Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(7): e2315476121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319970

RESUMO

Marine photosynthetic dinoflagellates are a group of successful phytoplankton that can form red tides in the ocean and also symbiosis with corals. These features are closely related to the photosynthetic properties of dinoflagellates. We report here three structures of photosystem I (PSI)-chlorophylls (Chls) a/c-peridinin protein complex (PSI-AcpPCI) from two species of dinoflagellates by single-particle cryoelectron microscopy. The crucial PsaA/B subunits of a red tidal dinoflagellate Amphidinium carterae are remarkably smaller and hence losing over 20 pigment-binding sites, whereas its PsaD/F/I/J/L/M/R subunits are larger and coordinate some additional pigment sites compared to other eukaryotic photosynthetic organisms, which may compensate for the smaller PsaA/B subunits. Similar modifications are observed in a coral symbiotic dinoflagellate Symbiodinium species, where two additional core proteins and fewer AcpPCIs are identified in the PSI-AcpPCI supercomplex. The antenna proteins AcpPCIs in dinoflagellates developed some loops and pigment sites as a result to accommodate the changed PSI core, therefore the structures of PSI-AcpPCI supercomplex of dinoflagellates reveal an unusual protein assembly pattern. A huge pigment network comprising Chls a and c and various carotenoids is revealed from the structural analysis, which provides the basis for our deeper understanding of the energy transfer and dissipation within the PSI-AcpPCI supercomplex, as well as the evolution of photosynthetic organisms.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Dinoflagellida/metabolismo , Proliferação Nociva de Algas , Simbiose , Microscopia Crioeletrônica , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(17): e2300770120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071675

RESUMO

Terrestrial ecosystems and human societies depend on oxygenic photosynthesis, which began to reshape our atmosphere approximately 2.5 billion years ago. The earliest known organisms carrying out oxygenic photosynthesis are the cyanobacteria, which use large complexes of phycobiliproteins as light-harvesting antennae. Phycobiliproteins rely on phycocyanobilin (PCB), a linear tetrapyrrole (bilin) chromophore, as the light-harvesting pigment that transfers absorbed light energy from phycobilisomes to the chlorophyll-based photosynthetic apparatus. Cyanobacteria synthesize PCB from heme in two steps: A heme oxygenase converts heme into biliverdin IXα (BV), and the ferredoxin-dependent bilin reductase (FDBR) PcyA then converts BV into PCB. In the current work, we examine the origins of this pathway. We demonstrate that PcyA evolved from pre-PcyA proteins found in nonphotosynthetic bacteria and that pre-PcyA enzymes are active FDBRs that do not yield PCB. Pre-PcyA genes are associated with two gene clusters. Both clusters encode bilin-binding globin proteins, phycobiliprotein paralogs that we designate as BBAGs (bilin biosynthesis-associated globins). Some cyanobacteria also contain one such gene cluster, including a BBAG, two V4R proteins, and an iron-sulfur protein. Phylogenetic analysis shows that this cluster is descended from those associated with pre-PcyA proteins and that light-harvesting phycobiliproteins are also descended from BBAGs found in other bacteria. We propose that PcyA and phycobiliproteins originated in heterotrophic, nonphotosynthetic bacteria and were subsequently acquired by cyanobacteria.


Assuntos
Cianobactérias , Ficobiliproteínas , Humanos , Filogenia , Ficobiliproteínas/metabolismo , Oxirredutases/metabolismo , Ecossistema , Pigmentos Biliares/química , Cianobactérias/química
3.
Insect Mol Biol ; 33(2): 101-111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37864451

RESUMO

The olfactory system plays a fundamental role in mediating insect behaviour. Worker bees exhibit an age-dependent division of labour, performing discrete sets of behaviours throughout their lifespan. The behavioural states of bees rely on their sense of the environment and chemical communication via their olfactory system, the antennae. However, the olfactory adaptation mechanism of worker bees during their behavioural development remains unclear. In this study, we conducted a comprehensive and quantitative analysis of antennal gene expression in the Apis mellifera of newly emerged workers, nurses, foragers and defenders using RNA-seq. We found that the antenna tissues of honey bees continued developing after transformation from newly emerged workers to adults. Additionally, we identified differentially expressed genes associated with bee development and division of labour. We validated that major royal jelly protein genes are highly and specifically expressed in nurse honey bee workers. Furthermore, we identified and validated significant alternative splicing events correlated with the development and division of labour. These findings provide a comprehensive transcriptome profile and a new perspective on the molecular mechanisms that may underlie the worker honey bee division of labour.


Assuntos
Comportamento Animal , Perfilação da Expressão Gênica , Humanos , Abelhas/genética , Animais , Transcriptoma , Olfato
4.
Bioelectromagnetics ; 45(1): 4-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37408527

RESUMO

The biological effects of exposure to electromagnetic fields due to wireless technologies and connected devices are a subject of particular research interest. Ultrashort high-amplitude electromagnetic field pulses delivered to biological samples using immersed electrodes in a dedicated cuvette have widely demonstrated their effectiveness in triggering several cell responses including increased cytosolic calcium concentration and reactive oxygen species (ROS) production. In contrast, the effects of these pulses are poorly documented when electromagnetic pulses are delivered through an antenna. Here we exposed Arabidopsis thaliana plants to 30,000 pulses (237 kV m-1 , 280 ps rise-time, duration of 500 ps) emitted through a Koshelev antenna and monitored the consequences of electromagnetic fields exposure on the expression levels of several key genes involved in calcium metabolism, signal transduction, ROS, and energy status. We found that this treatment was mostly unable to trigger significant changes in the messenger RNA accumulation of calmodulin, Zinc-Finger protein ZAT12, NADPH oxidase/respiratory burst oxidase homolog (RBOH) isoforms D and F, Catalase (CAT2), glutamate-cystein ligase (GSH1), glutathione synthetase (GSH2), Sucrose non-fermenting-related Kinase 1 (SnRK1) and Target of rapamycin (TOR). In contrast, Ascorbate peroxidases APX-1 and APX-6 were significantly induced 3 h after the exposure. These results suggest that this treatment, although quite strong in amplitude, is mostly ineffective in inducing biological effects at the transcriptional level when delivered by an antenna. © 2023 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Campos Eletromagnéticos , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia
5.
Sensors (Basel) ; 24(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39001204

RESUMO

To address the issues of sluggish response and inadequate precision in traditional gate opening control systems, this study presents a novel approach for direct current (DC) motor control utilizing an enhanced beetle antennae search (BAS) algorithm to fine-tune the parameters of a fuzzy proportional integral derivative (PID) controller. Initially, the mathematical model of the DC motor drive system is formulated. Subsequently, employing a search algorithm, the three parameters of the PID controller are optimized in accordance with the control requirements. Next, software simulation is employed to analyze the system's response time and overshoot. Furthermore, a comparative analysis is conducted between fuzzy PID control based on the improved beetle antennae search algorithm, and conventional approaches such as the traditional beetle antennae search algorithm, the traditional particle swarm algorithm, and the enhanced particle swarm algorithm. The findings indicate the superior performance of the proposed method, characterized by reduced oscillations and accelerated convergence compared to the alternative methods.

6.
BMC Genomics ; 24(1): 781, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102559

RESUMO

BACKGROUND: Odorant-binding proteins (OBPs) are essential in insect's daily behaviors mediated by olfactory perception. Megachile saussurei Radoszkowski (Hymenoptera, Megachilidae) is a principal insect pollinating alfalfa (Medicago sativa) in Northwestern China. The olfactory function have been less conducted, which provides a lot of possibilities for our research. RESULTS: Our results showed that 20 OBPs were identified in total. Multiple sequence alignment analysis indicated MsauOBPs were highly conserved with a 6-cysteine motif pattern and all belonged to the classic subfamily, coding 113-196 amino acids and sharing 41.32%-99.12% amino acid identity with known OBPs of other bees. Phylogenetic analysis indicated there were certain homologies existed among MsauOBPs and most sequences were clustered with that of Osmia cornuta (Hymenoptera, Megachilidae). Expression analysis showed the identified OBPs were mostly enriched in antennae instead of other four body parts, especially the MsauOBP2, MsauOBP3, MsauOBP4, MsauOBP8, MsauOBP11 and MsauOBP17, in which the MsauOBP2, MsauOBP4 and MsauOBP8 presented obvious tissue-biased expression pattern. Molecular docking results indicated MsauOBP4 might be the most significant protein in recognizing alfalfa flower volatile 3-Octanone, while MsauOBP13 might be the most crucial protein identifying (Z)-3-hexenyl acetate. It was also found the lysine was a momentous hydrophilic amino acid in docking simulations. CONCLUSION: In this study, we identified and analyzed 20 OBPs of M. saussurei. The certain homology existed among these OBPs, while some degree of divergence could also be noticed, indicating the complex functions that different MsauOBPs performed. Besides, the M. saussurei and Osmia cornuta were very likely to share similar physiological functions as most of their OBPs were clustered together. MsauOBP4 might be the key protein in recognizing 3-Octanone, while MsauOBP13 might be the key protein in binding (Z)-3-hexenyl acetate. These two proteins might contribute to the alfalfa-locating during the pollination process. The relevant results may help determine the highly specific and effective attractants for M. saussurei in alfalfa pollination and reveal the molecular mechanism of odor-evoked pollinating behavior between these two species.


Assuntos
Himenópteros , Receptores Odorantes , Abelhas , Animais , Himenópteros/metabolismo , Odorantes , Sequência de Aminoácidos , Filogenia , Simulação de Acoplamento Molecular , Perfilação da Expressão Gênica , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Aminoácidos/metabolismo , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo , Transcriptoma
7.
Bull Entomol Res ; 113(6): 794-807, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37855212

RESUMO

Lablab purpureus subsp. bengalensis (Jacq.) Verdc. is an important legume of India and Africa. Both aphids, Aphis craccivora Koch and A. gossypii Glover (Hemiptera: Aphididae), are important herbivorous pests of this legume crop. These viviparous females lay nymphs on the leaf surface of this legume plant. Therefore, it is of considerable interest to study whether leaf surface wax chemicals (long-chain alkanes and free fatty acids) of this legume plant served as short-range attractants and oviposition stimulants in both females to lay nymphs. Twenty-one n-alkanes from n-C12 to n-C35 and 11 free fatty acids from C12:0 to C22:0 were identified in leaf surface waxes. Nonacosane and nonadecanoic acid were the most abundant among n-alkanes and free fatty acids, respectively. Both females were attracted towards one leaf equivalent surface wax against the control solvent (petroleum ether) in short Y-tube olfactometer bioassays. A synthetic blend of tetradecane, pentadecane, tetracosane, tridecanoic acid, tetradecanoic acid, and heneicosanoic acid comparable to one leaf equivalent surface wax served as short-range attractants and oviposition stimulants in A. craccivora; whereas a synthetic blend of tetradecane, hexadecane, docosane, nonadecanoic acid, and arachidic acid comparable to one leaf equivalent surface wax acted as short-range attractants and oviposition stimulants in A. gossypii. These results can provide the basis for efficient pest management strategies of A. craccivora and A. gossypii against L. purpureus subsp. bengalensis using host plant leaf surface wax compounds. Further, SEM studies of antennae and forelegs of both aphids were conducted to observe sensilla structures, which help in chemoreception.


Assuntos
Afídeos , Feminino , Animais , Afídeos/fisiologia , Ácidos Graxos não Esterificados , Oviposição , Alcanos/farmacologia , Ceras/química
8.
Sensors (Basel) ; 23(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37837154

RESUMO

Currently, the widely used blind source separation algorithm is typically associated with issues such as a sluggish rate of convergence and unstable accuracy, and it is mostly suitable for the separation of independent source signals. Nevertheless, source signals are not always independent of one another in practical applications. This paper suggests a blind source separation algorithm based on the bounded component analysis of the enhanced Beetle Antennae Search algorithm (BAS). Firstly, the restrictive assumptions of the bounded component analysis method are more relaxed and do not require the signal sources to be independent of each other, broadening the applicability of this blind source separation algorithm. Second, the objective function of bounded component analysis is optimized using the improved Beetle Antennae Search optimization algorithm. A step decay factor is introduced to ensure that the beetle does not miss the optimal point when approaching the target, improving the optimization accuracy. At the same time, since only one beetle is required, the optimization speed is also improved. Finally, simulation experiments show that the algorithm can effectively separate independent and dependent source signals and can be applied to blind source separation of images. Compared to traditional blind source separation algorithms, it has stronger universality and has faster convergence speed and higher accuracy compared to the original independent component analysis algorithm.

9.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982358

RESUMO

To identify odors in complex environments accurately, insects have evolved multiple olfactory proteins. In our study, various olfactory proteins of Odontothrips loti Haliday, an oligophagous pest that primarily affects Medicago sativa (alfalfa), were explored. Specifically, 47 putative olfactory candidate genes were identified in the antennae transcriptome of O. loti, including seven odorant-binding proteins (OBPs), nine chemosensory proteins (CSPs), seven sensory neuron membrane proteins (SNMPs), eight odorant receptors (ORs), and sixteen ionotropic receptors (IRs). PCR analysis further confirmed that 43 out of 47 genes existed in O. loti adults, and O.lotOBP1, O.lotOBP4, and O.lotOBP6 were specifically expressed in the antennae with a male-biased expression pattern. In addition, both the fluorescence competitive binding assay and molecular docking showed that p-Menth-8-en-2-one, a component of the volatiles of the host, had strong binding ability to the O.lotOBP6 protein. Behavioral experiments showed that this component has a significant attraction to both female and male adults, indicating that O.lotOBP6 plays a role in host location. Furthermore, molecular docking reveals potential active sites in O.lotOBP6 that interact with most of the tested volatiles. Our results provide insights into the mechanism of O. loti odor-evoked behavior and the development of a highly specific and sustainable approach for thrip management.


Assuntos
Receptores Odorantes , Tisanópteros , Masculino , Feminino , Animais , Tisanópteros/genética , Tisanópteros/metabolismo , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Simulação de Acoplamento Molecular , Perfilação da Expressão Gênica , Transcriptoma , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo , Filogenia
10.
Biotechnol Bioeng ; 119(8): 2261-2267, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35475579

RESUMO

Fast-growing cyanobacterial and microalgal strains are considered to be a promising resource to overcome current productivity barriers of phototrophic cultivation. The purpose of this communication, however, is to argue that a high maximal growth rate itself is not a sufficient or necessary property for high phototrophic productivity. Rather, the light-limited specific growth rate of a phototrophic microorganism is a product of several factors, including the rate of light absorption, the photosynthetic efficiency, and the maximal biomass yield per mol photons. It is suggested that, in addition to the maximal growth rate, reports on fast-growing strains should also assess photosynthetic efficiency and maximal biomass yield as predictors of culture productivity. The arguments within the communication are underpinned by a theoretical analysis of a light-limited chemostat, compared to its heterotrophic counterpart. It is shown that for the light-limited chemostat maximal productivity occurs at low dilution rates.


Assuntos
Cianobactérias , Microalgas , Biomassa , Processos Heterotróficos , Fotossíntese
11.
Front Zool ; 19(1): 33, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36517816

RESUMO

BACKGROUND: The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) is one of the most devastating sap-sucking pests of cultivated plants. The success of P. solenopsis is attributable to its ecological resilience and insecticide resistance, making its control extremely difficult and expensive. Thus, alternative safe approaches are needed to prevent the pest population from reaching the economic threshold. One of these novel approaches is based on the fact that chemical communication via the olfactory system drives critical behaviors required for the survival and development of the species. This knowledge can be useful for controlling insect pests using traps based on semiochemicals. The antennae of insects are an invaluable model for studying the fundamentals of odor perception. Several efforts have been made to investigate the histological and ultrastructural organization of the olfactory organs, such as the antennae and maxillary palps, in many insect species. However, studies on the antennal sensory structures of Phenacoccus species are lacking. Furthermore, although enormous progress has been made in understanding the antennal structures of many mealybug species, the olfactory sensilla in the antennae of P. solenopsis have not yet been described. In this study, we describe, for the first time, the morphology and distribution of the antennal sensilla in male and female P. solenopsis using scanning electron microscopy. RESULTS: Our results revealed that the entire antennae length and the number of flagellar segments were different between the sexes. Eight morphological types of sensilla were identified on male antennae: trichoid sensilla, chaetic sensilla (three subtypes), basiconic sensilla (two subtypes), and campaniform sensilla (two subtypes). Six morphological types of sensilla were found on female antennae. Sensilla chaetica of subtype 2 and campaniform sensilla of subtype 1 were distributed only on male antennae, suggesting that these sensilla are involved in the recognition of female sex pheromones. The subtype 1 of sensilla chaetica was significantly more abundant on female antennae than on male ones, while subtype 3 was only located on the terminal flagellar segment of the antenna in both sexes. CONCLUSIONS: This study provides insightful information for future electrophysiological and behavioral studies on chemical communication in insects, particularly the cotton mealybug, P. solenopsis that could help in developing new strategies for controlling this economically important insect species.

12.
BMC Biol ; 19(1): 155, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330268

RESUMO

BACKGROUND: Insects depend on their olfactory sense as a vital system. Olfactory cues are processed by a rather complex system and translated into various types of behavior. In holometabolous insects like the red flour beetle Tribolium castaneum, the nervous system typically undergoes considerable remodeling during metamorphosis. This process includes the integration of new neurons, as well as remodeling and elimination of larval neurons. RESULTS: We find that the sensory neurons of the larval antennae are reused in the adult antennae. Further, the larval antennal lobe gets transformed into its adult version. The beetle's larval antennal lobe is already glomerularly structured, but its glomeruli dissolve in the last larval stage. However, the axons of the olfactory sensory neurons remain within the antennal lobe volume. The glomeruli of the adult antennal lobe then form from mid-metamorphosis independently of the presence of a functional OR/Orco complex but mature dependent on the latter during a postmetamorphic phase. CONCLUSIONS: We provide insights into the metamorphic development of the red flour beetle's olfactory system and compared it to data on Drosophila melanogaster, Manduca sexta, and Apis mellifera. The comparison revealed that some aspects, such as the formation of the antennal lobe's adult glomeruli at mid-metamorphosis, are common, while others like the development of sensory appendages or the role of Orco seemingly differ.


Assuntos
Besouros , Neurônios Receptores Olfatórios , Tribolium , Animais , Drosophila melanogaster , Larva , Metamorfose Biológica
13.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077444

RESUMO

The closely related species Helicoverpa armigera (H. armigera) and Helicoverpa assulta (H. assulta) have different host plant ranges and share two principal components of sex pheromones but with reversed ratios. The antennae are the main olfactory organ of insects and play a crucial role in host plant selection and mate seeking. However, the genetic basis for gene expression divergence in the antennae of the two species is unclear. We performed an allele-specific expression (ASE) analysis in the antennal transcriptomes of the two species and their F1 hybrids, examining the connection between gene expression divergence and phenotypic differences. The results show that the proportion of genes classified as all cis was higher than that of all trans in males and reversed in females. The contribution of regulatory patterns to gene expression divergence in males was less than that in females, which explained the functional differentiation of male and female antennae. Among the five groups of F1 hybrids, the fertile males from the cross of H. armigera female and H. assulta male had the lowest proportion of misexpressed genes, and the inferred regulatory patterns were more accurate. By using this group of F1 hybrids, we discovered that cis-related regulations play a crucial role in gene expression divergence of sex pheromone perception-related proteins. These results are helpful for understanding how specific changes in the gene expression of olfactory-related genes can contribute to rapid evolutionary changes in important olfactory traits in closely related moths.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Antenas de Artrópodes/metabolismo , Feminino , Masculino , Mariposas/genética , Mariposas/metabolismo , Atrativos Sexuais/genética , Atrativos Sexuais/metabolismo , Olfato/genética , Transcriptoma
14.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163978

RESUMO

Light-based events in insects deserve increasing attention for various reasons. Besides their roles in inter- and intra-specific visual communication, with biological, ecological and taxonomical implications, optical properties are also promising tools for the monitoring of insect pests and disease vectors. Among these is the Asian tiger mosquito, Aedes albopictus, a global arbovirus vector. Here we have focused on the autofluorescence characterization of Ae. albopictus adults using a combined imaging and spectrofluorometric approach. Imaging has evidenced that autofluorescence rises from specific body compartments, such as the head appendages, and the abdominal and leg scales. Spectrofluorometry has demonstrated that emission consists of a main band in the 410-600 nm region. The changes in the maximum peak position, between 430 nm and 500 nm, and in the spectral width, dependent on the target structure, indicate the presence, at variable degrees, of different fluorophores, likely resilin, chitin and melanins. The aim of this work has been to provide initial evidence on the so far largely unexplored autofluorescence of Ae. albopictus, to furnish new perspectives for the set-up of species- and sex-specific investigation of biological functions as well as of strategies for in-flight direct detection and surveillance of mosquito vectors.


Assuntos
Aedes/metabolismo , Medições Luminescentes/métodos , Proteínas Luminescentes/metabolismo , Aedes/virologia , Animais , Arbovírus , Feminino , Proteínas Luminescentes/análise , Masculino , Mosquitos Vetores
15.
J Exp Biol ; 224(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33914035

RESUMO

In insects, tyramine receptor 1 (TAR1) has been shown to control several physiological functions, including olfaction. We investigated the molecular and functional profile of the Halyomorpha halys type 1 tyramine receptor gene (HhTAR1) and its role in olfactory functions of this pest. Molecular and pharmacological analyses confirmed that the HhTAR1 gene codes for a true TAR1. RT-qPCR analysis revealed that HhTAR1 is expressed mostly in adult brain and antennae as well as in early development stages (eggs, 1st and 2nd instar nymphs). In particular, among the antennomeres that compose a typical H. halys antenna, HhTAR1 was more expressed in flagellomeres. Scanning electron microscopy investigation revealed the type and distribution of sensilla on adult H. halys antennae: both flagellomeres appear rich in trichoid and grooved sensilla, known to be associated with olfactory functions. Through an RNAi approach, topically delivered HhTAR1 dsRNA induced a 50% downregulation in gene expression after 24 h in H. halys 2nd instar nymphs. An innovative behavioural assay revealed that HhTAR1 RNAi-silenced 2nd instar nymphs were less susceptible to the alarm pheromone component (E)-2 decenal as compared with controls. These results provide critical information concerning the role of TAR1 in olfaction regulation, especially alarm pheromone reception, in H. halys. Furthermore, considering the emerging role of TAR1 as target of biopesticides, this work opens the way for further investigation on innovative methods for controlling H. halys.


Assuntos
Heterópteros , Olfato , Aldeídos , Alcenos , Animais , Percepção , Feromônios , Receptores de Amina Biogênica
16.
Genomics ; 112(6): 3846-3855, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32619572

RESUMO

Insects employ a sensitive chemosensory system to accurately recognize external odorants, which help them to make a behavioral response quickly. Semiothisa cinerearia has caused serious damages to Sophora japonica L. in recent years, and there is still a lack of effective strategy to control the pest. Although the two type-II sex pheromones of S. cinerearia, 6Z,9Z-cis-3,4-epoxy-17:H and 3Z,6Z,9Z-17:H, have been identified for 30 years, the molecular mechanisms underlying the chemosensation of the two sex pheromones are still unknown. Here, we found that there are differences in the types of antennae sensilla between sexes, and revealed 146 putative chemosensory genes in the antennal transcriptome. Among these genes, 11 and 40 of them displayed male-biased and female-biased expression, respectively. Our findings greatly improve the chemosensory gene resources for S. cinerearia and provide a foundation for functional studies of these sex-biased genes on the chemosensation of sex pheromones and on other sex-related behaviors.


Assuntos
Mariposas/genética , Receptores Odorantes/genética , Atrativos Sexuais/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Mariposas/fisiologia , Filogenia , Transcriptoma
17.
BMC Genomics ; 21(1): 101, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000664

RESUMO

BACKGROUND: Rhodnius prolixus has become a model for revealing the molecular bases of insect sensory biology due to the publication of its genome and its well-characterized behavioural repertoire. Gene expression modulation underlies behaviour-triggering processes at peripheral and central levels. Still, the regulation of sensory-related gene transcription in sensory organs is poorly understood. Here we study the genetic bases of plasticity in antennal sensory function, using R. prolixus as an insect model. RESULTS: Antennal expression of neuromodulatory genes such as those coding for neuropeptides, neurohormones and their receptors was characterized in fifth instar larvae and female and male adults by means of RNA-Sequencing (RNA-Seq). New nuclear receptor and takeout gene sequences were identified for this species, as well as those of enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines. CONCLUSIONS: We report a broad repertoire of neuromodulatory and neuroendocrine-related genes expressed in the antennae of R. prolixus and suggest that they may serve as the local basis for modulation of sensory neuron physiology. Diverse neuropeptide precursor genes showed consistent expression in the antennae of all stages studied. Future studies should characterize the role of these modulatory components acting over antennal sensory processes to assess the relative contribution of peripheral and central regulatory systems on the plastic expression of insect behaviour.


Assuntos
Perfilação da Expressão Gênica/veterinária , Proteínas de Insetos/genética , Rhodnius/crescimento & desenvolvimento , Animais , Antenas de Artrópodes/química , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Larva , Masculino , Neuropeptídeos/genética , Neurotransmissores/genética , Filogenia , Receptores de Neuropeptídeos/genética , Receptores de Neurotransmissores/genética , Rhodnius/genética , Análise de Sequência de RNA/veterinária
18.
J Exp Biol ; 223(Pt 20)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067354

RESUMO

Many walking insects use vision for long-distance navigation, but the influence of vision on rapid walking performance that requires close-range obstacle detection and directing the limbs towards stable footholds remains largely untested. We compared Argentine ant (Linepithema humile) workers in light versus darkness while traversing flat and uneven terrain. In darkness, ants reduced flat-ground walking speeds by only 5%. Similarly, the approach speed and time to cross a step obstacle were not significantly affected by lack of lighting. To determine whether tactile sensing might compensate for vision loss, we tracked antennal motion and observed shifts in spatiotemporal activity as a result of terrain structure but not illumination. Together, these findings suggest that vision does not impact walking performance in Argentine ant workers. Our results help contextualize eye variation across ants, including subterranean, nocturnal and eyeless species that walk in complete darkness. More broadly, our findings highlight the importance of integrating vision, proprioception and tactile sensing for robust locomotion in unstructured environments.


Assuntos
Formigas , Animais , Humanos , Caminhada
19.
Arch Insect Biochem Physiol ; 104(1): e21660, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31994766

RESUMO

Drosophila suzukii differs from other members of the genus Drosophila in its host preference and oviposition behavior. The flies are attracted to ripening fruits, and females have a serrated ovipositor enabling eggs to be laid inside the fruit. In addition to its huge economic impact, its unique chemoecological, morphological, and physiological characteristics have garnered considerable research interests. In this study, we analyzed D. suzukii antennal transcriptomes to identify sex-biased genes by comparison of differential gene expressions between male antennae (MA) and female antennae (FA). Among 13,583 total genes of the fly genome, 11,787 genes were expressed in either MA or FA. There are only 132 genes (9 in MA, 7 in FA, and 116 in both, FPKM >1) were expressed in antennae exclusively, and 2,570 genes (9 in MA, 0 in FA, and 2,561 in both) were enriched in antennae containing 185 and 113 sex-biased genes in MA and FA, respectively. Interestingly, many immune-related genes were highly expressed in MA, whereas several chemosensory genes were at high rank in FA. We identified 27 sex-biased chemosensory genes including odorant and gustatory receptors, odorant-binding proteins, chemosensory proteins, ionotropic receptors, and cytochrome P450s, and validated the gene expressions using quantitative real-time PCR. The highly expressed sex-biased genes in antennae are likely involved in the fly specific mating, host-finding behaviors, or sex-specific functions. The molecular results demonstrated here will facilitate to find the unique chemoreception of D. suzukii, as well as on the development of new management strategies for this pest.


Assuntos
Antenas de Artrópodes/metabolismo , Drosophila/genética , Fatores Sexuais , Animais , Células Quimiorreceptoras , Sistema Enzimático do Citocromo P-450/genética , Drosophila/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino
20.
Med Vet Entomol ; 34(3): 344-363, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32407606

RESUMO

Lipoptena cervi (Linnaeus, 1758), Lipoptena fortisetosa Maa, 1965, Hippobosca equina Linnaeus, 1758, and Pseudolynchia canariensis (Macquart, 1840) (Diptera: Hippoboscidae) are haematophagous ectoparasites that infest different mammal and bird species and occasionally attack humans. They are known for the health implications they have as vectors of pathogens to humans and animals, and for the injuries they inflict on their host's skin. This study focused on the morphological structures evolved by parasites in terms of their biology and the different environment types that they inhabit. To this aim, we examined four hippoboscid species, as well as their hosts' fur (ungulate and horse), and feather (pigeon) through light and Scanning Electron Microscopy (SEM) observations in order to highlight the main morphological features that evolved differently in these flies and to explain the effect of hosts' fur/feather microhabitats on the morphological specializations observed in the investigated ectoparasites. The studied species showed main convergent characters in mouthparts while remarkable differences have been detected on the antennal sensillar pattern as well as on the leg acropod that displayed divergent characters evolved in relation to the host.


Assuntos
Antenas de Artrópodes/anatomia & histologia , Evolução Biológica , Dípteros/anatomia & histologia , Meio Ambiente , Interações Hospedeiro-Parasita , Animais , Antenas de Artrópodes/ultraestrutura , Dípteros/classificação , Dípteros/fisiologia , Dípteros/ultraestrutura , Feminino , Masculino , Microscopia , Microscopia Eletrônica de Varredura , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA