Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 44(3): 388-413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36842994

RESUMO

The growing preference for incorporating microbial aspartic proteases in industries is due to their high catalytic function and high degree of substrate selectivity. These properties, however, are attributable to molecular alterations in their structure and a variety of other characteristics. Molecular tools, functional genomics, and genome editing technologies coupled with other biotechnological approaches have aided in improving the potential of industrially important microbial proteases by addressing some of their major limitations, such as: low catalytic efficiency, low conversion rates, low thermostability, and less enzyme yield. However, the native folding within their full domain is dependent on a surrounding structure which challenges their functionality in substrate conversion, mainly due to their mutual interactions in the context of complex systems. Hence, manipulating their structure and controlling their expression systems could potentially produce enzymes with high selectivity and catalytic functions. The proteins produced by microbial aspartic proteases are industrially capable and far-reaching in regulating certain harmful distinctive industrial processes and the benefits of being eco-friendly. This review provides: an update on current trends and gaps in microbial protease biotechnology, exploring the relevant recombinant strategies and molecular technologies widely used in expression platforms for engineering microbial aspartic proteases, as well as their potential industrial and biotechnological applications.


Assuntos
Biotecnologia , Peptídeo Hidrolases , Peptídeo Hidrolases/genética
2.
J Sci Food Agric ; 103(14): 6947-6957, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37314022

RESUMO

BACKGROUND: In recent years, the rising global demand for cheese, the high cost and limited supply of calf rennet, and consumer choices have increased research into new alternatives to animal or recombinant chymosins for cheese making. Plant proteases with caseinolytic activity (CA) and milk-clotting activity (MCA) have been proposed as alternatives for milk clotting to obtain artisanal cheeses with new organoleptic properties. They have been named vegetable rennets (vrennets). The aim of this study was to evaluate the performance of two Solanum tuberosum aspartic proteases (StAP1 and StAP3) as vrennets for cheese making and to obtain a statistical model that could predict and optimize their enzymatic activity. RESULTS: To optimize the CA and MCA activities, a response surface methodology was used. Maximum values of CA and MCA for both enzymes were found at pH 5.0 and 30-35 °C. Analysis of the degradation of casein subunits showed that it is possible to tune the specificity of both enzymes by changing the pH. At pH 6.5, the αS - and ß- subunit degradation is reduced while conserving a significant MCA. CONCLUSION: The statistical models obtained in this work showed that StAP1 and StAP3 exert CA and MCA under pH and temperature conditions compatible with those used for cheese making. The casein subunit degradation percentages obtained also allowed us to select the best conditions for the degradation of the κ-casein subunit by StAPs. These results suggest that StAP1 and StAP3 are good candidates as vrennets for artisan cheese making. © 2023 Society of Chemical Industry.


Assuntos
Queijo , Solanum tuberosum , Animais , Solanum tuberosum/metabolismo , Queijo/análise , Caseínas/química , Quimosina/análise , Ácido Aspártico Endopeptidases , Peptídeo Hidrolases/metabolismo , Leite/química
3.
Crit Rev Biochem Mol Biol ; 55(3): 252-273, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32530323

RESUMO

Elastin is an important protein of the extracellular matrix of higher vertebrates, which confers elasticity and resilience to various tissues and organs including lungs, skin, large blood vessels and ligaments. Owing to its unique structure, extensive cross-linking and durability, it does not undergo significant turnover in healthy tissues and has a half-life of more than 70 years. Elastin is not only a structural protein, influencing the architecture and biomechanical properties of the extracellular matrix, but also plays a vital role in various physiological processes. Bioactive elastin peptides termed elastokines - in particular those of the GXXPG motif - occur as a result of proteolytic degradation of elastin and its non-cross-linked precursor tropoelastin and display several biological activities. For instance, they promote angiogenesis or stimulate cell adhesion, chemotaxis, proliferation, protease activation and apoptosis. Elastin-degrading enzymes such as matrix metalloproteinases, serine proteases and cysteine proteases slowly damage elastin over the lifetime of an organism. The destruction of elastin and the biological processes triggered by elastokines favor the development and progression of various pathological conditions including emphysema, chronic obstructive pulmonary disease, atherosclerosis, metabolic syndrome and cancer. This review gives an overview on types of human elastases and their action on human elastin, including the formation, structure and biological activities of elastokines and their role in common biological processes and severe pathological conditions.


Assuntos
Doenças Cardiovasculares/metabolismo , Elastina/química , Elastina/metabolismo , Neoplasias/metabolismo , Elastase Pancreática/metabolismo , Proteólise , Doença Pulmonar Obstrutiva Crônica/metabolismo , Envelhecimento/metabolismo , Animais , Cisteína Proteases/metabolismo , Humanos , Metaloproteinases da Matriz/metabolismo , Pepsina A/metabolismo , Receptores de Superfície Celular/metabolismo , Serina Proteases/metabolismo , Tropoelastina/química , Tropoelastina/metabolismo
4.
Chemistry ; 28(42): e202201066, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35686565

RESUMO

The influence of the dynamical flexibility of enzymes on reaction mechanisms is a cornerstone in biological sciences. In this study, we aim to 1) study the convergence of the activation free energy by using the first step of the reaction catalysed by HIV-1 protease as a case study, and 2) provide further evidence for a mechanistic divergence in this enzyme, as two different reaction pathways were seen to contribute to this step. We used quantum mechanics/molecular mechanics molecular dynamics simulations, on four different initial conformations that led to different barriers in a previous study. Despite the sampling, the four activation free energies still spanned a range of 5.0 kcal ⋅ mol-1 . Furthermore, the new simulations did confirm the occurrence of an unusual mechanistic divergence, with two different mechanistic pathways displaying equivalent barriers. An active-site water molecule is proposed to influence the mechanistic pathway.


Assuntos
Protease de HIV , Domínio Catalítico , Protease de HIV/metabolismo , Simulação de Dinâmica Molecular , Teoria Quântica , Termodinâmica
5.
J Plant Res ; 135(3): 501-515, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35426578

RESUMO

MAIN CONCLUSION: Grapevine aspartic proteases gene family is characterized and five VviAPs appear to be involved in grapevine defense against downy mildew. Grapevine (Vitis vinifera L.) is one of the most important crops worldwide. However, it is highly susceptible to the downy mildew disease caused by Plasmopara viticola (Berk. & Curt.) Berl. & De Toni. To minimize the use of fungicides used to control P. viticola, it is essential to gain a deeper comprehension on this pathosystem and proteases have gained particular interest in the past decade. Proteases were shown to actively participate in plant-pathogen interactions, not only in the processes that lead to plant cell death, stress responses and protein processing/degradation but also as components of the recognition and signalling pathways. The aim of this study was to identify and characterize the aspartic proteases (APs) involvement in grapevine defense against P. viticola. A genome-wide search and bioinformatics characterization of the V. vinifera AP gene family was conducted and a total of 81 APs proteins, coded by 65 genes, were found. VviAPs proteins can be divided into three categories, similar to those previously described for other plants. Twelve APs coding genes were selected, and expression analysis was conducted at several time-points after inoculation in both compatible and incompatible interactions. Five grapevine APs may be involved in grapevine tolerance against P. viticola. Our findings provide an overall understanding of the VviAPs gene family and establish better groundwork to further describe the roles of VviAPs in defense against P. viticola.


Assuntos
Oomicetos , Peronospora , Vitis , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Oomicetos/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Peronospora/metabolismo , Doenças das Plantas/genética , Vitis/genética
6.
Biochem Biophys Res Commun ; 527(1): 238-241, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32446374

RESUMO

Aspartic proteases are important biomarkers of human disease and interesting targets for modulation of immune response via MHC class II antigen processing inhibition. The lack of inhibitors with sufficient selectivity hampers precise analysis of the role of cathepsin E and napsin A in samples containing the ubiquitous and highly abundant homolog cathepsin D. Grassystatins from marine cyanobacteria show promising selectivity for cathepsin E but contain several ester bonds that make their synthesis cumbersome and thus limit availability of the inhibitors. Herewith, we present grassystatin-derived cathepsin E inhibitors with greatly facilitated synthesis but retained selectivity profile. We demonstrate their affinity and selectivity with both enzyme kinetic assays and streptavidin-based pull-down from cells and mouse organs. Our findings suggest that grassystatin-like inhibitors are useful tools for targeted inhibition of cathepsin E and thus provide a novel approach for cancer and immunology research.


Assuntos
Catepsina D/antagonistas & inibidores , Catepsina E/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Peptídeos/farmacologia , Catepsina D/metabolismo , Catepsina E/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
7.
Biochem Biophys Res Commun ; 515(1): 145-148, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31130231

RESUMO

Napsin A is an intracellular aspartic protease and biomarker of various malignancies like lung adenocarcinoma and ovarian clear cell carcinoma, but its detection is usually limited to immunohistochemical techniques gaining excellent information on its distribution but missing information about posttranslational modifications (e.g. maturation state) of the protein. We present a protocol for specific enrichment of napsin A from clinical or biological specimens, that facilitates detailed analysis of the protein. By using the exceptionally broad pH range under which napsin A binds to its inhibitor pepstatin A we achieve highly selective binding of napsin A while other aspartic proteases have negligible affinity. Using this method we demonstrate that lung napsin A in many mammals is a heterogeneous enzyme with a characteristic ladder-like appearance in SDS-PAGE that might be caused by proteolytically processed N- and/or C-termini, in contrast to the more homogeneous form found in kidneys and primary lung adenocarcinoma.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Pulmão/metabolismo , Pepstatinas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Ácido Aspártico Endopeptidases/análise , Ácido Aspártico Endopeptidases/genética , Western Blotting , Bovinos , Cobaias , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Pepstatinas/genética , Ligação Proteica , Coelhos , Ratos , Ovinos , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
J Exp Bot ; 70(7): 2059-2076, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30715463

RESUMO

Members of the pepsin-like family (A1) of aspartic proteases (APs) are widely distributed in plants. A large number of genes encoding putative A1 APs are found in different plant genomes, the vast majority of which exhibit distinct features when compared with the so-called typical APs (and, therefore, grouped as atypical and nucellin-like APs). These features include the absence of the plant-specific insert; an unusually high number of cysteine residues; the nature of the amino acids preceding the first catalytic aspartate; and unexpected localizations. The over-representation of atypical and nucellin-like APs in plants is suggestive of greater diversification of protein functions and a more regulatory role for these APs, as compared with the housekeeping function generally attributed to typical APs. New functions have been uncovered for non-typical APs, with proposed roles in biotic and abiotic stress responses, chloroplast metabolism, and reproductive development, clearly suggesting functional specialization and tight regulation of activity. Furthermore, unusual enzymatic properties have also been documented for some of these proteases. Here, we give an overview of the current knowledge on the distinctive features and functions of both atypical and nucellin-like APs, and discuss this emerging pattern of functional complexity and specialization among plant pepsin-like proteases.


Assuntos
Ácido Aspártico Proteases/genética , Desenvolvimento Vegetal/fisiologia , Proteínas de Plantas/genética , Plantas/genética , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Proteases/metabolismo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Estresse Fisiológico
9.
Parasitology ; 144(3): 343-358, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27618747

RESUMO

Parasitic nematodes are important and abundant parasites adapted to live a parasitic lifestyle, with these adaptations all aimed at facilitating their survival and reproduction in their hosts. The recently sequenced genomes of four Strongyloides species, gastrointestinal parasites of humans and other animals, alongside transcriptomic and proteomic analysis of free-living and parasitic stages of their life cycles have revealed a number of protein families with a putative role in their parasitism. Many of these protein families have also been associated with parasitism in other parasitic nematode species, suggesting that these proteins may play a fundamental role in nematode parasitism more generally. Here, we review key protein families that have a putative role in Strongyloides' parasitism - acetylcholinesterases, astacins, aspartic proteases, prolyl oligopeptidases, proteinase inhibitors (trypsin inhibitors and cystatins), SCP/TAPS and transthyretin-like proteins - and the evidence for their key, yet diverse, roles in the parasitic lifestyle.


Assuntos
Proteínas de Helminto/genética , Interações Hospedeiro-Parasita , Strongyloides/genética , Fatores de Virulência/genética , Animais , Humanos , Strongyloides/patogenicidade , Estrongiloidíase/parasitologia
10.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 2109-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26457434

RESUMO

The crystal structures of two constructs of RC1339/APRc from Rickettsia conorii, consisting of either residues 105-231 or 110-231 followed by a His tag, have been determined in three different crystal forms. As predicted, the fold of a monomer of APRc resembles one-half of the mandatory homodimer of retroviral pepsin-like aspartic proteases (retropepsins), but the quaternary structure of the dimer of APRc differs from that of the canonical retropepsins. The observed dimer is most likely an artifact of the expression and/or crystallization conditions since it cannot support the previously reported enzymatic activity of this bacterial aspartic protease. However, the fold of the core of each monomer is very closely related to the fold of retropepsins from a variety of retroviruses and to a single domain of pepsin-like eukaryotic enzymes, and may represent a putative common ancestor of monomeric and dimeric aspartic proteases.


Assuntos
Ácido Aspártico Proteases/química , Proteínas de Bactérias/química , Pepsina A/química , Rickettsia conorii/química , Cristalografia por Raios X , Conformação Proteica , Multimerização Proteica
11.
Expert Opin Ther Pat ; 34(10): 1047-1072, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39206873

RESUMO

INTRODUCTION: Caspases are a family of protease enzymes that play a crucial role in apoptosis. Dysregulation of caspase activity has been implicated in various pathological conditions, making caspases an important focus of research in understanding cell death mechanisms and developing therapeutic strategies for diseases associated with abnormal apoptosis. AREAS COVERED: It is a comprehensive review of caspase inhibitors that have been comprising recently granted patents from 2016 to 2023. It includes peptide and non-peptide caspase inhibitors with their application for different diseases. EXPERT OPINION: This review categorizes and analyses recently patented caspase inhibitors on various diseases. Diseases linked to caspase dysregulation, including neurodegenerative disorders, and autoimmune conditions, are highlighted to accentuate the therapeutic relevance of the patented caspase inhibitors. This paper serves as a valuable resource for researchers, clinicians, and pharmaceutical developers seeking an up-to-date understanding of recently patented caspase inhibitors. The integration of recent patented compounds, structural insights, and mechanistic details provides a holistic view of the progress in caspase inhibitor research and its potential impact on addressing various diseases.


Assuntos
Apoptose , Doenças Autoimunes , Inibidores de Caspase , Caspases , Desenvolvimento de Medicamentos , Doenças Neurodegenerativas , Patentes como Assunto , Humanos , Animais , Inibidores de Caspase/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Doenças Autoimunes/tratamento farmacológico , Desenho de Fármacos
12.
Infect Dis Rep ; 16(4): 572-586, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39051243

RESUMO

The secreted aspartic peptidases (Saps) of Candida albicans play crucial roles in various steps of fungal-host interactions. Using a flow cytometry approach, this study investigated the expression of Saps1-3 antigens after (i) incubation with soluble proteins, (ii) interaction with mammalian cells, and (iii) infection in immunosuppressed BALB/c mice. Supplementation strategies involving increasing concentrations of bovine serum albumin (BSA) added to yeast carbon base (YCB) medium as the sole nitrogenous source revealed a positive and significant correlation between BSA concentration and both the growth rate and the percentage of fluorescent cells (%FC) labeled with anti-Saps1-3 antibodies. Supplementing the YCB medium with various soluble proteins significantly modulated the expression of Saps1-3 antigens in C. albicans. Specifically, immunoglobulin G, gelatin, and total bovine/human sera significantly reduced the %FC, while laminin, human serum albumin, fibrinogen, hemoglobin, and mucin considerably increased the %FC compared to BSA. Furthermore, co-cultivating C. albicans yeasts with either live epithelial or macrophage cells induced the expression of Saps1-3 antigens in 78% (mean fluorescence intensity [MFI] = 152.1) and 82.7% (MFI = 178.2) of the yeast cells, respectively, compared to BSA, which resulted in 29.3% fluorescent cells (MFI = 50.9). Lastly, the yeasts recovered from the kidneys of infected immunosuppressed mice demonstrated a 4.8-fold increase in the production of Saps1-3 antigens (MFI = 246.6) compared to BSA, with 95.5% of yeasts labeled with anti-Saps1-3 antibodies. Altogether, these results demonstrated the positive modulation of Saps' expression in C. albicans by various key host proteinaceous components, as well as by in vitro and in vivo host challenges.

13.
Int J Biol Macromol ; 253(Pt 7): 127404, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37848116

RESUMO

Aspartic proteases (ASPs) are important hydrolases for parasitic invasion of host tissues or cells. This was the first study on Demodex ASP. First, the complete coding sequence (CDS) was amplified, cloned and sequenced. Then, the protein physical and chemical properties was analysed. Finally, the recombinant plasmid, expression and purification system was established. Results showed that the lengths of CDS of Demodex folliculorum and D. brevis were 1161 and 1173 bp, respectively. The molecular weight of the protein was approximately 40 KDa. It contained an aspartic acid residue, a substrate-binding site and signal peptide, yet lacked a transmembrane domain and was located in the membrane or extracellular matrix. The phylogenetic and conserved motif analyses showed that D. folliculorum and D. brevis clustered separately and then formed a single branch, which finally clustered with other Acariformes species. The prokaryotic expression systems for recombinant ASP with His-tag (rASP-His) and GST-tag (rASP-GST) were constructed. The inclusion bodies of rASP-His were renaturated by gradient urea and purified using NI beads, while those of rASP-GST were renaturated by sarkosyl and Triton X-100 and purified using GST beads. Conclusively, the prokaryotic expression and purification system of Demodex rASP was successfully established for further pathogenic mechanism research.


Assuntos
Ácaros , Animais , Humanos , Ácaros/genética , Filogenia , Sequência de Bases , Clonagem Molecular , Peptídeo Hidrolases
14.
Food Res Int ; 173(Pt 2): 113459, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803784

RESUMO

The aim of this study was the chemical, microbiological, textural, and sensory characterization of pilot-scale prototypes of an Italian ewe's raw milk cheese (Caciofiore) curdled with commercial Cynara cardunculus rennet, used as a control, and crude extracts obtained from flowers of either spontaneous or cultivated Onopordum tauricum. Hence, the control and experimental cheese prototypes produced in two rounds of cheesemaking trials were assayed, at the end of their 60-day maturation, for the following features: pH, titratable acidity, dry matter, fat, total and soluble nitrogen (TN and SN, respectively), ash, salt, protein, lactose, viable plate counts and composition of the bacterial and fungal populations, color, texture, volatile organic compounds (VOCs), and olfactory attributes by sensory analysis (the latter for the sole prototypes curdled with the commercial rennet and the extract obtained from cultivated O. tauricum). The data overall collected showed a very low impact of the type of thistle rennet on the analyzed cheese traits, with significant differences being exclusively found for SN/TN%, titratable acidity, color, and adhesiveness. By contrast, a higher impact of the cheesemaking round was seen, with significant differences being observed for salt content, load of presumptive lactobacilli, thermophilic cocci, and Escherichia coli, and levels of the following VOCs: 2,3-butanedione, 2-pentanone, 1-butanol, 2-heptanone, 3-methyl-1-butanol, 2-heptanol, 2-nonanone, dimethyl trisulfide, 2-methyl propanoic acid, butanoic acid, and 3-methyl butanoic acid. Sensory analysis revealed a strong ewe's cheese odor, accompanied by other olfactory notes, such as pungent, sour curd, sweet, and Parmesan cheese-like notes, in all the analysed cheese prototypes. Moreover, key odor active compounds, including butanoic acid, ethyl butanoate, 2,3-butanedione, 1-octen-3-one, and dimethyl trisulfide, were identified by GC-olfactometry analysis. Regarding the odor attributes as determined by sensory analysis, again the type of rennet had an almost negligible impact, with significant differences being only perceived for 1 or 2 out of 20 odor attributes, depending on the analytical conditions applied. Although some aspects deserve further investigation, the results herein collected confirm that O. tauricum can be regarded as an alternative source of thistle rennet for the manufacture of Caciofiore cheese, and more in general, Mediterranean ewe's milk cheeses.


Assuntos
Queijo , Cynara , Onopordum , Ovinos , Animais , Feminino , Queijo/análise , Ácido Butírico/análise , Diacetil , Cloreto de Sódio na Dieta , Misturas Complexas
15.
Methods Mol Biol ; 2447: 21-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583770

RESUMO

Aspartic proteases (APs) are widely distributed in plants. The large majority of genes encoding putative APs exhibit distinct features when compared with the so-called typical APs, and have been grouped as atypical and nucellin-like APs. Remarkably, a diverse pattern of enzymatic properties, subcellular localizations, and biological functions are emerging for these proteases, illustrating the functional complexity among plant pepsin-like proteases. However, many key questions regarding the structure-function relationships of plant APs remain unanswered. Therefore, the expression of these enzymes in heterologous systems is a valuable strategy to unfold the unique features/biochemical properties among members of this family of proteases. Here, we describe our protocol for the production and purification of recombinant plant APs, using a procedure where the protein is refolded from inclusion bodies by dialysis. This method allows the production of untagged versions of the target protease, which has revealed to be critical to disclose differences in processing/activation requirements between plant APs. The protocol includes protein expression, washing and solubilization of inclusion bodies, refolding by dialysis, and a protein purification method. Specific considerations on critical aspects of the refolding process and further suggestions for evaluation of the final recombinant product are also provided.


Assuntos
Ácido Aspártico Proteases , Escherichia coli , Ácido Aspártico Proteases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Plantas/metabolismo , Redobramento de Proteína , Proteínas Recombinantes/metabolismo , Diálise Renal
16.
Plants (Basel) ; 11(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35214878

RESUMO

Aspartic proteases are proteolytic enzymes widely distributed in living organisms and viruses. Although they have been extensively studied in many plant species, they are poorly described in potatoes. The present study aimed to identify and characterize S. tuberosum aspartic proteases. Gene structure, chromosome and protein domain organization, phylogeny, and subcellular predicted localization were analyzed and integrated with RNAseq data from different tissues, organs, and conditions focused on abiotic stress. Sixty-two aspartic protease genes were retrieved from the potato genome, distributed in 12 chromosomes. A high number of intronless genes and segmental and tandem duplications were detected. Phylogenetic analysis revealed eight StAP groups, named from StAPI to StAPVIII, that were differentiated into typical (StAPI), nucellin-like (StAPIIIa), and atypical aspartic proteases (StAPII, StAPIIIb to StAPVIII). RNAseq data analyses showed that gene expression was consistent with the presence of cis-acting regulatory elements on StAP promoter regions related to water deficit. The study presents the first identification and characterization of 62 aspartic protease genes and proteins on the potato genome and provides the baseline material for functional gene determinations and potato breeding programs, including gene editing mediated by CRISPR.

17.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35143646

RESUMO

Necrosis was once described as a chaotic unregulated response to cellular insult. We now know that necrosis is controlled by multiple pathways in response to many different cellular conditions. In our pnc-1 NAD+ salvage deficient Caenorhabditis elegans model excess nicotinamide induces excitotoxic death in uterine-vulval uv1 cells and OLQ mechanosensory neurons. We sought to characterize necrosis in our pnc-1 model in the context of well-characterized necrosis, apoptosis, and autophagy pathways in C. elegans. We confirmed that calpain and aspartic proteases were required for uv1 necrosis, but changes in intracellular calcium levels and autophagy were not, suggesting that uv1 necrosis occurs by a pathway that diverges from mec-4d-induced touch cell necrosis downstream of effector aspartic proteases. OLQ necrosis does not require changes in intracellular calcium, the function of calpain or aspartic proteases, or autophagy. Instead, OLQ survival requires the function of calreticulin and calnexin, pro-apoptotic ced-4 (Apaf1), and genes involved in both autophagy and axon guidance. In addition, the partially OLQ-dependent gentle nose touch response decreased significantly in pnc-1 animals on poor quality food, further suggesting that uv1 and OLQ necrosis differ downstream of their common trigger. Together these results show that, although phenotypically very similar, uv1, OLQ, and touch cell necrosis are very different at the molecular level.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , NAD/metabolismo , Necrose/metabolismo , Neurônios/metabolismo
18.
Front Cell Infect Microbiol ; 11: 765942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071033

RESUMO

Periodontal disease depends on the presence of different microorganisms in the oral cavity that during the colonization of periodontal tissues form a multispecies biofilm community, thus allowing them to survive under adverse conditions or facilitate further colonization of host tissues. Not only numerous bacterial species participate in the development of biofilm complex structure but also fungi, especially Candida albicans, that often commensally inhabits the oral cavity. C. albicans employs an extensive armory of various virulence factors supporting its coexistence with bacteria resulting in successful host colonization and propagation of infection. In this article, we highlight various aspects of individual fungal virulence factors that may facilitate the collaboration with the associated bacterial representatives of the early colonizers of the oral cavity, the bridging species, and the late colonizers directly involved in the development of periodontitis, including the "red complex" species. In particular, we discuss the involvement of candidal cell surface proteins-typical fungal adhesins as well as originally cytosolic "moonlighting" proteins that perform a new function on the cell surface and are also present within the biofilm structures. Another group of virulence factors considered includes secreted aspartic proteases (Sap) and other secreted hydrolytic enzymes. The specific structure of the candidal cell wall, dynamically changing during morphological transitions of the fungus that favor the biofilm formation, is equally important and discussed. The non-protein biofilm-composing factors also show dynamic variability upon the contact with bacteria, and their biosynthesis processes could be involved in the stability of mixed biofilms. Biofilm-associated changes in the microbe communication system using different quorum sensing molecules of both fungal and bacterial cells are also emphasized in this review. All discussed virulence factors involved in the formation of mixed biofilm pose new challenges and influence the successful design of new diagnostic methods and the application of appropriate therapies in periodontal diseases.


Assuntos
Candida albicans , Fatores de Virulência , Bactérias , Biofilmes , Percepção de Quorum
19.
J Fungi (Basel) ; 7(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071195

RESUMO

The repurposing strategy was applied herein to evaluate the effects of lopinavir, an aspartic protease inhibitor currently used in the treatment of HIV-infected individuals, on the globally widespread opportunistic human fungal pathogen Candida albicans by using in silico, in vitro and in vivo approaches in order to decipher its targets on fungal cells and its antifungal mechanisms of action. Secreted aspartic proteases (Saps) are the obviously main target of lopinavir. To confirm this hypothesis, molecular docking assays revealed that lopinavir bound to the Sap2 catalytic site of C. albicans as well as inhibited the Sap hydrolytic activity in a typically dose-dependent manner. The inhibition of Saps culminated in the inability of C. albicans yeasts to assimilate the unique nitrogen source (albumin) available in the culture medium, culminating with fungal growth inhibition (IC50 = 39.8 µM). The antifungal action of lopinavir was corroborated by distinct microscopy analyses, which evidenced drastic and irreversible changes in the morphology that justified the fungal death. Furthermore, our results revealed that lopinavir was able to (i) arrest the yeasts-into-hyphae transformation, (ii) disturb the synthesis of neutral lipids, including ergosterol, (iii) modulate the surface-located molecules, such as Saps and mannose-, sialic acid- and N-acetylglucosamine-containing glycoconjugates, (iv) diminish the secretion of hydrolytic enzymes, such as Saps and esterase, (v) negatively influence the biofilm formation on polystyrene surface, (vi) block the in vitro adhesion to epithelial cells, (vii) contain the in vivo infection in both immunocompetent and immunosuppressed mice and (viii) reduce the Sap production by yeasts recovered from kidneys of infected animals. Conclusively, the exposed results highlight that lopinavir may be used as a promising repurposing drug against C. albicans infection as well as may be used as a lead compound for the development of novel antifungal drugs.

20.
Plants (Basel) ; 9(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365700

RESUMO

Nepenthesins are aspartic proteases (APs) categorized under the A1B subfamily. Due to nepenthesin-specific sequence features, the A1B subfamily is also named nepenthesin-type aspartic proteases (NEPs). Nepenthesins are mostly known from the pitcher fluid of the carnivorous plant Nepenthes, where they are availed for the hydrolyzation of insect protein required for the assimilation of insect nitrogen resources. However, nepenthesins are widely distributed within the plant kingdom and play significant roles in plant species other than Nepenthes. Although they have received limited attention when compared to other members of the subfamily, current data indicates that they have exceptional molecular and biochemical properties and new potentials as fungal-resistance genes. In the current review, we provide insights into the current knowledge on the molecular and biochemical properties of plant nepenthesins and highlights that future focus on them may have strong potentials for industrial applications and crop trait improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA