Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 12(3)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766823

RESUMO

Human babesiosis is an emerging tick-borne disease, caused by haemoprotozoa genus of Babesia. Cases of transfusion-transmitted and naturally acquired Babesia infection have been reported worldwide in recent years and causing a serious public health problem. Babesia duncani is one of the important pathogens of human babesiosis, which seriously endangers human health. The in vitro culture systems of B. duncani have been previously established, and it requires fetal bovine serum (FBS) to support long-term proliferation. However, there are no studies on serum-free in vitro culture of B. duncani. In this study, we reported that B. duncani achieved long-term serum-free culture in VP-SFM AGTTM (VP-SFM) supplemented with AlbuMaxTM I. The effect of adding different dilutions of AlbuMaxTM I to VP-SFM showed that 2 mg/mL AlbuMaxTM I had the best B. duncani growth curve with a maximum percentage of parasitized erythrocytes (PPE) of over 40%, and it can be used for long-term in vitro culture of B. duncani. However, the commonly used 20% serum-supplemented medium only achieves 20% PPE. Clearly, VP-SFM with 2 mg/mL AlbuMaxTM I (VP-SFMA) is more suitable for the in vitro proliferation of B. duncani. VP-SFM supplemented with CD lipid mixture was also tested, and the results showed it could support the parasite growth at 1:100 dilution with the highest PPE of 40%, which is similar to that of 2 mg/mL AlbuMaxTM I. However, the CD lipid mixture was only able to support the in vitro culture of B. duncani for 8 generations, while VP-SFMA could be used for long-term culture. To test the pathogenicity, the VP-SFMA cultured B. duncani was also subjected to hamster infection. Results showed that the hamster developed dyspnea and chills on day 7 with 30% PPE before treatment, which is similar to the symptoms with un-cultured B. duncani. This study develops a unique and reliable basis for further understanding of the physiological mechanisms, growth characteristics, and pathogenesis of babesiosis, and provides good laboratory material for the development of drugs or vaccines for human babesiosis and possibly other parasitic diseases.


Assuntos
Babesia , Babesiose , Animais , Cricetinae , Humanos , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Soro , Suplementos Nutricionais , Lipídeos/farmacologia
2.
Pathogens ; 10(6)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205286

RESUMO

Babesia bovis, an etiological agent of bovine babesiosis, causes a significant burden to the cattle industry worldwide. The most efficient method to mitigate bovine babesiosis is a live vaccine produced by serial passage in splenectomized cattle. However, there are several concerns regarding live vaccine production, including variation between batches and the use of many animals. In this study, we report a B. bovis-SF strain continuously cultured in a medium free of components of animal origin enriched with a chemically defined lipid mixture (CD lipid mixture) and the use of a perfusion bioreactor to harvest a large amount of B. bovis. Six culture media were compared, including VP-SFM, CD-CHO, CD-Hydrolyzed, CD-CHO, SFM, and ADMEM/F12. We found that the VP-SFM medium performed the best for B. bovis growth, with a maximum percentage of parasitized erythrocytes (PPE) of 8.6%. The effect of six dilutions of a commercial mixture of CD lipids added to VP-SFM showed that the CD lipid mixture at a dilution of 1:100 had the best B. bovis growth curve, with a maximum PPE of 13.9%. Propagation of the in vitro B. bovis culture was scaled up in a perfusion bioreactor using VP-SFM with a CD lipid mixture, and the PPE reached over 32%. The continuous in vitro B. bovis culture in a medium free of animal origin components could potentially reduce and replace the use of animals to produce a reagent for diagnostics and live vaccines to control bovine babesiosis.

3.
Pathogens ; 9(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370024

RESUMO

In this study, we report Babesia bigemina proliferation in culture medium free of components of animal origin supplemented with a lipid mixture. Babesia bigemina continuously proliferated in VP-SFM with a higher percent parasitized erythrocyte as compare to using other animal component-free culture media. Compared with Advanced DMEM/F12 (ADMEM/F12), VP-SFM had a similar percent parasitized erythrocyte (PPE). Supplementation of VP-SF with a lipid acid mixture improved B. bigemina proliferation in vitro culture, with a maximum PPE of 11.3%. Growth of B. bigemina in a perfusion bioreactor using VP-SFM medium supplemented with lipid mixture resulted in a PPE above 28%. In conclusion, we demonstrated that B. bigemina proliferated in an animal component-free medium supplemented with the fatty acid mixture. This innovation to B. bigemina in vitro culture method presented herein is an important source of biological material for live vaccine production and understanding the mechanisms and molecules involved in parasite attachment and invasion of bovine erythrocytes.

4.
Vaccine ; 32(24): 2767-9, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24583007

RESUMO

IPT-AFM is a proprietary animal component free medium that was developed for rabies virus (strain LP 2061) production in Vero cells. In the present work, we demonstrated the versatility of this medium and its ability to sustain the growth of other cell lines and different virus strains. Here, three models were presented: Vero cells/rabies virus (strain LP 2061), MRC-5 cells/measles virus (strain AIK-C) and BHK-21 cells/rabies virus (strain PV-BHK21). The cell lines were first adapted to grow in IPT-AFM, by progressive reduction of the amount of serum in the culture medium. After their adaptation, BHK-21 cells grew in suspension by forming clumps, whereas MRC-5 cells remained adherent. Then, kinetics of cell growth were studied in agitated cultures for both cell lines. In addition, kinetics of virus replication were investigated.


Assuntos
Técnicas de Cultura de Células , Linhagem Celular , Meios de Cultura Livres de Soro , Células Vero , Cultura de Vírus , Animais , Reatores Biológicos , Chlorocebus aethiops , Cricetinae , Humanos , Vírus da Raiva/crescimento & desenvolvimento , Vacinas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA