Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(31): e202406203, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38753725

RESUMO

Aryl radicals play a pivotal role as reactive intermediates in chemical synthesis, commonly arising from aryl halides and aryl diazo compounds. Expanding the repertoire of sources for aryl radical generation to include abundant and stable organoboron reagents would significantly advance radical chemistry and broaden their reactivity profile. While traditional approaches utilize stoichiometric oxidants or photocatalysis to generate aryl radicals from these reagents, electrochemical conditions have been largely underexplored. Through rigorous mechanistic investigations, we identified fundamental challenges hindering aryl radical generation. In addition to the high oxidation potentials of aromatic organoboron compounds, electrode passivation through radical grafting, homocoupling of aryl radicals, and decomposition issues were identified. We demonstrate that pulsed electrosynthesis enables selective and efficient aryl radical generation by mitigating the fundamental challenges. Our discoveries facilitated the development of the first electrochemical conversion of aryl potassium trifluoroborate salts into aryl C-P bonds. This sustainable and straightforward oxidative electrochemical approach exhibited a broad substrate scope, accommodating various heterocycles and aryl chlorides, typical substrates in transition-metal catalyzed cross-coupling reactions. Furthermore, we extended this methodology to form aryl C-Se, C-Te, and C-S bonds, showcasing its versatility and potential in bond formation processes.

2.
Molecules ; 27(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080129

RESUMO

Aryl- and heteroaryl units are present in a wide variety of natural products, pharmaceuticals, and functional materials. The method for reduction of aryl halides with ubiquitous distribution is highly sought after for late-stage construction of various aromatic compounds. The visible-light-driven reduction of aryl halides to aryl radicals by electron transfer provides an efficient, simple, and environmentally friendly method for the construction of aromatic compounds. This review summarizes the recent progress in the generation of aryl radicals by visible-light-driven reduction of aryl halides with metal complexes, organic compounds, semiconductors as catalysts, and alkali-assisted reaction system. The ability and mechanism of reduction of aromatic halides in various visible light induced systems are summarized, intending to illustrate a comprehensive introduction of this research topic to the readers.


Assuntos
Compostos Inorgânicos , Luz , Catálise , Transporte de Elétrons
3.
Chemistry ; 27(34): 8782-8790, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33856711

RESUMO

While the generation of aryl radicals by photoredox catalysis under reductive conditions is well documented, it has remained challenging under an oxidative pathway. Because of the easy photo-oxidation of alkyl bis-catecholato silicates, a general study of phenyl silicates bearing substituted catecholate ligands has been achieved. The newly synthesized phenyl silicates have been fully characterized, and their reactivity has been explored. It was found that, thanks to the substitution of the catecholate moiety, notably with the 4-cyanocatecholato ligand, the phenyl radical could be generated and trapped. Computational studies provided a rationale for these findings.

4.
Angew Chem Int Ed Engl ; 60(10): 5230-5234, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184920

RESUMO

A photochemical C-N coupling of aryl halides with nitroarenes is demonstrated for the first time. Catalyzed by a NiII complex in the absence of any external photosensitizer, readily available nitroarenes undergo coupling with a variety of aryl halides, providing a step-economic extension to the widely used Buchwald-Hartwig C-N coupling reaction. The method tolerates coupling partners with steric-congestion and functional groups sensitive to bases and nucleophiles. Mechanistic studies suggest that the reaction proceeds via the addition of an aryl radical, generated from a NiI /NiIII cycle, to a nitrosoarene intermediate.

5.
Angew Chem Int Ed Engl ; 60(13): 7290-7296, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33403774

RESUMO

The direct dehydrogenation of alkanes is among the most efficient ways to access valuable alkene products. Although several catalysts have been designed to promote this transformation, they have unfortunately found limited applications in fine chemical synthesis. Here, we report a conceptually novel strategy for the catalytic, intermolecular dehydrogenation of alkanes using a ruthenium catalyst. The combination of a redox-active ligand and a sterically hindered aryl radical intermediate has unleashed this novel strategy. Importantly, mechanistic investigations have been performed to provide a conceptual framework for the further development of this new catalytic dehydrogenation system.

6.
Chemistry ; 26(69): 16206-16221, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32476170

RESUMO

In the last decade, aryldiazonium salts have attracted interest as coupling partners in cross-coupling reactions mediated by gold. Initially, the presence of a photocatalyst and a light source was needed to achieve gold oxidation with these electrophiles. However, recently, it has been shown that in some instances just heating, light irradiation, or the addition of certain bases and/or nucleophiles is enough. In this review, the transformations developed so far using aryldiazonium salts as electrophiles are summarized with special emphasis on mechanistic studies. The information gained by different authors, indicates that the specific steps of gold oxidation with aryldiazonium salts depends upon the activation mode of the diazonium salt.

7.
Chemphyschem ; 18(15): 1971-1976, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28556602

RESUMO

The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud.

8.
Angew Chem Int Ed Engl ; 53(3): 725-8, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24307333

RESUMO

A variety of amides are efficiently accessible under mild conditions by intermolecular amino-arylation using a photo Meerwein addition with visible light. The reaction has a broad substrate scope, tolerates a large range of functional groups, and was applied to the synthesis of a 3-aryl-3,4-dihydroisoquinoline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA