Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(6): 1423-1435.e12, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27594426

RESUMO

Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines ∼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions.


Assuntos
Apicomplexa/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Parasita , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Células Cultivadas , Claudinas/genética , Claudinas/metabolismo , Fibroblastos/parasitologia , Genoma de Protozoário/genética , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/fisiopatologia , Plasmodium falciparum/genética , Toxoplasmose/parasitologia , Toxoplasmose/fisiopatologia
2.
Mol Microbiol ; 121(3): 359-367, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37740453

RESUMO

Apicomplexans, such as Plasmodium and Toxoplasma are obligate intracellular parasites that invade, replicate and finally EXIT their host cell. During replication within a parasitophorous vacuole (PV), the parasites establish an extensive F-actin-containing network that connects individual parasites and is required for material exchange, recycling and the final steps of daughter cell assembly. After multiple rounds of replication, the parasites exit the host cell involving multiple signalling cascades, disassembly of the network, secretion of microneme proteins and activation of the acto-myosin motor. Blocking the host cell EXIT process leads to the formation of large PVs, making the screening for genes involved in exiting the cell relatively straightforward. Given that apicomplexans are highly diverse from other eukaryotes, approximately 30% of all genes are annotated as hypothetical, some apicomplexan-specific factors are likely to be critical during EXIT. This motivated several labs to design and perform forward genetic and phenotypic screens using various approaches, such as random insertion mutagenesis, temperature-sensitive mutants and, more recently, CRISPR/Cas9-mediated targeted editing and conditional mutagenesis. Here we will provide an overview of the technological developments over recent years and the most successful stories that led to the identification of new critical factors in Toxoplasma gondii.


Assuntos
Parasitos , Plasmodium , Toxoplasma , Animais , Parasitos/metabolismo , Toxoplasma/metabolismo , Plasmodium/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
3.
Infect Immun ; 91(3): e0053122, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920200

RESUMO

CD4 T cells are required, along with antibodies, for complete protection from blood-stage infection with Plasmodium spp., which cause malaria. Without continuous exposure, as on emigration of people from endemic areas, protection from malaria decays. As in other persistent infections, low-level Plasmodium chabaudi infection protects the host from reinfection at 2 months postinfection, a phenomenon termed premunition. Premunition is correlated with T cell responses, rather than antibody levels. We previously showed that while both effector T cells (Teff) and memory T cells (Tmem) are present after infection, Teff protect better than Tmem. Here, we studied T cell kinetics post-infection by labeling dividing Ifng+ T cells with 5-bromo-2'-deoxyuridine (BrdU) in infected Ifng reporter mice. Large drops in specific T cell numbers and Ifng+ cells upon clearance of parasites suggest a mechanism for decay of protection. Although protection decays, CD4 Tmem persist, including a highly differentiated CD27- effector memory (Tem) subset that maintains some Ifng expression. In addition, pretreatment of chronically infected animals with neutralizing antibody to interferon gamma (IFN-γ) or with clodronate liposomes before reinfection decreases premunition, supporting a role for Th1-type immunity to reinfection. A pulse-chase experiment comparing chronically infected to treated animals showed that recently divided Ifng+ T cells, particularly IFN-γ+ TNF+ IL-2- T cells, are promoted by persistent infection. These data suggest that low-level persistent infection reduces CD4+ Tmem and multifunctional Teff survival, but promotes IFN-γ+ TNF+ IL-2- T cells and Ifng+ terminally differentiated effector T cells, and prolongs immunity.


Assuntos
Citocinas , Malária , Animais , Camundongos , Linfócitos T CD4-Positivos , Citocinas/metabolismo , Interferon gama/metabolismo , Interleucina-2 , Infecção Persistente , Reinfecção/metabolismo , Subpopulações de Linfócitos T , Células Th1/imunologia
4.
J Clin Microbiol ; 61(5): e0028622, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-36809084

RESUMO

The taxonomy of medically important parasites continues to evolve. This minireview provides an update of additions and updates in the field of human parasitology from June 2020 through June 2022. A list of previously reported nomenclatural changes that have not been broadly adapted by the medical community is also included.


Assuntos
Cryptosporidium , Parasitos , Animais , Humanos , Parasitologia
5.
Antimicrob Agents Chemother ; 65(10): e0026721, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34339271

RESUMO

Malaria persists as a major health problem due to the spread of drug resistance and the lack of effective vaccines. DNA gyrase is a well-validated and extremely effective therapeutic target in bacteria, and it is also known to be present in the apicoplast of malarial species, including Plasmodium falciparum. This raises the possibility that it could be a useful target for novel antimalarials. To date, characterization and screening of this gyrase have been hampered by difficulties in cloning and purification of the GyrA subunit, which is necessary together with GyrB for reconstitution of the holoenzyme. To overcome this, we employed a library of compounds with specificity for P. falciparum GyrB and assessed them in activity tests utilizing P. falciparum GyrB together with Escherichia coli GyrA to reconstitute a functional hybrid enzyme. Two inhibitory compounds were identified that preferentially inhibited the supercoiling activity of the hybrid enzyme over the E. coli enzyme. Of these, purpurogallin (PPG) was found to disrupt DNA binding to the hybrid gyrase complex and thus reduce the DNA-induced ATP hydrolysis of the enzyme. Binding studies indicated that PPG showed higher-affinity binding to P. falciparum GyrB than to the E. coli protein. We suggest that PPG achieves its inhibitory effect on gyrase through interaction with P. falciparum GyrB leading to disruption of DNA binding and, consequently, reduction of DNA-induced ATPase activity. The compound also showed an inhibitory effect against the malaria parasite in vitro and may be of interest for further development as an antimalarial agent.


Assuntos
Apicoplastos , Malária Falciparum , DNA Girase/genética , Escherichia coli/genética , Humanos , Plasmodium falciparum
6.
Antimicrob Agents Chemother ; 65(9): e0066221, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34152821

RESUMO

An effective strategy to control blood-borne diseases and prevent outbreak recrudescence involves targeting conserved metabolic processes that are essential for pathogen viability. One such target for Plasmodium and Babesia, the infectious agents of malaria and babesiosis, respectively, is the mitochondrial cytochrome bc1 protein complex, which can be inhibited by endochin-like quinolones (ELQ) and atovaquone. We used the tick-transmitted and culturable blood-borne pathogen Babesia duncani to evaluate the structure-activity relationship, safety, efficacy, and mode of action of ELQs. We identified a potent and highly selective ELQ prodrug (ELQ-502), which, alone or in combination with atovaquone, eliminates B. microti and B. duncani infections in vitro and in mouse models of parasitemia and lethal infection. The strong efficacy at low dose, excellent safety, bioavailability, and long half-life of this experimental therapy make it an ideal clinical candidate for the treatment of human infections caused by Babesia and its closely related apicomplexan parasites.


Assuntos
Babesia , Babesiose , Animais , Atovaquona/farmacologia , Babesiose/tratamento farmacológico , Babesiose/prevenção & controle , Citocromos , Camundongos , Parasitemia/tratamento farmacológico
7.
Parasitology ; 148(3): 341-353, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33100232

RESUMO

Apicomplexan parasites are well-known to modulate their host cells at diverse functional levels. As such, apicomplexan-induced alteration of host cellular cell cycle was described and appeared dependent on both, parasite species and host cell type. As a striking evidence of species-specific reactions, we here show that Eimeria bovis drives primary bovine umbilical vein endothelial cells (BUVECs) into a senescence-like phenotype during merogony I. In line with senescence characteristics, E. bovis induces a phenotypic change in host cell nuclei being characterized by nucleolar fusion and heterochromatin-enriched peripheries. By fibrillarin staining we confirm nucleoli sizes to be increased and their number per nucleus to be reduced in E. bovis-infected BUVECs. Additionally, nuclei of E. bovis-infected BUVECs showed enhanced signals for HH3K9me2 as heterochromatin marker thereby indicating an infection-induced change in heterochromatin transition. Furthermore, E. bovis-infected BUVECs show an enhanced ß-galactosidase activity, which is a well-known marker of senescence. Referring to cell cycle progression, protein abundance profiles in E. bovis-infected endothelial cells revealed an up-regulation of cyclin E1 thereby indicating a cell cycle arrest at G1/S transition, signifying a senescence key feature. Similarly, abundance of G2 phase-specific cyclin B1 was found to be downregulated at the late phase of macromeront formation. Overall, these data indicate that the slow proliferative intracellular parasite E. bovis drives its host endothelial cells in a senescence-like status. So far, it remains to be elucidated whether this phenomenon indeed reflects an intentionally induced mechanism to profit from host cell-derived energy and metabolites present in a non-dividing cellular status.


Assuntos
Envelhecimento/fisiologia , Doenças dos Bovinos/parasitologia , Coccidiose/veterinária , Células Endoteliais/fisiologia , Pontos de Checagem da Fase G1 do Ciclo Celular , Animais , Bovinos , Coccidiose/parasitologia , Eimeria/fisiologia , Masculino , Fenótipo
8.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32719159

RESUMO

The circumsporozoite protein (CSP) builds up the surface coat of sporozoites and is the leading malaria pre-erythrocytic-stage vaccine candidate. CSP has been shown to induce robust CD8+ T cell responses that are capable of eliminating developing parasites in hepatocytes, resulting in protective immunity. In this study, we characterized the importance of the immunodominant CSP-derived epitope SYIPSAEKI of Plasmodium berghei in both sporozoite- and vaccine-induced protection in murine infection models. In BALB/c mice, where SYIPSAEKI is efficiently presented in the context of the major histocompatibility complex class I (MHC-I) molecule H-2-Kd, we established that epitope-specific CD8+ T cell responses contribute to parasite killing following sporozoite immunization. Yet, sterile protection was achieved in the absence of this epitope, substantiating the concept that other antigens can be sufficient for parasite-induced protective immunity. Furthermore, we demonstrated that SYIPSAEKI-specific CD8+ T cell responses elicited by viral-vectored CSP-expressing vaccines effectively targeted parasites in hepatocytes. The resulting sterile protection strictly relied on the expression of SYIPSAEKI. In C57BL/6 mice, which are unable to present the immunodominant epitope, CSP-based vaccines did not confer complete protection, despite the induction of high levels of CSP-specific antibodies. These findings underscore the significance of CSP in protection against malaria pre-erythrocytic stages and demonstrate that a significant proportion of the protection against the parasite is mediated by CD8+ T cells specific for the immunodominant CSP-derived epitope.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Plasmodium berghei/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Apresentação de Antígeno , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T/química , Imunização , Malária/imunologia , Malária/parasitologia , Vacinas Antimaláricas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos , Proteínas de Protozoários/química , Especificidade da Espécie , Esporozoítos/imunologia
9.
J Eukaryot Microbiol ; 67(1): 4-17, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31231936

RESUMO

Eugregarines are understudied apicomplexan parasites of invertebrates inhabiting marine, freshwater, and terrestrial environments. Most currently known terrestrial eugregarines have been described parasitizing the gut from less than 1% of total insect diversity, with a high likelihood that the remaining insect species are infected. Eugregarine diversity in orthopterans (grasshoppers, locusts, katydids, and crickets) is still little known. We carried out a survey of the eugregarines parasitizing the Mexican lubber grasshopper, Taeniopoda centurio, an endemic species to the northwest of Mexico. We described two new eugregarine species from the gut of the host: Amoebogregarina taeniopoda n. sp. and Quadruspinospora mexicana n. sp. Both species are morphologically dissimilar in their life-cycle stages. Our SSU rDNA phylogenetic analysis showed that both species are phylogenetically distant to each other, even though they parasitize the same host. Amoebogregarina taeniopoda n. sp. clustered within the clade Gregarinoidea, being closely related to Amoebogregarina nigra from the grasshopper Melanoplus differentialis. Quadruspinospora mexicana n. sp. clustered within the clade Actinocephaloidea and grouped with Prismatospora evansi, a parasite from dragonfly naiads. Amoebogregarina taeniopoda n. sp. and Q. mexicana n. sp. represent the first record of eugregarines found to infect a species of the family Romaleidae.


Assuntos
Apicomplexa/classificação , Apicomplexa/citologia , Gafanhotos/parasitologia , Interações Hospedeiro-Parasita , Filogenia , Animais , Apicomplexa/ultraestrutura , DNA de Protozoário/análise , DNA Ribossômico/análise , México , Microscopia , Microscopia Eletrônica de Varredura , Análise de Sequência de DNA
10.
Parasitol Res ; 119(8): 2563-2577, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32548739

RESUMO

Besnoitia besnoiti is an important obligate intracellular parasite of cattle which primarily infects host endothelial cells of blood vessels during the acute phase of infection. Similar to the closely related parasite Toxoplasma gondii, B. besnoiti has fast proliferating properties leading to rapid host cell lysis within 24-30 h p.i. in vitro. Some apicomplexan parasites were demonstrated to modulate the host cellular cell cycle to successfully perform their intracellular development. As such, we recently demonstrated that T. gondii tachyzoites induce G2/M arrest accompanied by chromosome missegregation, cell spindle alteration, formation of supernumerary centrosomes, and cytokinesis impairment when infecting primary bovine umbilical vein endothelial cells (BUVEC). Here, we follow a comparative approach by using the same host endothelial cell system for B. besnoiti infections. The current data showed that-in terms of host cell cycle modulation-infections of BUVEC by B. besnoiti tachyzoites indeed differ significantly from those by T. gondii. As such, cyclin expression patterns demonstrated a significant upregulation of cyclin E1 in B. besnoiti-infected BUVEC, thereby indicating parasite-driven host cell stasis at G1-to-S phase transition. In line, the mitotic phase of host cell cycle was not influenced since alterations of chromosome segregation, mitotic spindle formation, and cytokinesis were not observed. In contrast to respective T. gondii-related data, we furthermore found a significant upregulation of histone H3 (S10) phosphorylation in B. besnoiti-infected BUVEC, thereby indicating enhanced chromosome condensation to occur in these cells. In line to altered G1/S-transition, we here additionally showed that subcellular abundance of proliferating cell nuclear antigen (PCNA), a marker for G1 and S phase sub-stages, was affected by B. besnoiti since infected cells showed increased nuclear PCNA levels when compared with that of control cells.


Assuntos
Doenças dos Bovinos/fisiopatologia , Coccidiose/veterinária , Pontos de Checagem da Fase G2 do Ciclo Celular , Pontos de Checagem da Fase M do Ciclo Celular , Sarcocystidae/fisiologia , Animais , Apoptose , Bovinos , Doenças dos Bovinos/parasitologia , Coccidiose/parasitologia , Coccidiose/fisiopatologia , Células Endoteliais/citologia , Células Endoteliais/parasitologia
11.
Crit Rev Biochem Mol Biol ; 52(3): 254-273, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28276701

RESUMO

The increasing prevalence of infections involving intracellular apicomplexan parasites such as Plasmodium, Toxoplasma, and Cryptosporidium (the causative agents of malaria, toxoplasmosis, and cryptosporidiosis, respectively) represent a significant global healthcare burden. Despite their significance, few treatments are available; a situation that is likely to deteriorate with the emergence of new resistant strains of parasites. To lay the foundation for programs of drug discovery and vaccine development, genome sequences for many of these organisms have been generated, together with large-scale expression and proteomic datasets. Comparative analyses of these datasets are beginning to identify the molecular innovations supporting both conserved processes mediating fundamental roles in parasite survival and persistence, as well as lineage-specific adaptations associated with divergent life-cycle strategies. The challenge is how best to exploit these data to derive insights into parasite virulence and identify those genes representing the most amenable targets. In this review, we outline genomic datasets currently available for apicomplexans and discuss biological insights that have emerged as a consequence of their analysis. Of particular interest are systems-based resources, focusing on areas of metabolism and host invasion that are opening up opportunities for discovering new therapeutic targets.


Assuntos
Apicomplexa , Regulação da Expressão Gênica/fisiologia , Genoma de Protozoário/fisiologia , Estágios do Ciclo de Vida/fisiologia , Proteômica , Proteínas de Protozoários , Animais , Apicomplexa/genética , Apicomplexa/metabolismo , Apicomplexa/patogenicidade , Humanos , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética
12.
Infect Immun ; 87(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30510101

RESUMO

Toxoplasma gondii is associated with physiological effects in the host. Dysregulation of catecholamines in the central nervous system has previously been observed in chronically infected animals. In the study described here, the noradrenergic system was found to be suppressed with decreased levels of norepinephrine (NE) in brains of infected animals and in infected human and rat neural cells in vitro The mechanism responsible for the NE suppression was found to be downregulation of dopamine ß-hydroxylase (DBH) gene expression, encoding the enzyme that synthesizes norepinephrine from dopamine, with downregulation observed in vitro and in infected brain tissue, particularly in the dorsal locus coeruleus/pons region. The downregulation was sex specific, with males expressing reduced DBH mRNA levels whereas females were unchanged. Rather, DBH expression correlated with estrogen receptor in the female rat brains for this estrogen-regulated gene. DBH silencing was not a general response of neurons to infection, as human cytomegalovirus did not downregulate DBH expression. The noradrenergic-linked behaviors of sociability and arousal were altered in chronically infected animals, with a high correlation between DBH expression and infection intensity. A decrease in DBH expression in noradrenergic neurons can elevate dopamine levels, which provides a possible explanation for mixed observations of changes in this neurotransmitter with infection. Decreased NE is consistent with the loss of coordination and motor impairments associated with toxoplasmosis. Further, the altered norepinephrine synthesis observed here may, in part, explain behavioral effects of infection and associations with mental illness.


Assuntos
Catecolaminas/metabolismo , Doenças do Sistema Nervoso Central/parasitologia , Dopamina beta-Hidroxilase/metabolismo , Norepinefrina/metabolismo , Toxoplasmose/metabolismo , Animais , Encéfalo/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Dopamina/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Camundongos , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos
13.
Artigo em Inglês | MEDLINE | ID: mdl-30530601

RESUMO

Toxoplasma gondii is one of the most widespread obligatory parasitic protozoa and infects nearly all warm-blooded animals, leading to toxoplasmosis. The therapeutic drugs currently administered, like the combination of pyrimethamine and sulfadiazine, show high rates of toxic side effects, and drug resistance is encountered in some cases. Resveratrol is a natural plant extract with multiple functions, such as antibacterial, anticancer, and antiparasite activities. In this study, we evaluated the inhibitory effects of resveratrol on tachyzoites of the Toxoplasma gondii RH strain extracellularly and intracellularly. We demonstrate that resveratrol possesses direct antitoxoplasma activity by reducing the population of extracellularly grown tachyzoites, probably by disturbing the redox homeostasis of the parasites. Moreover, resveratrol was also able to release the burden of cellular stress, promote apoptosis, and maintain the autophagic status of macrophages, which turned out to be regulated by intracellular parasites, thereby functioning indirectly in eliminating T. gondii In conclusion, resveratrol has both direct and indirect antitoxoplasma effects against RH tachyzoites and may possess the potential to be further evaluated and employed for toxoplasmosis treatment.


Assuntos
Antiparasitários/farmacologia , Inibidores Enzimáticos/farmacologia , Resveratrol/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Macrófagos/imunologia , Camundongos , Extratos Vegetais/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-30559138

RESUMO

A series of 4-amino 2-anilinoquinazolines optimized for activity against the most lethal malaria parasite of humans, Plasmodium falciparum, was evaluated for activity against other human Plasmodium parasites and related apicomplexans that infect humans and animals. Four of the most promising compounds from the 4-amino 2-anilinoquinazoline series were equally as effective against the asexual blood stages of the zoonotic P. knowlesi, suggesting that they could also be effective against the closely related P. vivax, another important human pathogen. The 2-anilinoquinazoline compounds were also potent against an array of P. falciparum parasites resistant to clinically available antimalarial compounds, although slightly less so than against the drug-sensitive 3D7 parasite line. The apicomplexan parasites Toxoplasma gondii, Babesia bovis, and Cryptosporidium parvum were less sensitive to the 2-anilinoquinazoline series with a 50% effective concentration generally in the low micromolar range, suggesting that the yet to be discovered target of these compounds is absent or highly divergent in non-Plasmodium parasites. The 2-anilinoquinazoline compounds act as rapidly as chloroquine in vitro and when tested in rodents displayed a half-life that contributed to the compound's capacity to clear P. falciparum blood stages in a humanized mouse model. At a dose of 50 mg/kg of body weight, adverse effects to the humanized mice were noted, and evaluation against a panel of experimental high-risk off targets indicated some potential off-target activity. Further optimization of the 2-anilinoquinazoline antimalarial class will concentrate on improving in vivo efficacy and addressing adverse risk.


Assuntos
Compostos de Anilina/farmacologia , Antiparasitários/farmacologia , Babesia bovis/efeitos dos fármacos , Cryptosporidium parvum/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinazolinas/farmacologia , Toxoplasma/efeitos dos fármacos , Animais , Antimaláricos/farmacologia , Linhagem Celular , Cloroquina/farmacologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Testes de Sensibilidade Parasitária , Ratos , Ratos Sprague-Dawley
15.
Infect Immun ; 86(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29760216

RESUMO

Plasmodium falciparum merozoite surface protein 3 (MSP3) is an abundantly expressed secreted merozoite surface protein and a leading malaria vaccine candidate antigen. However, it is unclear how MSP3 is retained on the surface of merozoites without a glycosylphosphatidylinositol (GPI) anchor or a transmembrane domain. In the present study, we identified an MSP3-associated network on the Plasmodium merozoite surface by immunoprecipitation of Plasmodium merozoite lysate using antibody to the N terminus of MSP3 (anti-MSP3N) followed by mass spectrometry analysis. The results suggested the association of MSP3 with other merozoite surface proteins: MSP1, MSP6, MSP7, RAP2, and SERA5. Protein-protein interaction studies by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) analysis showed that MSP3 complex consists of MSP1, MSP6, and MSP7 proteins. Immunological characterization of MSP3 revealed that MSP3N is strongly recognized by hyperimmune serum from African and Asian populations. Furthermore, we demonstrate that human antibodies, affinity purified against recombinant MSP3N (rMSP3N), promote opsonic phagocytosis of merozoites in cooperation with monocytes. At nonphysiological concentrations, anti-MSP3N antibodies inhibited the growth of P. falciparum in vitro Together, the data suggest that MSP3 and especially its N-terminal region containing known B/T cell epitopes are targets of naturally acquired immunity against malaria and also comprise an important candidate for a multisubunit malaria vaccine.


Assuntos
Antígenos de Protozoários/análise , Antígenos de Protozoários/imunologia , Proteínas de Membrana/análise , Proteínas de Membrana/imunologia , Merozoítos/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/análise , Proteínas de Protozoários/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos , Antígenos de Protozoários/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoprecipitação , Malária Falciparum/imunologia , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Merozoítos/química , Monócitos/imunologia , Proteínas Opsonizantes/sangue , Proteínas Opsonizantes/imunologia , Fagocitose , Plasmodium falciparum/química , Plasmodium falciparum/crescimento & desenvolvimento , Mapas de Interação de Proteínas , Multimerização Proteica , Proteínas de Protozoários/metabolismo , Ressonância de Plasmônio de Superfície
16.
Artigo em Inglês | MEDLINE | ID: mdl-29158278

RESUMO

Protozoan parasites, including the apicomplexan pathogens Plasmodium falciparum (which causes malaria) and Toxoplasma gondii (which causes toxoplasmosis), infect millions of people worldwide and represent major human disease burdens. Despite their prevalence, therapeutic strategies to treat infections caused by these parasites remain limited and are threatened by the emergence of drug resistance, highlighting the need for the identification of novel drug targets. Recently, homologues of the core autophagy proteins, including Atg8 and Atg3, were identified in many protozoan parasites. Importantly, components of the Atg8 conjugation system that facilitate the lipidation of Atg8 are required for both canonical and parasite-specific functions and are essential for parasite viability. Structural characterization of the P. falciparum Atg3-Atg8 (PfAtg3-Atg8) interaction has led to the identification of compounds that block this interaction. Additionally, many of these compounds inhibit P. falciparum growth in vitro, demonstrating the viability of this pathway as a drug target. Given the essential role of the Atg8 lipidation pathway in Toxoplasma, we sought to determine whether three PfAtg3-Atg8 interaction inhibitors identified in the Medicines for Malaria Venture Malaria Box exerted a similar inhibitory effect in Toxoplasma While all three inhibitors blocked Toxoplasma replication in vitro at submicromolar concentrations, they did not inhibit T. gondii Atg8 (TgAtg8) lipidation. Rather, high concentrations of two of these compounds induced TgAtg8 lipidation and fragmentation of the parasite mitochondrion, similar to the effects seen following starvation and monensin-induced autophagy. Additionally, we report that one of the PfAtg3-Atg8 interaction inhibitors induces Toxoplasma egress and provide evidence that this is mediated by an increase in intracellular calcium in response to drug treatment.


Assuntos
Antiprotozoários/farmacologia , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Toxoplasma/efeitos dos fármacos , Sequência de Aminoácidos , Antiprotozoários/química , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Sítios de Ligação , Replicação do DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Expressão Gênica , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Simulação de Acoplamento Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Ligação Proteica/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Bibliotecas de Moléculas Pequenas/química , Especificidade da Espécie , Relação Estrutura-Atividade , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo
17.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28348050

RESUMO

Toxoplasma gondii and Neospora caninum (both Apicomplexa) are closely related cyst-forming coccidian parasites that differ significantly in their host ranges and ability to cause disease. Unlike eutherian mammals, Australian marsupials (metatherian mammals) have long been thought to be highly susceptible to toxoplasmosis and neosporosis because of their historical isolation from the parasites. In this study, the carnivorous fat-tailed dunnart (Sminthopsis crassicaudata) was used as a disease model to investigate the immune response and susceptibility to infection of an Australian marsupial to T. gondii and N. caninum The disease outcome was more severe in N. caninum-infected dunnarts than in T. gondii-infected dunnarts, as shown by the severity of clinical and histopathological features of disease and higher tissue parasite burdens in the tissues evaluated. Transcriptome sequencing (RNA-seq) of spleens from infected dunnarts and mitogen-stimulated dunnart splenocytes was used to define the cytokine repertoires. Changes in mRNA expression during the time course of infection were measured using quantitative reverse transcription-PCR (qRT-PCR) for key Th1 (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]), Th2 (interleukin 4 [IL-4] and IL-6), and Th17 (IL-17A) cytokines. The results show qualitative differences in cytokine responses by the fat-tailed dunnart to infection with N. caninum and T. gondii Dunnarts infected with T. gondii were capable of mounting a more effective Th1 immune response than those infected with N. caninum, indicating the role of the immune response in the outcome scenarios of parasite infection in this marsupial mammal.


Assuntos
Coccidiose/imunologia , Interferon gama/imunologia , Marsupiais/parasitologia , Toxoplasmose Animal/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Suscetibilidade a Doenças , Marsupiais/imunologia , Neospora , Carga Parasitária , Reação em Cadeia da Polimerase em Tempo Real , Baço/imunologia , Baço/parasitologia , Equilíbrio Th1-Th2 , Toxoplasma
18.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28760930

RESUMO

The obligate intracellular parasite Toxoplasma gondii can actively infect any nucleated cell type, including cells from the immune system. The rapid transfer of T. gondii from infected dendritic cells to effector natural killer (NK) cells may contribute to the parasite's sequestration and shielding from immune recognition shortly after infection. However, subversion of NK cell functions, such as cytotoxicity or production of proinflammatory cytokines, such as gamma interferon (IFN-γ), upon parasite infection might also be beneficial to the parasite. In the present study, we investigated the effects of T. gondii infection on NK cells. In vitro, infected NK cells were found to be poor at killing target cells and had reduced levels of IFN-γ production. This could be attributed in part to the inability of infected cells to form conjugates with their target cells. However, even upon NK1.1 cross-linking of NK cells, the infected NK cells also exhibited poor degranulation and IFN-γ production. Similarly, NK cells infected in vivo were also poor at killing target cells and producing IFN-γ. Increased levels of transforming growth factor ß production, as well as increased levels of expression of SHP-1 in the cytosol of infected NK cells upon infection, were observed in infected NK cells. However, the phosphorylation of STAT4 was not altered in infected NK cells, suggesting that transcriptional regulation mediates the reduced IFN-γ production, which was confirmed by quantitative PCR. These data suggest that infection of NK cells by T. gondii impairs NK cell recognition of target cells and cytokine release, two mechanisms that independently could enhance T. gondii survival.


Assuntos
Imunomodulação , Células Matadoras Naturais/microbiologia , Células Matadoras Naturais/fisiologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Citotoxicidade Imunológica , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Interações Hospedeiro-Parasita , Interferon gama/biossíntese , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/biossíntese , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Fator de Transcrição STAT4/metabolismo , Toxoplasma/fisiologia , Fator de Crescimento Transformador beta/biossíntese
19.
Artigo em Inglês | MEDLINE | ID: mdl-28137808

RESUMO

We present the effects of two novel bumped kinase inhibitors, BKI-1517 and BKI-1553, against Neospora caninum tachyzoites in vitro and in experimentally infected pregnant mice. These compounds inhibited tachyzoite proliferation of a transgenic beta-galactosidase reporter strain cultured in human foreskin fibroblasts with 50% inhibitory concentrations (IC50s) of 0.05 ± 0.03 and 0.18 ± 0.03 µM, respectively. As assessed by an alamarBlue assay, fibroblast IC50s were above 20 µM; however, morphological changes occurred in cultures treated with >5 µM BKI-1517 after prolonged exposure (>6 days). Treatment of intracellular tachyzoites with 5 µM BKI-1553 for 6 days inhibited endodyogeny by interfering with the separation of newly formed zoites from a larger multinucleated parasite mass. In contrast, parasites treated with 5 µM BKI-1517 did not form large complexes and showed much more evidence of cell death. However, after a treatment duration of 10 days in vitro, both compounds failed to completely prevent the regrowth of parasites from culture. BALB/c mice experimentally infected with N. caninum Spain7 (Nc-Spain7) and then treated during 6 days with BKI-1517 or BKI-1553 at different dosages showed a significant reduction of the cerebral parasite load. However, fertility was impaired by BKI-1517 when applied at 50 mg/kg of body weight/day. At 20 mg/kg/day, BKI-1517 significantly inhibited the vertical transmission of N. caninum to pups and increased the rate of survival of offspring. BKI-1553 was less detrimental to fertility and also provided significant but clearly less pronounced protection of dams and offspring. These results demonstrate that, when judiciously applied, this compound class protects offspring from vertical transmission and disease.


Assuntos
Coccidiose/tratamento farmacológico , Coccidiostáticos/farmacologia , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Estágios do Ciclo de Vida/efeitos dos fármacos , Neospora/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/parasitologia , Proliferação de Células/efeitos dos fármacos , Coccidiose/parasitologia , Coccidiose/transmissão , Coccidiostáticos/química , Feminino , Fertilidade/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Expressão Gênica , Genes Reporter , Humanos , Estágios do Ciclo de Vida/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Neospora/enzimologia , Neospora/genética , Neospora/crescimento & desenvolvimento , Oxazinas , Gravidez , Cultura Primária de Células , Inibidores de Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Pirazóis/química , Pirimidinas/química , Quinolinas/química , Xantenos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-27919897

RESUMO

Toxoplasma gondii is an apicomplexan parasite that causes fatal and debilitating brain and eye disease. Endochinlike quinolones (ELQs) are preclinical compounds that are efficacious against apicomplexan-caused diseases, including toxoplasmosis, malaria, and babesiosis. Of the ELQs, ELQ-316 has demonstrated the greatest efficacy against acute and chronic experimental toxoplasmosis. Although genetic analyses in other organisms have highlighted the importance of the cytochrome bc1 complex Qi site for ELQ sensitivity, the mechanism of action of ELQs against T. gondii and the specific mechanism of ELQ-316 remain unknown. Here, we describe the selection and genetic characterization of T. gondii clones resistant to ELQ-316. A T. gondii strain selected under ELQ-316 drug pressure was found to possess a Thr222-Pro amino acid substitution that confers 49-fold resistance to ELQ-316 and 19-fold resistance to antimycin, a well-characterized Qi site inhibitor. These findings provide further evidence for ELQ Qi site inhibition in T. gondii and greater insight into the interactions of Qi site inhibitors with the apicomplexan cytochrome bc1 complex.


Assuntos
Antimicina A/análogos & derivados , Citocromos b/genética , Quinolonas/farmacologia , Toxoplasma/efeitos dos fármacos , Antimicina A/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA