Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.712
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(38): e2407877121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39259594

RESUMO

Understanding the structure in the nanoscopic region of water that is in direct contact with solid surfaces, so-called contact layer, is key to quantifying macroscopic properties that are of interest to e.g. catalysis, ice nucleation, nanofluidics, gas adsorption, and sensing. We explore the structure of the water contact layer on various technologically relevant solid surfaces, namely graphene, MoS[Formula: see text], Au(111), Au(100), Pt(111), and Pt(100), which have been previously hampered by time and length scale limitations of ab initio approaches or force field inaccuracies, by means of molecular dynamics simulations based on ab initio machine learning potentials built using an active learning scheme. Our results reveal that the in-plane intermolecular correlations of the water contact layer vary greatly among different systems: Whereas the contact layer on graphene and on Au(111) is predominantly homogeneous and isotropic, it is inhomogeneous and anisotropic on MoS[Formula: see text], on Au(100), and on the Pt surfaces, where it additionally forms two distinct sublayers. We apply hydrodynamics and the theory of the hydrophobic effect, to relate the energy corrugation and the characteristic length-scales of the contact layer with wetting, slippage, the hydration of small hydrophobic solutes and diffusio-osmotic transport. Thus, this work provides a microscopic picture of the water contact layer and links it to macroscopic properties of liquid/solid interfaces that are measured experimentally and that are relevant to wetting, hydrophobic solvation, nanofluidics, and osmotic transport.

2.
Proc Natl Acad Sci U S A ; 121(6): e2314347121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300862

RESUMO

Memristive devices, electrical elements whose resistance depends on the history of applied electrical signals, are leading candidates for future data storage and neuromorphic computing. Memristive devices typically rely on solid-state technology, while aqueous memristive devices are crucial for biology-related applications such as next-generation brain-machine interfaces. Here, we report a simple graphene-based aqueous memristive device with long-term and tunable memory regulated by reversible voltage-induced interfacial acid-base equilibria enabled by selective proton permeation through the graphene. Surface-specific vibrational spectroscopy verifies that the memory of the graphene resistivity arises from the hysteretic proton permeation through the graphene, apparent from the reorganization of interfacial water at the graphene/water interface. The proton permeation alters the surface charge density on the CaF2 substrate of the graphene, affecting graphene's electron mobility, and giving rise to synapse-like resistivity dynamics. The results pave the way for developing experimentally straightforward and conceptually simple aqueous electrolyte-based neuromorphic iontronics using two-dimensional (2D) materials.

3.
Proc Natl Acad Sci U S A ; 121(21): e2322944121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748586

RESUMO

While aqueous zinc-ion batteries exhibit great potential, their performance is impeded by zinc dendrites. Existing literature has proposed the use of hydrogel electrolytes to ameliorate this issue. Nevertheless, the mechanical attributes of hydrogel electrolytes, particularly their modulus, are suboptimal, primarily ascribed to the substantial water content. This drawback would severely restrict the dendrite-inhibiting efficacy, especially under large mass loadings of active materials. Inspired by the structural characteristics of wood, this study endeavors to fabricate the anisotropic carboxymethyl cellulose hydrogel electrolyte through directional freezing, salting-out effect, and compression reinforcement, aiming to maximize the modulus along the direction perpendicular to the electrode surface. The heightened modulus concurrently serves to suppress the vertical deposition of the intermediate product at the cathode. Meanwhile, the oriented channels with low tortuosity enabled by the anisotropic structure are beneficial to the ionic transport between the anode and cathode. Comparative analysis with an isotropic hydrogel sample reveals a marked enhancement in both modulus and ionic conductivity in the anisotropic hydrogel. This enhancement contributes to significantly improved zinc stripping/plating reversibility and mitigated electrochemical polarization. Additionally, a durable quasi-solid-state Zn//MnO2 battery with noteworthy volumetric energy density is realized. This study offers unique perspectives for designing hydrogel electrolytes and augmenting battery performance.

4.
Proc Natl Acad Sci U S A ; 120(15): e2220228120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011187

RESUMO

Hydroxyl radical (OH) is a key oxidant that triggers atmospheric oxidation chemistry in both gas and aqueous phases. The current understanding of its aqueous sources is mainly based on known bulk (photo)chemical processes, uptake from gaseous OH, or related to interfacial O3 and NO3 radical-driven chemistry. Here, we present experimental evidence that OH radicals are spontaneously produced at the air-water interface of aqueous droplets in the dark and the absence of known precursors, possibly due to the strong electric field that forms at such interfaces. The measured OH production rates in atmospherically relevant droplets are comparable to or significantly higher than those from known aqueous bulk sources, especially in the dark. As aqueous droplets are ubiquitous in the troposphere, this interfacial source of OH radicals should significantly impact atmospheric multiphase oxidation chemistry, with substantial implications on air quality, climate, and health.

5.
Proc Natl Acad Sci U S A ; 120(49): e2306467120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039270

RESUMO

Liquid-liquid phase separation is key to understanding aqueous two-phase systems (ATPS) arising throughout cell biology, medical science, and the pharmaceutical industry. Controlling the detailed morphology of phase-separating compound droplets leads to new technologies for efficient single-cell analysis, targeted drug delivery, and effective cell scaffolds for wound healing. We present a computational model of liquid-liquid phase separation relevant to recent laboratory experiments with gelatin-polyethylene glycol mixtures. We include buoyancy and surface-tension-driven finite viscosity fluid dynamics with thermally induced phase separation. We show that the fluid dynamics greatly alters the evolution and equilibria of the phase separation problem. Notably, buoyancy plays a critical role in driving the ATPS to energy-minimizing crescent-shaped morphologies, and shear flows can generate a tenfold speedup in particle formation. Neglecting fluid dynamics produces incorrect minimum-energy droplet shapes. The model allows for optimization of current manufacturing procedures for structured microparticles and improves understanding of ATPS evolution in confined and flowing settings important in biology and biotechnology.

6.
Proc Natl Acad Sci U S A ; 120(30): e2218826120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463207

RESUMO

Development of a simple, label-free screening technique capable of precisely and directly sensing interaction-in-solution over a size range from small molecules to large proteins such as antibodies could offer an important tool for researchers and pharmaceutical companies in the field of drug development. In this work, we present a thermostable Raman interaction profiling (TRIP) technique that facilitates low-concentration and low-dose screening of binding between protein and ligand in physiologically relevant conditions. TRIP was applied to eight protein-ligand systems, and produced reproducible high-resolution Raman measurements, which were analyzed by principal component analysis. TRIP was able to resolve time-depending binding between 2,4-dinitrophenol and transthyretin, and analyze biologically relevant SARS-CoV-2 spike-antibody interactions. Mixtures of the spike receptor-binding domain with neutralizing, nonbinding, or binding but nonneutralizing antibodies revealed distinct and reproducible Raman signals. TRIP holds promise for the future developments of high-throughput drug screening and real-time binding measurements between protein and drug.


Assuntos
COVID-19 , Microscopia , Humanos , SARS-CoV-2 , Avaliação Pré-Clínica de Medicamentos , Ligantes , Anticorpos Antivirais , Interações Medicamentosas , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Neutralizantes
7.
Proc Natl Acad Sci U S A ; 120(15): e2221980120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023128

RESUMO

Aqueous zinc-ion batteries are emerging as one of the most promising large-scale energy storage systems due to their low cost and high safety. However, Zn anodes often encounter the problems of Zn dendrite growth, hydrogen evolution reaction, and formation of by-products. Herein, we developed the low ionic association electrolytes (LIAEs) by introducing 2, 2, 2-trifluoroethanol (TFE) into 30 m ZnCl2 electrolyte. Owing to the electron-withdrawing effect of -CF3 groups in TFE molecules, in LIAEs, the Zn2+ solvation structures convert from larger aggregate clusters into smaller parts and TFE will construct H-bonds with H2O in Zn2+ solvation structure simultaneously. Consequently, ionic migration kinetics are significantly enhanced and the ionization of solvated H2O is effectively suppressed in LIAEs. As a result, Zn anodes in LIAE display a fast plating/stripping kinetics and high Coulombic efficiency of 99.74%. The corresponding full batteries exhibit an improved comprehensive performance such as high-rate capability and long cycling life.

8.
Proc Natl Acad Sci U S A ; 120(17): e2220662120, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068232

RESUMO

Unlike the interface between two immiscible electrolyte solutions (ITIES) formed between water and polar solvents, molecular understanding of the liquid-liquid interface formed for aqueous biphasic systems (ABSs) is relatively limited and mostly relies on surface tension measurements and thermodynamic models. Here, high-resolution Raman imaging is used to provide spatial and chemical resolution of the interface of lithium chloride - lithium bis(trifluoromethanesulfonyl)imide - water (LiCl-LiTFSI-water) and HCl-LiTFSI-water, prototypical salt-salt ABSs found in a range of electrochemical applications. The concentration profiles of both TFSI anions and water are found to be sigmoidal thus not showing any signs of a positive adsorption for both salts and solvent. More striking, however, is the length at which the concentration profiles extend, ranging from 11 to 2 µm with increasing concentrations, compared to a few nanometers for ITIES. We thus reveal that unlike ITIES, salt-salt ABSs do not have a molecularly sharp interface but rather form an interphase with a gradual change of environment from one phase to the other. This knowledge represents a major stepping-stone in the understanding of aqueous interfaces, key for mastering ion or electron transfer dynamics in a wide range of biological and technological settings including novel battery technologies such as membraneless redox flow and dual-ion batteries.

9.
Proc Natl Acad Sci U S A ; 120(34): e2307646120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579150

RESUMO

Solid-solid reactions stand out in rechargeable sulfur-based batteries due to the robust redox couples and high sulfur utilization in theory. However, conventional solid-solid reactions in sulfur cathode always present slow reaction kinetics and huge redox polarization due to the low electronic conductivity of sulfur and the generation of various electrochemical inert intermediates. In view of this, it is crucial to improve the electrochemical activity of sulfur cathode and tailor the redox direction. Guided by thermodynamics analysis, short-chain sulfur molecules (S2-4) are successfully synthesized by space-limited domain principle. Unlike conventional cyclic S8 molecules with complex routes in solid-solid reaction, short-chain sulfur molecules not only shorten the length of the redox chain but also inhibit the formation of irreversible intermediates, which brings excellent redox dynamics and reversibility. As a result, the Cu-S battery built by short-chain sulfur molecules can deliver a high reversible capacity of 3,133 mAh g-1. To put this into practice, quasi-solid-state aqueous flexible battery based on short-chain sulfur molecules is also designed and evaluated, showing superior mechanical flexibility and electrochemical property. It indicates that the introduction of short-chain sulfur molecules in rechargeable battery can promote the development and application of high-performance sulfur-based aqueous energy storage systems.

10.
Proc Natl Acad Sci U S A ; 120(42): e2312091120, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812706

RESUMO

Metal-sulfur batteries have received great attention for electrochemical energy storage due to high theoretical capacity and low cost, but their further development is impeded by low sulfur utilization, poor electrochemical kinetics, and serious shuttle effect of the sulfur cathode. To avoid these problems, herein, a triple-synergistic small-molecule sulfur cathode is designed by employing N, S co-doped hierarchical porous bamboo charcoal as a sulfur host in an aqueous Cu-S battery. Expect the enhanced conductivity and chemisorption induced by N, S synergistic co-doping, the intrinsic synergy of macro-/meso-/microporous triple structure also ensures space-confined small-molecule sulfur as high utilization reactant and effectively alleviates the volume expansion during conversion reaction. Under a further joint synergy between hierarchical structure and heteroatom doping, the resulting sulfur cathode endows the Cu-S battery with outstanding electrochemical performance. Cycled at 5 A g-1, it can deliver a high reversible capacity of 2,509.8 mAh g-1 with a good capacity retention of 97.9% after 800 cycles. In addition, a flexible hybrid pouch cell built by a small-molecule sulfur cathode, Zn anode, and gel electrolytes can firmly deliver high average operating voltage of about 1.3 V with a reversible capacity of over 2,500 mAh g-1 under various destructive conditions, suggesting that the triple-synergistic small-molecule sulfur cathode promises energetic metal-sulfur batteries.

11.
Proc Natl Acad Sci U S A ; 120(13): e2220792120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940321

RESUMO

Selenium sulfide (SeS2) features higher electronic conductivity than sulfur and higher theoretical capacity and lower cost than selenium, attracting considerable interest in energy storage field. Although nonaqueous Li/Na/K-SeS2 batteries are attractive for their high energy density, the notorious shuttle effect of polysulfides/polyselenides and the intrinsic limitations of organic electrolyte have hindered the deployment of this technology. To circumvent these issues, here we design an aqueous Cu-SeS2 battery by encapsulating SeS2 in a defect-enriched nitrogen-doped porous carbon monolith. Except the intrinsic synergistic effect between Se and S in SeS2, the porous structure of carbon matrix has sufficient internal voids to buffer the volume change of SeS2 and provides abundant pathways for both electrons and ions. In addition, the synergistic effect of nitrogen doping and topological defect not only enhances the chemical affinity between reactants and carbon matrix but also offers catalytic active sites for electrochemical reactions. Benefiting from these merits, the Cu-SeS2 battery delivers superior initial reversible capacity of 1,905.1 mAh g-1 at 0.2 A g-1 and outstanding long-span cycling performance over 1,000 cycles at 5 A g-1. This work applies variable valence charge carriers to aqueous metal-SeS2 batteries, providing valuable inspiration for the construction of metal-chalcogen batteries.

12.
Proc Natl Acad Sci U S A ; 119(30): e2205762119, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862458

RESUMO

Looming concerns regarding scarcity, high prices, and safety threaten the long-term use of lithium in energy storage devices. Calcium has been explored in batteries because of its abundance and low cost, but the larger size and higher charge density of calcium ions relative to lithium impairs diffusion kinetics and cyclic stability. In this work, an aqueous calcium-ion battery is demonstrated using orthorhombic, trigonal, and tetragonal polymorphs of molybdenum vanadium oxide (MoVO) as a host for calcium ions. Orthorhombic and trigonal MoVOs outperform the tetragonal structure because large hexagonal and heptagonal tunnels are ubiquitous in such crystals, providing facile pathways for calcium-ion diffusion. For trigonal MoVO, a specific capacity of ∼203 mAh g-1 was obtained at 0.2C and at a 100 times faster rate of 20C, an ∼60 mAh g-1 capacity was achieved. The open-tunnel trigonal and orthorhombic polymorphs also promoted cyclic stability and reversibility. A review of the literature indicates that MoVO provides one of the best performances reported to date for the storage of calcium ions.

13.
Proc Natl Acad Sci U S A ; 119(50): e2214545119, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36472961

RESUMO

Aqueous rechargeable ammonium-ion batteries (AIBs) possess the characteristics of safety, low cost, environmental friendliness, and fast diffusion kinetics. However, their energy density is often limited due to the low specific capacity of cathode materials and narrow electrochemical stability windows of electrolytes. Herein, high-performance aqueous AIBs were designed by coupling Fe-substituted manganese-based Prussian blue analog (FeMnHCF) cathodes and highly concentrated NH4CF3SO3 electrolytes. In FeMnHCF, Mn3+/Mn2+-N redox reaction at high potential was introduced, and two metal active redox species of Mn and Fe were achieved. To match such FeMnHCF cathodes, highly concentrated NH4CF3SO3 electrolyte was further developed, where NH4+ ion displays low-solvation structure because of the increased coordination number of CF3SO3- anions. Furthermore, the water molecules are confined by NH4+ and CF3SO3- ions in their solvation sheath, leading to weak interaction between water molecules and thus effectively extending the voltage window of electrolyte. Consequently, the FeMnHCF electrodes present high reversibility during the charge/discharge process. Moreover, owing to a small amount of free water in concentrated electrolyte, the dissolution of FeMnHCF is also inhibited. As a result, the assembled aqueous AIBs exhibit enhanced energy density, excellent rate capability, and stable cycling behavior. This work provides a creative route to construct high-performance aqueous AIBs.

14.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074875

RESUMO

Water forms two glassy waters, low-density and high-density amorphs, which undergo a reversible polyamorphic transition with the change in pressure. The two glassy waters transform into the different liquids, low-density liquid (LDL) and high-density liquid (HDL), at high temperatures. It is predicted that the two liquid waters also undergo a liquid-liquid transition (LLT). However, the reversible LLT, particularly the LDL-to-HDL transition, has not been observed directly due to rapid crystallization. Here, I prepared a glassy dilute trehalose aqueous solution (0.020 molar fraction) without segregation and measured the isothermal volume change at 0.01 to 1.00 GPa below 160 K. The polyamorphic transition and the glass-to-liquid transition for the high-density and low-density solutions were examined, and the liquid region where both LDL and HDL existed was determined. The results show that the reversible polyamorphic transition induced by the pressure change above 140 K is the LLT. That is, the transition from LDL to HDL is observed. Moreover, the pressure hysteresis of LLT suggests strongly that the LLT has a first-order nature. The direct observation of the reversible LLT in the trehalose aqueous solution has implications for understanding not only the liquid-liquid critical point hypothesis of pure water but also the relation between aqueous solution and water polyamorphism.

15.
Proc Natl Acad Sci U S A ; 119(12): e2112248119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35302891

RESUMO

The proneness of water to crystallize is a major obstacle to understanding its putative exotic behavior in the supercooled state. It also represents a strong practical limitation to cryopreservation of biological systems. Adding some concentration of glycerol, which has a cryoprotective effect preventing, to some degree, water crystallization, has been proposed as a possible way out, provided the concentration is small enough for water to retain some of its bulk character and/or for limiting the damage caused by glycerol on living organisms. Contrary to previous expectations, we show that, in the "marginal" glycerol molar concentration ≈ 18%, at which vitrification is possible with no crystallization on rapid cooling, water crystallizes upon isothermal annealing even below the calorimetric glass transition of the solution. Through a time-resolved polarized neutron scattering investigation, we extract key parameters, size and shape of the ice crystallites, fraction of water that crystallizes, and crystallization time, which are important for cryoprotection, as a function of the annealing temperature. We also characterize the nature of the out-of-equilibrium liquid phases that are present at low temperature, providing more arguments against the presence of an isocompositional liquid­liquid transition. Finally, we propose a rule of thumb to estimate the lower temperature limit below which water crystallization does not occur in aqueous solutions.

16.
Proc Natl Acad Sci U S A ; 119(33): e2204638119, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939713

RESUMO

The growing demands for ammonia in agriculture and transportation fuel stimulate researchers to develop sustainable electrochemical methods to synthesize ammonia ambiently, to get past the energy-intensive Haber-Bosch process. However, the conventionally used aqueous electrolytes limit N2 solubility, leading to insufficient reactant molecules in the vicinity of the catalyst during electrochemical nitrogen reduction reaction (NRR). This hampers the yield and production rate of ammonia, irrespective of how efficient the catalyst is. Herein, we introduce an aqueous electrolyte (NaBF4), which not only acts as an N2-carrier in the medium but also works as a full-fledged "co-catalyst" along with our active material MnN4 to deliver a high yield of NH3 (328.59 µg h-1 mgcat-1) at 0.0 V versus reversible hydrogen electrode. BF3-induced charge polarization shifts the metal d-band center of the MnN4 unit close to the Fermi level, inviting N2 adsorption facilely. The Lewis acidity of the free BF3 molecules further propagates their importance in polarizing the N≡N bond of the adsorbed N2 and its first protonation. This push-pull kind of electronic interaction has been confirmed from the change in d-band center values of the MnN4 site as well as charge density distribution over our active model units, which turned out to be effective enough to lower the energy barrier of the potential determining steps of NRR. Consequently, a high production rate of NH3 (2.45 × 10-9 mol s-1 cm-2) was achieved, approaching the industrial scale where the source of NH3 was thoroughly studied and confirmed to be chiefly from the electrochemical reduction of the purged N2 gas.

17.
Nano Lett ; 24(28): 8542-8549, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38973706

RESUMO

Aqueous aluminum-ion batteries (AAIBs) are considered a strong candidate for the new generation of energy storage devices. The lack of suitable cathode materials has been a bottleneck factor hindering the future development of AAIBs. In this work, we design and construct a highly effective cathode with dual morphologies. Two-dimensional (2D) layered MXene materials possessed good conductivity and hydrophilicity, which are used as the substrates to deposit rod-shaped vanadium oxides (V2O5) to form a three-dimensional (3D) cathode. The cathode design provides a strong boost for the rapid electrochemical activities of rod-shaped V2O5 by embedding/extracting both protons (H+) and aluminum-ion (Al3+). As a result, the V2O5@MXene cathode based AAIB delivers an ultrahigh initial specific capacity of 626 mAh/g at 0.1 A/g with a stable cycle performance up to 100 cycles. This work is a breakthrough for the development of cathode materials for AAIBs.

18.
Nano Lett ; 24(30): 9137-9146, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037888

RESUMO

Uncontrollable dendrite growth and corrosion induced by reactive water molecules and sulfate ions (SO42-) seriously hindered the practical application of aqueous zinc ion batteries (AZIBs). Here we construct artificial solid electrolyte interfaces (SEIs) realized by sodium and calcium bentonite with a layered structure anchored to anodes (NB@Zn and CB@Zn). This artificial SEI layer functioning as a protective coating to isolate activated water molecules, provides high-speed transport channels for Zn2+, and serves as an ionic sieve to repel negatively charged anions while attracting positively charged cations. The theoretical results show that the bentonite electrodes exhibit a higher binding energy for Zn2+. This demonstrates that the bentonite protective layer enhances the Zn-ion deposition kinetics. Consequently, the NB@Zn//MnO2 and CB@Zn//MnO2 full-battery capacities are 96.7 and 70.4 mAh g-1 at 2.0 A g-1 after 1000 cycles, respectively. This study aims to stabilize Zn anodes and improve the electrochemical performance of AZIBs by ion-selection sieving.

19.
Nano Lett ; 24(29): 9074-9081, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38991210

RESUMO

Cellulose is difficult to melt or dissolve. The dissolution and regeneration process paves the way to convert cellulose into diverse forms but still suffers from high costs and environmental pollution. Here, we developed a method that uses aqueous alkali to efficiently dissolve cellulose at a temperature above 0 °C in minutes for fabricating regenerated cellulose. Cellulose was modified with minimal carboxymethyl groups to weaken the intermolecular interaction and improve its dissolution. The modified cellulose can be commercially obtained from carboxymethyl cellulose manufacturing with low cost and high quality. The use of only aqueous alkali reduces pollution and facilitates chemical recycling, and the moderate dissolving temperature reduces energy consumption. The regenerated cellulose materials display excellent mechanical properties and can be recycled or biodegraded after use. The method allows the use of diverse raw materials and modifications to broaden its applicability. The study develops a low-cost and eco-friendly method to fabricate regenerated cellulose.

20.
Nano Lett ; 24(18): 5429-5435, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682885

RESUMO

Realizing room-temperature, efficient, and reversible fluoride-ion redox is critical to commercializing the fluoride-ion battery, a promising post-lithium-ion battery technology. However, this is challenging due to the absence of usable electrolytes, which usually suffer from insufficient ionic conductivity and poor (electro)chemical stability. Herein we report a water-in-salt (WIS) electrolyte based on the tetramethylammonium fluoride salt, an organic salt consisting of hydrophobic cations and hydrophilic anions. The new WIS electrolyte exhibits an electrochemical stability window of 2.47 V (2.08-4.55 V vs Li+/Li) with a room-temperature ionic conductivity of 30.6 mS/cm and a fluoride-ion transference number of 0.479, enabling reversible (de)fluoridation redox of lead and copper fluoride electrodes. The relationship between the salt property, the solvation structure, and the ionic transport behavior is jointly revealed by computational simulations and spectroscopic analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA