrophage showing that the absence of proliferation is independent of arginase. Importantly, L. (V.) braziliensis was able to cause uncontrolled disease in iNOS KO mice in vivo demonstrating that murine macrophages present at the site of infection have additional changes beyond inhibition of NO production or stimulation of arginase activity to support parasite proliferation.


Assuntos
Leishmania braziliensis , Leishmania , Leishmaniose Cutânea , Animais , Arginase/genética , Proliferação de Células , Interleucina-4 , Leishmaniose Cutânea/parasitologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Óxido Nítrico
10.
Bioorg Med Chem Lett ; 32: 127723, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249135

RESUMO

Ribose 5-phosphate isomerase type B (RPI-B) is a key enzyme of the pentose phosphate pathway that catalyzes the isomerization of ribose 5-phosphate (R5P) and ribulose 5-phosphate (Ru5P). Trypanosoma cruzi RPI-B (TcRPI-B) appears to be a suitable drug-target mainly due to: (i) its essentiality (as previously shown in other trypanosomatids), (ii) it does not present a homologue in mammalian genomes sequenced thus far, and (iii) it participates in the production of NADPH and nucleotide/nucleic acid synthesis that are critical for parasite cell survival. In this survey, we report on the competitive inhibition of TcRPI-B by a substrate - analogue inhibitor, Compound B (Ki = 5.5 ± 0.1 µM), by the Dixon method. This compound has an iodoacetamide moiety that is susceptible to nucleophilic attack, particularly by the cysteine thiol group. Compound B was conceived to specifically target Cys-69, an important active site residue. By incubating TcRPI-B with Compound B, a trypsin digestion LC-MS/MS analysis revealed the identification of Compound B covalently bound to Cys-69. This inhibitor also exhibited notable in vitro trypanocidal activity against T. cruzi infective life-stages co-cultured in NIH-3T3 murine host cells (IC50 = 17.40 ± 1.055 µM). The study of Compound B served as a proof-of-concept so that next generation inhibitors can potentially be developed with a focus on using a prodrug group in replacement of the iodoacetamide moiety, thus representing an attractive starting point for the future treatment of Chagas' disease.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/química , Proteínas de Protozoários/antagonistas & inibidores , Tripanossomicidas/síntese química , Trypanosoma cruzi/enzimologia , Células 3T3 , Aldose-Cetose Isomerases/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Cinética , Camundongos , Simulação de Dinâmica Molecular , Proteínas de Protozoários/metabolismo , Especificidade por Substrato , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos
11.
Exp Parasitol ; 229: 108151, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34419412

RESUMO

Curcumin (diferuloylmethane) is the main phytochemical of Curcuma longa Linn, an extract of the rhizome turmeric. For thousands of years, turmeric among other natural products has been used as a dietary spice and as a medicinal plant in Asian countries. The present study reports the leishmanicidal activity of curcumin in different concentrations (10 µM, 20 µM, 40 µM). It is also showing the effect of CM11 peptide (8 µM) alone and in combination with curcumin (10 and 20 µM) as a leishmanicidal drug. The experiments were performed with the amastigote form of Leishmania major (MRHO/IR/75/ER) in vitro and the leishmanicidal activity was analyzed after 12 and 24 h of incubation by Giemsa and DAPI staining. Further investigation was done by using semi-quantitative PCR with new designed common primer pair derived from an 18S rRNA gene belonging to the L. major and mouse, which amplified the above-mentioned gene segments simultaneously with different PCR product size. Our findings showed that curcumin had leishmanicidal activity in a dose and time-dependent manner and its lowest effective dose was at concentrations of 40 µM afetr12 h and 10 µM after 24 h. The IC50 value of curcumin against amastigote forms of L. major was 21.12 µM and 11.77 µM after 12 and 24 h, respectively. Treatment of amastigote form with CM11 (8 µM) alone and in combination with curcumin (10 µM and 20 µM) showed less leishmanicidal activity. Interestingly, CM11 in combination with curcumin (10 µM and 20 µM) had even less leishmanicidal effect compared to curcumin alone in the same concentrations (10 µM and 20 µM). The semi-quantitative PCR analysis confirmed the data achieved by Giemsa and DAPI staining and showed that curcumin reduced the PCR product derived from amastigote form in concentration and time-dependent manner compared to the genome of the host cells.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antiprotozoários/farmacologia , Curcumina/farmacologia , Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Análise de Variância , Animais , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Antiprotozoários/uso terapêutico , Curcumina/uso terapêutico , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Irã (Geográfico) , Leishmania major/genética , Leishmania major/crescimento & desenvolvimento , Camundongos , Reação em Cadeia da Polimerase , Proteínas Citotóxicas Formadoras de Poros/uso terapêutico , Células RAW 264.7/parasitologia
12.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922379

RESUMO

Peptide-based drugs are an attractive class of therapeutic agents, recently recognized by the pharmaceutical industry. These molecules are currently being used in the development of innovative therapies for diverse health conditions, including tropical diseases such as leishmaniasis. Despite its socioeconomic influence on public health, leishmaniasis remains long-neglected and categorized as a poverty-related disease, with limited treatment options. Peptides with antileishmanial effects encountered to date are a structurally heterogeneous group, which can be found in different natural sources-amphibians, reptiles, insects, bacteria, marine organisms, mammals, plants, and others-or inspired by natural toxins or proteins. This review details the biochemical and structural characteristics of over one hundred peptides and their potential use as molecular frameworks for the design of antileishmanial drug leads. Additionally, we detail the main chemical modifications or substitutions of amino acid residues carried out in the peptide sequence, and their implications in the development of antileishmanial candidates for clinical trials. Our bibliographic research highlights that the action of leishmanicidal peptides has been evaluated mainly using in vitro assays, with a special emphasis on the promastigote stage. In light of these findings, and considering the advances in the successful application of peptides in leishmaniasis chemotherapy, possible approaches and future directions are discussed here.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Animais , Humanos , Leishmaniose/parasitologia
13.
IUBMB Life ; 72(8): 1715-1724, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32353219

RESUMO

Cutaneous leishmaniasis is commonly caused by Leishmania major and Leishmania tropica. In the present study, the differential expression of proteins was identified in the amastigote-like forms of L. tropica and L. major in Iranian isolates. Initially, the samples were cultured and identified using PCR-RFLP technique. The Leishmania isolates were then grown in host-free (axenic) culture and prepared to amastigote-like forms, followed by the extraction of their proteins. To identify significant differentially expressed proteins (DEPs) of two types of Leishmania, the label-free quantitative proteomic technique was used based on sequential window acquisition of all theoretical fragment ion spectra mass spectrometry. A total of 51 up/down-DEPs (fold change >2 and p-value <.05) were identified between the axenic amastigote forms of L. major and L. tropica. Of these, 34 and 17 proteins were up-regulated in L. major and L. tropica, respectively. Several enriched GO terms were identified via biological process analyses for DEPs; furthermore, the metabolic process and translation were disclosed as top category in the up-regulated proteins of both L. major and L. tropica species. Also, the KEGG analysis revealed carbon metabolism and metabolic pathways term as the top pathways in the proteins up-regulated in L. major and L. tropica, respectively. Taken together, the numerous novel DEPs identified between the studied species could help fully understand the molecular mechanisms of pathogenesis and provide potential drug targets and vaccine candidates.


Assuntos
Leishmania major/genética , Leishmania tropica/genética , Leishmaniose Cutânea/genética , Proteínas de Protozoários/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , Irã (Geográfico) , Leishmania major/patogenicidade , Leishmania tropica/patogenicidade , Leishmaniose Cutânea/parasitologia , Redes e Vias Metabólicas/genética , Polimorfismo de Fragmento de Restrição/genética , Proteômica , Proteínas de Protozoários/classificação
14.
Cell Immunol ; 356: 104194, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32827943

RESUMO

Most studies evaluating vaccine candidates against visceral leishmaniasis (VL) have used parasite promastigote-expressed antigens; however, Leishmania proteins expressed in the amastigote forms should be considered, since few hours after infection this stage comes into contact with the host immune system and is responsible for the development of the disease. In this context, in the present study, a Leishmania amastigote-specific hypothetical protein, called LiHyJ, was evaluated as a recombinant protein plus saponin as an adjuvant or DNA vaccine to protect against VL. The vaccine effect was evaluated by means of the evaluation of immunological and parasitological analyses performed in BALB/c mice against Leishmania infantum infection. Results showed that rLiHyJ/saponin and DNA LiHyJ induced significantly higher levels of anti-protein and anti-parasite IFN-γ, IL-12, GM-CSF, and IgG2a isotype antibodies, which were associated with a low presence of IL-4 and IL-10. DNA vaccination induced higher IFN-γ production, mainly by CD8+ T cells, while rLiHyJ/saponin stimulated the production of this cytokine, mainly by CD4+ T cells. The parasite load evaluated in distinct organs showed that both immunization schedules significantly reduced organic parasitism, when compared to the controls. Similar results were found in the immunological and parasitological assays when using the recombinant protein or DNA, although the vaccination with rLiHyJ plus saponin induced a slightly higher Th1 response and lower parasite load, when compared to the use of DNA plasmid. The protein also proved to be immunogenic when peripheral blood mononuclear cells of treated VL patients and healthy subjects were in vitro stimulated, since higher IFN-γ and lower IL-4 and IL-10 levels were found in the culture supernatants. In conclusion, LiHyJ should be considered in future studies as a vaccine candidate to protect against VL.


Assuntos
Leishmania/imunologia , Vacinas contra Leishmaniose/imunologia , Vacinas de DNA/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adulto , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , DNA/imunologia , Feminino , Humanos , Leishmania/patogenicidade , Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia
15.
Parasitol Res ; 119(10): 3541-3548, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32803333

RESUMO

The aim of this study was to evaluate, through qPCR, the prevalence of parasitemia in sick kennel dogs naturally infected by canine leishmaniasis. An evaluation of daily changes of the parasitic load in peripheral blood was also performed. A comprehensive clinical examination and the collection of several samples (blood, lymph node, skin, and conjunctiva) were performed in 140 dogs living in an endemic area. Among these, only the dogs with clinically evident leishmaniasis were enrolled (39/140; 27.9%). Twelve (30.8%) out of 39 showed parasitemia, with a low load (median: 4 Leishmania/ml) despite a high lymph node parasite load (median: 4000 Leishmania/ml) and high IFAT titers (≥ 1:640). Seven sick dogs were sampled every 4 h for 6 times during a 24-h period, in order to obtain light- and dark-span samples. Only one (14.3%) out of the seven serial sampled dogs showed Leishmania DNA in the peripheral blood in two samples (2/42; 4.8%). Surprisingly, Leishmania DNA was also detected in the peripheral blood of asymptomatic dogs, negative to both serology and PCR performed on samples other than blood (6/101; 5.9%). The present study confirms that in canine leishmaniasis parasitemia is uncommon and even transitory. Even if recommended, microscopic examination is confirmed as a low sensitivity method with a lower diagnostic utility in canine leishmaniasis than qPCR. Moreover, circulating Leishmania DNA can be found even in healthy dogs. This finding is important in clinical practice because in endemic areas it suggests a transfusion risk and a possible transmission to the vector.


Assuntos
Doenças do Cão/parasitologia , Leishmania infantum/isolamento & purificação , Leishmaniose Visceral/veterinária , Parasitemia/veterinária , Animais , DNA de Protozoário/sangue , DNA de Protozoário/genética , Doenças do Cão/epidemiologia , Cães , Leishmania infantum/genética , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/parasitologia , Carga Parasitária/veterinária , Parasitemia/epidemiologia , Parasitemia/parasitologia , Prevalência , Reação em Cadeia da Polimerase em Tempo Real/veterinária
16.
J Vector Borne Dis ; 57(1): 78-84, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33818460

RESUMO

BACKGROUND & OBJECTIVES: Pentavalent antimonials are the standard treatment for cutaneous leishmaniasis (CL), however, treatment failures are frequent. Nimodipine, a calcium channel blocker is known to show promising antiprotozoal effects. Here, we investigated the antileishmanial effect of Nimodipine in both in vitro and in vivo BALB/c mice model of CL. We also compared the in vivo effect with amphotericin B and meglumine antimoniate in the experimental CL mice model. METHODS: Colorimetric alamar blue assay and J774 A.1 mouse macrophage cells were used to determine the effect of nimodipine on promastigotes and amastigotes viability, respectively. Then, the in vivo activity of nimodipine was compared to that of conventional therapies in both the early and established courses of Leishmania major infection in susceptible non-healing BALB/c mice. RESULTS: Nimodipine was highly active against promastigotes and amastigotes of L. major with IC50 values of 49.40 and 15.03 µM, respectively. In the early model, the combination therapy with meglumine antimoniate and nimodipine showed no parasites in the spleen or footpad of animals. The footpad thickness was significantly lower in mice treated with either nimodipine (1 mg/kg or 2.5 mg/kg) or amphotericin B compared to the control group in the established lesions model. However, no complete remission was observed in the footpad lesion of any of the treatment groups (nimodipine, amphotericin B, meglumine antimoniate, and combination therapy). INTERPRETATION & CONCLUSION: The effect of nimodipine was comparable to that of amphotericin B and meglumine antimoniate in early and established CL lesion models. Since nimodipine is more cost-effective than conventional therapies, our results merit further investigation in other animal models and voluntary human subjects.


Assuntos
Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Nimodipina/farmacologia , Nimodipina/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Leishmania major/patogenicidade , Leishmaniose Cutânea/parasitologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C
17.
Biochim Biophys Acta Mol Cell Res ; 1865(8): 1148-1159, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29800602

RESUMO

Expression of the intracellular form amastigote specific genes in the Leishmania donovani parasite plays a major role in parasite replication in the macrophage. In the current work, we have characterized a novel hypothetical gene, Ld30b that is specifically transcribed in the intracellular stage of the parasite. The recombinant Ld30b protein exists as a pentamer in solution as identified by native-PAGE and size exclusion gel chromatography. Structural analysis using circular dichroism and molecular modeling indicate that Ld30b belongs to family of cAMP-dependent protein kinase type I-alpha regulatory subunit. Co-localization immunofluorescence microscopy and western blot analyses (using anti-Ld30b antibody and anti-hypoxanthine-guanine phosphoribosyl transferase, a glycosome marker) on the isolated parasite glycosome organelle fractions show that Ld30b is localized in glycosome, though lacked a glycosome targeting PTS1/2 signal in the protein sequence. Episomal expression of Ld30b in the parasite caused the arrest of promastigotes and amastigotes growth in vitro. Cell cycle analysis using flow cytometry indicates that these parasites are arrested in 'sub G0/G1' phase of the cell cycle. Single allele knockout of Ld30b in the parasite similarly attenuated its growth by accumulation of cells in the S phase of cell cycle, thus confirming the probable importance of appropriate level of protein in the cells. Studying such intracellular stage expressing genes might unravel novel regulatory pathways for the development of drugs or vaccine candidates against leishmaniasis.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Leishmania donovani/fisiologia , Ciclo Celular , Dicroísmo Circular , Clonagem Molecular , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Regulação da Expressão Gênica no Desenvolvimento , Leishmania donovani/genética , Microcorpos/química , Microcorpos/metabolismo , Modelos Moleculares , Filogenia , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
18.
J Cell Biochem ; 120(3): 3373-3383, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30246366

RESUMO

The aim of this study was to evaluate the efficacy of vaccine using replication-deficient human recombinant Type 5 replication-defective adenoviruses (AdHu5) carrying sequences of the amastigote surface protein 2 (ASP2) (AdASP2) in mice infected with the Trypanosoma cruzi ( T cruzi) Y strain. A total of 16 A/Sn mice female were distributed into four groups, as follows (n = 4 per group): Group 1 - Control Group (CTRL); Group 2 - Infected Group (TC): animals were infected by subcutaneous route with 150 bloodstream trypomastigotes of T cruzi Y strain; Group 3 - Immunized Group (AdASP-2): animals were immunized by intramuscular injection (im) route with 50 µL of AdSP-2 (2 × 10 8 plaque forming units [pfu]/cam) at day 0; Group 4-Immunized and Infected Group (AdASP-2+TC): animals were immunized by im route with 50 µL of ASP-2 (2 × 10 8 pfu/cam) and infected by T cruzi at the same day (day 0). It was observed a significant decrease of nests in the group that was immunized with AdASP-2 and infected on the same day. Tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) gene expressions showed a significant increase in the AdASP-2+TC group when compared to TC group, but it was noted that Cyclooxygenase-2 (Cox-2) was increased in TC group when compared to AdASP-2+TC group. Increase of matrix metalloproteinases-2 (MMP-2) and decrease of MMP-9 immunoexpression in the AdASP-2+TC group was noticed as well. Oxidative DNA damage was present in myocardium for AdASP-2+TC group as a result of 8-hydroxydeoxyguanosine immunoexpression. Taken together, our results highlighted an increased oxidative stress, MMP-2 activity and inflammatory host response promoted by AdASP-2 against T cruzi infection.


Assuntos
Doença de Chagas/prevenção & controle , Miócitos Cardíacos/imunologia , Estresse Oxidativo , Parasitemia/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Trypanosoma cruzi/imunologia , Animais , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Feminino , Imunização , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Miócitos Cardíacos/parasitologia , Neuraminidase , Parasitemia/imunologia , Vacinas Protozoárias/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
19.
Cell Microbiol ; 20(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29119655

RESUMO

Trypanosoma cruzi is the kinetoplastid protozoan parasite that causes human Chagas disease, a chronic disease with complex outcomes including severe cardiomyopathy and sudden death. In mammalian hosts, T. cruzi colonises a wide range of tissues and cell types where it replicates within the host cell cytoplasm. Like all intracellular pathogens, T. cruzi amastigotes must interact with its immediate host cell environment in a manner that facilitates access to nutrients and promotes a suitable niche for replication and survival. Although potentially exploitable to devise strategies for pathogen control, fundamental knowledge of the host pathways co-opted by T. cruzi during infection is currently lacking. Here, we report that intracellular T. cruzi amastigotes establish close contact with host mitochondria via their single flagellum. Given the key bioenergetic and homeostatic roles of mitochondria, this striking finding suggests a functional role for host mitochondria in the infection process and points to the T. cruzi amastigote flagellum as an active participant in pathogenesis. Our study establishes the basis for future investigation of the molecular and functional consequences of this intriguing host-parasite interaction.


Assuntos
Flagelos/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Mitocôndrias/parasitologia , Trypanosoma cruzi/patogenicidade , Animais , Linhagem Celular , Doença de Chagas/parasitologia , Citoplasma/parasitologia , Células HEK293 , Humanos , Camundongos
20.
Cell Microbiol ; 20(10): e12867, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29895095

RESUMO

Valosin-containing protein (VCP)/p97/Cdc48 is one of the best-characterised type II cytosolic AAA+ ATPases most known for their role in ubiquitin-dependent protein quality control. Here, we provide functional insights into the role of the Leishmania VCP/p97 homologue (LiVCP) in the parasite intracellular development. We demonstrate that although LiVCP is an essential gene, Leishmania infantum promastigotes can grow with less VCP. In contrast, growth of axenic and intracellular amastigotes is dramatically affected upon decreased LiVCP levels in heterozygous and temperature sensitive (ts) LiVCP mutants or the expression of dominant negative mutants known to specifically target the second conserved VCP ATPase domain, a major contributor of the VCP overall ATPase activity. Interestingly, these VCP mutants are also unable to survive heat stress, and a ts VCP mutant is defective in amastigote growth. Consistent with LiVCP's essential function in amastigotes, LiVCP messenger ribonucleic acid undergoes 3'Untranslated Region (UTR)-mediated developmental regulation, resulting in higher VCP expression in amastigotes. Furthermore, we show that parasite mutant lines expressing lower VCP levels or dominant negative VCP forms exhibit high accumulation of polyubiquitinated proteins and increased sensitivity to proteotoxic stress, supporting the ubiquitin-selective chaperone function of LiVCP. Together, these results emphasise the crucial role LiVCP plays under heat stress and during the parasite intracellular development.


Assuntos
Espaço Intracelular/parasitologia , Leishmania infantum/crescimento & desenvolvimento , Proteína com Valosina/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/genética , Vida Livre de Germes/fisiologia , Resposta ao Choque Térmico/fisiologia , Leishmania infantum/genética , Chaperonas Moleculares/metabolismo , Domínios Proteicos/genética , RNA Mensageiro/genética , Ubiquitina/metabolismo , Ubiquitinação , Proteína com Valosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA