Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105500, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013089

RESUMO

The aryl hydrocarbon receptor is a ligand-activated transcription factor known for mediating the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. TCDD induces nonalcoholic fatty liver disease (NAFLD)-like pathologies including simple steatosis that can progress to steatohepatitis with fibrosis and bile duct proliferation in male mice. Dose-dependent progression of steatosis to steatohepatitis with fibrosis by TCDD has been associated with metabolic reprogramming, including the disruption of amino acid metabolism. Here, we used targeted metabolomic analysis to reveal dose-dependent changes in the level of ten serum and eleven hepatic amino acids in mice upon treatment with TCDD. Bulk RNA-seq and protein analysis showed TCDD repressed CPS1, OTS, ASS1, ASL, and GLUL, all of which are associated with the urea cycle and glutamine biosynthesis. Urea and glutamine are end products of the detoxification and excretion of ammonia, a toxic byproduct of amino acid catabolism. Furthermore, we found that the catalytic activity of OTC, a rate-limiting step in the urea cycle was also dose dependently repressed. These results are consistent with an increase in circulating ammonia. Collectively, the repression of the urea and glutamate-glutamine cycles increased circulating ammonia levels and the toxicity of TCDD.


Assuntos
Amônia , Redes e Vias Metabólicas , Hepatopatia Gordurosa não Alcoólica , Dibenzodioxinas Policloradas , Animais , Masculino , Camundongos , Amônia/sangue , Amônia/metabolismo , Fibrose , Glutamina/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos
2.
J Biol Chem ; 300(4): 107157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479600

RESUMO

The aryl hydrocarbon receptor (AhR)-interacting protein (AIP) is a ubiquitously expressed, immunophilin-like protein best known for its role as a co-chaperone in the AhR-AIP-Hsp90 cytoplasmic complex. In addition to regulating AhR and the xenobiotic response, AIP has been linked to various aspects of cancer and immunity that will be the focus of this review article. Loss-of-function AIP mutations are associated with pituitary adenomas, suggesting that AIP acts as a tumor suppressor in the pituitary gland. However, the tumor suppressor mechanisms of AIP remain unclear, and AIP can exert oncogenic functions in other tissues. While global deletion of AIP in mice yields embryonically lethal cardiac malformations, heterozygote, and tissue-specific conditional AIP knockout mice have revealed various physiological roles of AIP. Emerging studies have established the regulatory roles of AIP in both innate and adaptive immunity. AIP interacts with and inhibits the nuclear translocation of the transcription factor IRF7 to inhibit type I interferon production. AIP also interacts with the CARMA1-BCL10-MALT1 complex in T cells to enhance IKK/NF-κB signaling and T cell activation. Taken together, AIP has diverse functions that vary considerably depending on the client protein, the tissue, and the species.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias , Receptores de Hidrocarboneto Arílico , Animais , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Camundongos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/imunologia , Imunidade Inata
3.
Arch Biochem Biophys ; 754: 109958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499054

RESUMO

The aryl hydrocarbon receptor (AhR) functions as a vital ligand-activated transcription factor, governing both physiological and pathophysiological processes. Notably, it responds to xenobiotics, leading to a diverse array of outcomes. In the context of drug repurposing, we present here a combined approach of utilizing structure-based virtual screening and molecular dynamics simulations. This approach aims to identify potential AhR modulators from Drugbank repository of clinically approved drugs. By focusing on the AhR PAS-B binding pocket, our screening protocol included binding affinities calculations, complex stability, and interactions within the binding site as a filtering method. Comprehensive evaluations of all DrugBank small molecule database revealed ten promising hits. This included flibanserin, butoconazole, luliconazole, naftifine, triclabendazole, rosiglitazone, empagliflozin, benperidol, nebivolol, and zucapsaicin. Each exhibiting diverse binding behaviors and remarkably very low binding free energy. Experimental studies further illuminated their modulation of AhR signaling, and showing that they are consistently reducing AhR activity, except for luliconazole, which intriguingly enhances the AhR activity. This work demonstrates the possibility of using computational modelling as a quick screening tool to predict new AhR modulators from extensive drug libraries. Importantly, these findings hold immense therapeutic potential for addressing AhR-associated disorders. Consequently, it offers compelling prospects for innovative interventions through drug repurposing.


Assuntos
Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Sítios de Ligação , Ligação Proteica , Domínios Proteicos , Ligantes
4.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836606

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating disease characterized by arteriopathy in the small to medium-sized distal pulmonary arteries, often accompanied by infiltration of inflammatory cells. Aryl hydrocarbon receptor (AHR), a nuclear receptor/transcription factor, detoxifies xenobiotics and regulates the differentiation and function of various immune cells. However, the role of AHR in the pathogenesis of PAH is largely unknown. Here, we explore the role of AHR in the pathogenesis of PAH. AHR agonistic activity in serum was significantly higher in PAH patients than in healthy volunteers and was associated with poor prognosis of PAH. Sprague-Dawley rats treated with the potent endogenous AHR agonist, 6-formylindolo[3,2-b]carbazole, in combination with hypoxia develop severe pulmonary hypertension (PH) with plexiform-like lesions, whereas Sprague-Dawley rats treated with the potent vascular endothelial growth factor receptor 2 inhibitors did not. Ahr-knockout (Ahr-/- ) rats generated using the CRISPR/Cas9 system did not develop PH in the SU5416/hypoxia model. A diet containing Qing-Dai, a Chinese herbal drug, in combination with hypoxia led to development of PH in Ahr+/+ rats, but not in Ahr-/- rats. RNA-seq analysis, chromatin immunoprecipitation (ChIP)-seq analysis, immunohistochemical analysis, and bone marrow transplantation experiments show that activation of several inflammatory signaling pathways was up-regulated in endothelial cells and peripheral blood mononuclear cells, which led to infiltration of CD4+ IL-21+ T cells and MRC1+ macrophages into vascular lesions in an AHR-dependent manner. Taken together, AHR plays crucial roles in the development and progression of PAH, and the AHR-signaling pathway represents a promising therapeutic target for PAH.


Assuntos
Hipertensão Arterial Pulmonar/patologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Carbazóis/efeitos adversos , Progressão da Doença , Medicamentos de Ervas Chinesas/efeitos adversos , Células Endoteliais/metabolismo , Humanos , Inflamação , Leucócitos Mononucleares/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Hipertensão Arterial Pulmonar/sangue , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Ratos , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/sangue , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Linfócitos T/metabolismo
5.
Ecotoxicol Environ Saf ; 274: 116193, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460407

RESUMO

Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.


Assuntos
Acetatos , Clormequat , Sobrecarga de Ferro , Fenóis , Espermatogênese , Animais , Masculino , Camundongos , Ratos , Clormequat/metabolismo , Clormequat/toxicidade , Sobrecarga de Ferro/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Sementes , Espermatogênese/efeitos dos fármacos , Testículo , eIF-2 Quinase/efeitos dos fármacos , eIF-2 Quinase/metabolismo
6.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542367

RESUMO

Inflammatory bowel disease (IBD) is one of the most prevalent chronic inflammations of the gastrointestinal tract (GIT). The gut microbial population, the cytokine milieu, the aryl hydrocarbon receptor (AHR) expressed by immune and nonimmune cells and the intrinsic pathway of Th-cell differentiation are implicated in the immunopathology of IBD. AHR activation requires a delicate balance between regulatory and effector T-cells; loss of this balance can cause local gut microbial dysbiosis and intestinal inflammation. Thus, the study of the gut microbiome in association with AHR provides critical insights into IBD pathogenesis and interventions. This review will focus on the recent advancements to form conceptional frameworks on the benefits of AHR activation by commensal gut bacteria in IBD.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Microbioma Gastrointestinal/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Inflamação/complicações , Anti-Inflamatórios , Disbiose/complicações
7.
Molecules ; 29(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38998940

RESUMO

Aryl Hydrocarbon Receptor (AHR) ligands, upon binding, induce distinct gene expression profiles orchestrated by the AHR, leading to a spectrum of pro- or anti-inflammatory effects. In this study, we designed, synthesized and evaluated three indole-containing potential AHR ligands (FluoAHRL: AGT-4, AGT-5 and AGT-6). All synthesized compounds were shown to emit fluorescence in the near-infrared. Their AHR agonist activity was first predicted using in silico docking studies, and then confirmed using AHR luciferase reporter cell lines. FluoAHRLs were tested in vitro using mouse peritoneal macrophages and T lymphocytes to assess their immunomodulatory properties. We then focused on AGT-5, as it illustrated the predominant anti-inflammatory effects. Notably, AGT-5 demonstrated the ability to foster anti-inflammatory regulatory T cells (Treg) while suppressing pro-inflammatory T helper (Th)17 cells in vitro. AGT-5 actively induced Treg differentiation from naïve CD4+ cells, and promoted Treg proliferation, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) expression and interleukin-10 (IL-10) production. The increase in IL-10 correlated with an upregulation of Signal Transducer and Activator of Transcription 3 (STAT3) expression. Importantly, the Treg-inducing effect of AGT-5 was also observed in human tonsil cells in vitro. AGT-5 showed no toxicity when applied to zebrafish embryos and was therefore considered safe for animal studies. Following oral administration to C57BL/6 mice, AGT-5 significantly upregulated Treg while downregulating pro-inflammatory Th1 cells in the mesenteric lymph nodes. Due to its fluorescent properties, AGT-5 could be visualized both in vitro (during uptake by macrophages) and ex vivo (within the lamina propria of the small intestine). These findings make AGT-5 a promising candidate for further exploration in the treatment of inflammatory and autoimmune diseases.


Assuntos
Receptores de Hidrocarboneto Arílico , Linfócitos T Reguladores , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Humanos , Peixe-Zebra , Corantes Fluorescentes/química , Ligantes , Camundongos Endogâmicos C57BL , Indóis/farmacologia , Indóis/química , Diferenciação Celular/efeitos dos fármacos
8.
Int J Environ Health Res ; : 1-11, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590026

RESUMO

The roles of aryl hydrocarbon receptor (AhR), AhR-nuclear translocator (ARNT), and AhR repressor (AhRR) genes in the elevation of cord blood IgE (CbIgE) remained unclear. Our aims were to determine the polymorphisms of AhR, ARNT, and AhRR genes, cord blood AhR (CBAhR) level, and susceptibility to elevation of CbIgE. 206 infant-mother pairs with CbIgE>=0.35 IU/ml and 421 randomly selected controls recruited from our previous study. Genotyping was determined using TaqMan assays. Statistical analysis showed AhR rs2066853 (GG vs. AA+AG: adjusted OR (AOR)=1.5, 95%CI=1.10-2.31 and AOR=1.60, 95%CI=1.06-2.43, respectively) and the combination of AhR rs2066853 and maternal total IgE (mtIgE)>=100 IU/ml were significantly correlated with CbIgE>=0.35 IU/ml or CbIgE>=0.5 IU/ml. CBAhR in a random subsample and CbIgE levels were significantly higher in infants with rs2066853GG genotype. We suggest that infant AhR rs2066853 and their interactions with mtIgE>=100 IU/ml significantly correlate with elevated CbIgE, but AhRR and ARNT polymorphisms do not.

9.
J Transl Med ; 21(1): 706, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814337

RESUMO

Early-stage detection of chronic kidney diseases (CKD) is important to treatment that may slow and occasionally halt CKD progression. CKD of diverse etiologies share similar histologic patterns of glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Macro-vascular disease and micro-vascular disease promote tissue ischemia, contributing to injury. Tissue ischemia promotes hypoxia, and this in turn activates the hypoxia-inducible transcription factors (HIFs). HIF-1α and HIF-2α, share a dimer partner, HIF-1ß, with the aryl hydrocarbon receptor (AHR) and are each activated in CKD and associated with kidney cellular nicotinamide adenine dinucleotide (NAD) depletion. The Preiss-Handler, salvage, and de novo pathways regulate NAD biosynthesis and gap-junctions regulate NAD cellular retention. In the Preiss-Handler pathway, niacin forms NAD. Niacin also exhibits crosstalk with HIF and AHR cell signals in the regulation of insulin sensitivity, which is a complication in CKD. Dysregulated enzyme activity in the NAD de novo pathway increases the levels of circulating tryptophan metabolites that activate AHR, resulting in poly-ADP ribose polymerase activation, thrombosis, endothelial dysfunction, and immunosuppression. Therapeutically, metabolites from the NAD salvage pathway increase NAD production and subsequent sirtuin deacetylase activity, resulting in reduced activation of retinoic acid-inducible gene I, p53, NF-κB and SMAD2 but increased activation of FOXO1, PGC-1α, and DNA methyltransferase-1. These post-translational responses may also be initiated through non-coding RNAs (ncRNAs), which are additionally altered in CKD. Nanoparticles traverse biological systems and can penetrate almost all tissues as disease biomarkers and drug delivery carriers. Targeted delivery of non-coding RNAs or NAD metabolites with nanoparticles may enable the development of more effective diagnostics and therapies to treat CKD.


Assuntos
Niacina , Insuficiência Renal Crônica , Doenças Vasculares , Humanos , NAD/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia , Isquemia
10.
Exp Dermatol ; 32(4): 547-554, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36471583

RESUMO

Particulate matter (PM2.5) is an environmental pollutant causing skin inflammatory diseases via epidermal barrier damage. However, the mechanism and related gene expression induced by PM2.5 remains unclear. Our aim was to determine the effect of PM2.5 on human skin tissue ex vivo, and elucidate the mechanism of T helper 17 cell-related inflammatory cytokine and skin barrier function. We verified the expression levels of gene in PM2.5-treated human skin tissue using Quantseq (3' mRNA-Seq), and Gene Ontology (GO) terms and protein-protein interaction (PPI) networks were performed. The PM2.5 treatment significantly enhanced the expression of Th 1, 2, 17 and 22 cell-related genes (cut-off value: │1.2 │ > fold change and p < 0.05). Most of all, Th17 cell-related genes are upregulated and those genes are associated with skin epidermal barrier function and Aryl hydrocarbon receptor (AhR), a xenobiotic receptor, pathway. In human keratinocyte cell lines, AhR-regulated genes (e.g. AhRR, CYP1A1, IL6 and IL36G), Th17 cell-related genes (e.g. IL17C) and epidermal barrier-related genes (e.g. SPRR2A and KRT71) are significantly increased after PM2.5. In the protein level, the secretion of IL-6 and IL-36G was increased in human skin tissue following PM2.5 treatment, and the expression of SPRR2A and KRT71 was significantly increased. PM2.5 exposure could ruin the skin epidermal barrier function via AhR- and Th17 cell-related inflammatory pathway.


Assuntos
Material Particulado , Receptores de Hidrocarboneto Arílico , Humanos , Proteínas Ricas em Prolina do Estrato Córneo/genética , Perfilação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Material Particulado/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Células Th17/metabolismo , Pele/imunologia
11.
Mol Cell Biochem ; 478(11): 2517-2526, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36867341

RESUMO

The severe acute respiratory coronavirus 2 (SARS-CoV-2) infection demonstrates a highly variable and unpredictable course. Several reports have claimed a smoker's paradox in coronavirus disease 2019 (COVID-19), in line with previous suggestions that smoking is associated with better survival after acute myocardial infarction and appears protective in preeclampsia. Several plausible physiological explanations exist accounting for the paradoxical observation of smoking engendering protection against SARS-CoV-2 infection. In this review, we delineate novel mechanisms whereby smoking habits and smokers' genetic polymorphism status affecting various nitric oxide (NO) pathways (endothelial NO synthase, cytochrome P450 (CYP450), erythropoietin receptor (EPOR); ß-common receptor (ßcR)), along with tobacco smoke modulation of microRNA-155 and aryl-hydrocarbon receptor (AHR) effects, may be important determinators of SARS-CoV-2 infection and COVID-19 course. While transient NO bioavailability increase and beneficial immunoregulatory modulations through the above-mentioned pathways using exogenous, endogenous, genetic and/or therapeutic modalities may have direct and specific, viricidal SARS-CoV-2 effects, employing tobacco smoke inhalation to achieve protection equals self-harm. Tobacco smoking remains the leading cause of death, illness, and impoverishment.

12.
Pharmacol Res ; 194: 106848, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37419256

RESUMO

Manuka honey (MH) is a complex nutritional material with antimicrobial, antioxidant and anti-inflammatory activity. We have previously shown that MH down regulates IL-4-induced CCL26 expression in immortalized keratinocytes. As MH contains potential ligands of the Aryl Hydrocarbon Receptor (AHR), a key regulator of skin homeostasis, we hypothesize that this effect is mediated via AHR activation. Here, we treated HaCaT cell lines, either stable transfected with an empty vector (EV-HaCaT) or in which AHR had been stable silenced (AHR-silenced HaCaT); or primary normal human epithelial keratinocytes (NHEK) with 2% MH for 24 h. This induced a 15.4-fold upregulation of CYP1A1 in EV-HaCaTs, which was significantly reduced in AHR-silenced cells. Pre-treatment with the AHR antagonist CH223191 completely abrogated this effect. Similar findings were observed in NHEK. In vivo treatment of the Cyp1a1Cre x R26ReYFP reporter mice strain's skin with pure MH significantly induced CYP1A1 expression compared with Vaseline. Treatment of HaCaT with 2% MH significantly decreased baseline CYP1 enzymatic activity at 3 and 6 h but increased it after 12 h, suggesting that MH may activate the AHR both through direct and indirect means. Importantly, MH downregulation of IL-4-induced CCL26 mRNA and protein was abrogated in AHR-silenced HaCaTs and by pre-treatment with CH223191. Finally, MH significantly upregulated FLG expression in NHEK in an AHR-dependent manner. In conclusion, MH activates AHR, both in vitro and in vivo, thereby providing a mechanism of its IL4-induced CCL26 downregulation and upregulation of FLG expression. These results have potential clinical implications for atopic diseases and beyond.


Assuntos
Dermatite , Mel , Animais , Humanos , Camundongos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Inflamação , Interleucina-4/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo
13.
J Am Acad Dermatol ; 89(5): 936-944, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37172733

RESUMO

BACKGROUND: Tapinarof cream 1% once daily demonstrated significant efficacy versus vehicle and was well tolerated in two 12-week, phase 3 pivotal trials in adults with mild-to-severe plaque psoriasis. OBJECTIVE: To assess long-term, health-related quality of life and patient satisfaction with tapinarof. METHODS: Patients completing the 12-week trials were eligible for 40 weeks of open-label tapinarof based on Physician Global Assessment score in PSOARING 3, with a 4-week follow-up. Dermatology Life Quality Index was assessed at every visit; Patient Satisfaction Questionnaire responses were assessed at week 40 or early termination. RESULTS: Seven hundred sixty-three (91.6%) eligible patients enrolled; 78.5% completed the Patient Satisfaction Questionnaire. DLQI scores improved and were maintained. By week 40, 68.0% of patients had a DLQI of 0 or 1, indicating no impact of psoriasis on health-related quality of life. Most patients strongly agreed or agreed with all Patient Satisfaction Questionnaire questions assessing confidence in tapinarof and satisfaction with efficacy (62.9%-85.8%), application ease and cosmetic elegance (79.9%-96.3%), and preference for tapinarof versus prior psoriasis therapies (55.3%-81.7%). LIMITATIONS: Open-label; no control; may not be generalizable to all forms of psoriasis. CONCLUSIONS: Continued and durable improvements in health-related quality of life, high rates of patient satisfaction, and positive perceptions of tapinarof cream were demonstrated.

14.
Mol Biol Rep ; 50(1): 107-119, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36309615

RESUMO

BACKGROUND: Particulate matter with an aerodynamic size ≤ 10 µm (PM10) is a risk factor for lung cancer development, mainly because some components are highly toxic. Polycyclic aromatic hydrocarbons (PAHs) are present in PM10, such as benzo[a]pyrene (BaP), which is a well-known genotoxic and carcinogenic compound to humans, capable of activating AP-1 transcription factor family genes through the Aryl Hydrocarbon Receptor (AhR). Because effects of BaP include metalloprotease 9 (MMP-9) activation, cell invasion, and other pathways related to carcinogenesis, we aimed to demonstrate that PM10 (10 µg/cm2) exposure induces the activation of AP-1 family members as well as cell invasion in lung epithelial cells, through AhR pathway. METHODS AND RESULTS: The role of the AhR gene in cells exposed to PM10 (10 µg/cm2) and BaP (1µM) for 48 h was evaluated using AhR-targeted interference siRNA. Then, the AP-1 family members (c-Jun, Jun B, Jun D, Fos B, C-Fos, and Fra-1), the levels/activity of MMP-9, and cell invasion were analyzed. We found that PM10 increased AhR levels and promoted its nuclear localization in A549 treated cells. Also, PM10 and BaP deregulated the activity of AP-1 family members. Moreover, PM10 upregulated the secretion and activity of MMP-9 through AhR, while BaP had no effect. Finally, we found that cell invasion in A549 cells exposed to PM10 and BaP is modulated by AhR. CONCLUSION: Our results demonstrated that PM10 exposure induces upregulation of the c-Jun, Jun B, and Fra-1 activity, the expression/activity of MMP-9, and the cell invasion in lung epithelial cells, effects mediated through the AhR. Also, the Fos B and C-Fos activity were downregulated. In addition, the effects induced by PM10 exposure were like those induced by BaP, which highlights the potentially toxic effects of the PM10 mixture in lung epithelial cells.


Assuntos
Material Particulado , Fator de Transcrição AP-1 , Humanos , Fator de Transcrição AP-1/genética , Células A549 , Material Particulado/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Pulmão/metabolismo , Células Epiteliais/metabolismo
15.
Mar Drugs ; 21(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36827162

RESUMO

Urban particulate matter (UPM) causes skin aging and inflammatory reactions by influencing skin cells through the aryl hydrocarbon receptor (AhR) signaling pathway. Porphyra yezoensis (also known as Pyropia yezoensis), a red alga belonging to the Bangiaceae family, is an edible red seaweed. Here, we examined the anti-pollutant effect of P. yezoensis water extract. While UPM treatment induced xenobiotic response element (XRE) promoter luciferase activity, P. yezoensis water extract reduced UPM-induced XRE activity. Next, we isolated an active compound from P. yezoensis and identified it as porphyra 334. Similar to the P. yezoensis water extract, porphyra 334 attenuated UPM-induced XRE activity. Moreover, although UPM augmented AhR nuclear translocation, which led to an increase in cytochrome P450 1A1 (CYP1A1) mRNA levels, these effects were reduced by porphyra 334. Moreover, UPM induced the production of reactive oxygen species (ROS) and reduced cell proliferation. These effects were attenuated in response to porphyra 334 treatment. Furthermore, our results revealed that the increased ROS levels induced by UPM treatment induced transient receptor potential vanilloid 1 (TRPV1) activity, which is related to skin aging and inflammatory responses. However, porphyra 334 treatment reduced this reaction by inhibiting ROS production induced by CYP1A1 activation. This indicates that porphyra 334, an active compound of P. yezoensis, attenuates UP-induced cell damage by inhibiting AhR-induced ROS production, which results in a reduction in TRPV1 activation, leading to cell proliferation. This also suggests that porphyra 334 could protect the epidermis from harmful pollutants.


Assuntos
Poluentes Ambientais , Porphyra , Material Particulado , Porphyra/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Água , Queratinócitos/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(7): 3848-3857, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32024760

RESUMO

l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.


Assuntos
Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Regulação Alostérica , Sítio Alostérico , Animais , Biocatálise , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos Knockout , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Serotonina/análogos & derivados , Serotonina/química , Serotonina/metabolismo , Triptofano/metabolismo
17.
Lasers Med Sci ; 39(1): 7, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38097851

RESUMO

In recent years, some treatments for esthetic and pathologic skin conditions have increasingly been based on the use of non-ablative neodymium-doped yttrium aluminum garnet (Nd:YAG) laser due to its greater penetration ability than other types of lasers, few contraindications, minimal side effects, no damage for epidermidis and the rapid recovery of the treated patients. The skin is frequently exposed to many stressors such as radiation, toxic substances, metabolites, foods, mechanical insults, and allergen exposition that cause oxidative damage and have a decisive influence on the aging process. The imbalance between reactive oxygen species, reactive nitrogen species, and the malfunctioning of the antioxidant defense system promotes the establishment of an excessive inflammatory process, which can induce various diseases including cancer and neurodegenerative disorders. The present study investigated the cytoprotective function of Q-switched Nd:YAG laser against stress aging and cell injury in HaCaT cells. We evaluated the effect of the laser on antioxidant defenses, inflammation, metalloproteinases' expression, and the AhR-Nrf2 pathway. Q-switched Nd:YAG is able to upregulate the AhR pathway and the expression of IL-6 and TGF-ß, which are involved in wound repair process, and to downregulate the expression of MMP-2 and 9, so preventing the collagen degradation. Q-switched Nd:YAG can stimulate the cellular antioxidant defenses by activating the AhR-Nrf2 system.


Assuntos
Lasers de Estado Sólido , Humanos , Lasers de Estado Sólido/uso terapêutico , Fator 2 Relacionado a NF-E2 , Antioxidantes , Queratinócitos/efeitos da radiação , Inflamação/radioterapia , Inflamação/patologia , Estresse Oxidativo
18.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139215

RESUMO

High energy visible (HEV) blue light is an increasing source of concern for visual health. Polycyclic aromatic hydrocarbons (PAH), a group of compounds found in high concentrations in smokers and polluted environments, accumulate in the retinal pigment epithelium (RPE). HEV absorption by indeno [1,2,3-cd]pyrene (IcdP), a common PAH, synergizes their toxicities and promotes degenerative changes in RPE cells comparable to the ones observed in age-related macular degeneration. In this study, we decipher the processes underlying IcdP and HEV synergic toxicity in human RPE cells. We found that IcdP-HEV toxicity is caused by the loss of the tight coupling between the two metabolic phases ensuring IcdP efficient detoxification. Indeed, IcdP/HEV co-exposure induces an overactivation of key actors in phase I metabolism. IcdP/HEV interaction is also associated with a downregulation of proteins involved in phase II. Our data thus indicate that phase II is hindered in response to co-exposure and that it is insufficient to sustain the enhanced phase I induction. This is reflected by an accelerated production of endogenous reactive oxygen species (ROS) and an increased accumulation of IcdP-related bulky DNA damage. Our work raises the prospect that lifestyle and environmental pollution may be significant modulators of HEV toxicity in the retina.


Assuntos
Epitélio Pigmentado da Retina , Xenobióticos , Humanos , Xenobióticos/toxicidade , Xenobióticos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Estresse Oxidativo
19.
Pharm Biol ; 61(1): 1082-1093, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37439220

RESUMO

CONTEXT: Aryl hydrocarbon receptor (AhR) agonists are potential therapeutic agents for ulcerative colitis (UC). Indirubin (IDR), which is a natural AhR ligand approved for leukemia treatment, ameliorates dextran sulfate sodium (DSS)-induced colitis in mice. However, the therapeutic mechanisms of IDR are unknown, limiting its application. OBJECTIVE: This study explores the therapeutic mechanisms of IDR in DSS-induced colitis using transcriptomic analysis. MATERIALS AND METHODS: Male BALB/c mice were categorized to six groups: normal, DSS model (2% DSS), IDR treatment (10, 20 and 40 mg/kg), and sulfasalazine (520 mg/kg) groups. The drugs were intragastrically administered for 7 consecutive days. The disease activity index (DAI) was recorded. After euthanasia, the colon length was measured, and histopathological examination, immunohistochemistry staining using F4/80, and colonic transcriptomic analysis were conducted. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting (WB) were conducted to verify our findings. RESULTS: Compared with DSS, IDR treatment decreased the DAI score by 64.9% and increased colon length by 26.2%. Moreover, it alleviated mucosal injury and reduced macrophage infiltration. Transcriptomic analysis identified several downregulated genes (Igkvs and Nlrp3), as well as Nlrp3/Il1ß and hemoglobin gene networks, after IDR treatment. The abundances of NF-κB p65, NLRP3, IL-1ß, and HBA decreased by 69.1, 59.4, 81.1, and 83.0% respectively, after IDR treatment. DISCUSSION AND CONCLUSION: Apart from the well-documented NF-κB signalling pathway, IL-17A, and NLRP3-IL-1ß, the suppression of haemoglobin-induced lipid peroxidation could be a previously unknown mechanism of IDR. Our study can help improve its application for UC treatment.


Assuntos
Colite Ulcerativa , Colite , Masculino , Animais , Camundongos , Sulfato de Dextrana/toxicidade , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transcriptoma , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico
20.
J Biol Chem ; 297(2): 100886, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34146543

RESUMO

The aryl hydrocarbon receptor (AHR) is a transcription factor activated by exogenous halogenated polycyclic aromatic hydrocarbon compounds, including the environmental toxin TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and naturally occurring dietary and endogenous compounds. The activated AHR enhances transcription of specific genes including phase I and phase II metabolism enzymes and other targets genes such as the TCDD-inducible poly(ADP-ribose) polymerase (TiPARP). The regulation of AHR activation is a dynamic process: immediately after transcriptional activation of the AHR by TCDD, the AHR is exported from the nucleus to the cytoplasm where it is subjected to proteasomal degradation. However, the mechanisms regulating AHR degradation are not well understood. Here, we studied the role of two enzymes reported to enhance AHR breakdown: the cullin 4B (CUL4B)AHR complex, an E3 ubiquitin ligase that targets the AHR and other proteins for ubiquitination, and TiPARP, which targets proteins for ADP-ribosylation, a posttranslational modification that can increase susceptibility to degradation. Using a WT mouse embryonic fibroblast (MEF) cell line and an MEF cell line in which CUL4B has been deleted (MEFCul4b-null), we discovered that loss of CUL4B partially prevented AHR degradation after TCDD exposure, while knocking down TiPARP in MEFCul4b-null cells completely abolished AHR degradation upon TCDD treatment. Increased TCDD-activated AHR protein levels in MEFCul4b-null and MEFCul4b-null cells in which TiPARP was knocked down led to enhanced AHR transcriptional activity, indicating that CUL4B and TiPARP restrain AHR action. This study reveals a novel function of TiPARP in controlling TCDD-activated AHR nuclear export and subsequent proteasomal degradation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Culina/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Células Cultivadas , Poluentes Ambientais/toxicidade , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Camundongos , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA