Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(21): 3807-3824, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37185099

RESUMO

Sphingosine-1-phosphate (S1P), a bioactive sphingolipid concentrated in the brain, is essential for normal brain functions, such as learning and memory and feeding behaviors. Sphingosine kinase 1 (SphK1), the primary kinase responsible for S1P production in the brain, is abundant within presynaptic terminals, indicating a potential role of the SphK1/S1P axis in presynaptic physiology. Altered S1P levels have been highlighted in many neurologic diseases with endocytic malfunctions. However, it remains unknown whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis in neurons. The present study evaluates potential functions of the SphK1/S1P axis in synaptic vesicle endocytosis by determining effects of a dominant negative catalytically inactive SphK1. Our data for the first time identify a critical role of the SphK1/S1P axis in endocytosis in both neuroendocrine chromaffin cells and neurons from mice of both sexes. Furthermore, our Ca2+ imaging data indicate that the SphK1/S1P axis may be important for presynaptic Ca2+ increases during prolonged stimulations by regulating the Ca2+ permeable TRPC5 channels, which per se regulate synaptic vesicle endocytosis. Collectively, our data point out a critical role of the regulation of TRPC5 by the SphK1/S1P axis in synaptic vesicle endocytosis.SIGNIFICANCE STATEMENT Sphingosine kinase 1 (SphK1), the primary kinase responsible for brain sphingosine-1-phosphate (S1P) production, is abundant within presynaptic terminals. Altered SphK1/S1P metabolisms has been highlighted in many neurologic disorders with defective synaptic vesicle endocytosis. However, whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis is unknown. Here, we identify that the SphK1/S1P axis regulates the kinetics of synaptic vesicle endocytosis in neurons, in addition to controlling fission-pore duration during single vesicle endocytosis in neuroendocrine chromaffin cells. The regulation of the SphK1/S1P axis in synaptic vesicle endocytosis is specific since it has a distinguished signaling pathway, which involves regulation of Ca2+ influx via TRPC5 channels. This discovery may provide novel mechanistic implications for the SphK1/S1P axis in brain functions under physiological and pathologic conditions.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool) , Vesículas Sinápticas , Masculino , Feminino , Camundongos , Animais , Vesículas Sinápticas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/metabolismo , Endocitose , Lisofosfolipídeos/metabolismo , Canais de Cátion TRPC
2.
J Comput Chem ; 45(23): 1968-1979, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703360

RESUMO

A computational methodology, founded on chemical concepts, is presented for interpreting the role of nuclear motion in the electron transport through single-molecule junctions (SMJ) using many-electron ab initio quantum chemical calculations. Within this approach the many-electron states of the system, computed at the SOS-ADC(2) level, are followed along the individual normal modes of the encapsulated molecules. The inspection of the changes in the partial charge distribution of the many-electron states allows the quantification of the electron transport and the estimation of transmission probabilities. This analysis improves the understanding of the relationship between internal motions and electron transport. Two SMJ model systems are studied for validation purposes, constructed from a conductor (BDA, benzene-1,4-diamine) and an insulator molecule (DABCO, 1,4-diazabicyclo[2.2.2]octane). The trends of the resulting transmission probabilities are in agreement with the experimental observations, demonstrating the capability of the approach to distinguish between conductor and insulator type systems, thereby offering a straightforward and cost-effective tool for such classifications via quantum chemical calculations.

3.
Appl Environ Microbiol ; : e0071424, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940583

RESUMO

Oligotrophic deep-water lakes are unique and sensitive ecosystems with limited nutrient availability. Understanding bacterial communities within these lakes is crucial for assessing ecosystem health, biogeochemical cycling, and responses to environmental changes. In this study, we investigated the seasonal and vertical dynamics of both free-living (FL) and particle-attached (PA) bacteria in Lake Fuxian, a typical oligotrophic deep freshwater lake in southeast China. Our findings revealed distinct seasonal and vertical dynamics of FL and PA bacterial communities, driven by similar physiochemical environmental factors. PA bacteria exhibited higher α- and ß-diversity and were enriched with Proteobacteria, Cyanobacteria, Firmicutes, Patescibacteria, Planctomycetota, and Verrucomicrobiota, while FL bacteria were enriched with Actinobacteria and Bacteroidota. FL bacteria showed enrichment in putative functions related to chemoheterotrophy and aerobic anoxygenic photosynthesis, whereas the PA fraction was enriched with intracellular parasites (mainly contributed by Rickettsiales, Chlamydiales, and Legionellales) and nitrogen metabolism functions. Deterministic processes predominantly shaped the assembly of both FL and PA bacterial communities, with stochastic processes playing a greater role in the FL fraction. Network analysis revealed extensive species interactions, with a higher proportion of positively correlated edges in the PA network, indicating mutualistic or cooperative interactions. Cyanobium, Comamonadaceae, and Roseomonas were identified as keystone taxa in the PA network, underscoring potential cooperation between autotrophic and heterotrophic bacteria in organic particle microhabitats. Overall, the disparities in bacterial diversity, community composition, putative function, and network characteristics between FL and PA fractions highlight their adaptation to distinct ecological niches within these unique lake ecosystems.IMPORTANCEUnderstanding the diversity of microbial communities, their assembly mechanisms, and their responses to environmental changes is fundamental to the study of aquatic microbial ecology. Oligotrophic deep-water lakes are fragile ecosystems with limited nutrient resources, rendering them highly susceptible to environmental fluctuations. Examining different bacterial types within these lakes offers valuable insights into the intricate mechanisms governing community dynamics and adaptation strategies across various scales. In our investigation of oligotrophic deep freshwater Lake Fuxian in China, we explored the seasonal and vertical dynamics of two bacterial types: free-living (FL) and particle-attached (PA). Our findings unveiled distinct patterns in the diversity, composition, and putative functions of these bacteria, all shaped by environmental factors. Understanding these subtleties provides insight into bacterial interactions, thereby influencing the overall ecosystem functioning. Ultimately, our research illuminates the adaptation and roles of FL and PA bacteria within these unique lake environments, contributing significantly to our broader comprehension of ecosystem stability and health.

4.
Microvasc Res ; 152: 104646, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38092222

RESUMO

Blood flow in the gingiva, comprising the interdental papilla as well as attached and marginal gingiva, is important for maintaining of gingival function and is modulated by risk factors such as stress that may lead to periodontal disease. Marked blood flow changes mediated by the autonomic (parasympathetic and sympathetic) nervous system may be essential for gingival hemodynamics. However, differences in autonomic vasomotor responses and their functional significance in different parts of the gingiva are unclear. We examined the differences in autonomic vasomotor responses and their interactions in the gingiva of anesthetized rats. Parasympathetic vasodilation evoked by the trigeminal (lingual nerve)-mediated reflex elicited frequency-dependent blood flow increases in gingivae, with the increases being greatest in the interdental papilla. Parasympathetic blood flow increases were significantly reduced by intravenous administration of the atropine and VIP antagonist. The blood flow increase evoked by acetylcholine administration was higher in the interdental papilla than in the attached gingiva, whereas that evoked by VIP agonist administration was greater in the attached gingiva than in the interdental papilla. Activation of the cervical sympathetic nerves decreased gingival blood flow and inhibited parasympathetically induced blood flow increases. Our results suggest that trigeminal-parasympathetic reflex vasodilation 1) is more involved in the regulation of blood flow in the interdental papilla than in the other parts of the gingiva, 2) is mediated by cholinergic (interdental papilla) and VIPergic systems (attached gingiva), and 3) is inhibited by excess sympathetic activity. These results suggest a role in the etiology of periodontal diseases during mental stress.


Assuntos
Gengiva , Sistema Nervoso Simpático , Ratos , Animais , Gengiva/irrigação sanguínea , Vasodilatação , Atropina/farmacologia
5.
Microb Ecol ; 87(1): 42, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38356037

RESUMO

The estuarine system functions as natural filters due to its ability to facilitate material transformation, planktonic bacteria play a crucial role in the cycling of complex nutrients and pollutants within estuaries, and understanding the community composition and assembly therein is crucial for comprehending bacterial ecology within estuaries. Despite extensive investigations into the composition and community assembly of two bacterial fractions (free-living, FLB; particle-attached, PAB), the process by which bacterioplankton communities in these two habitats assemble in the nearshore and offshore zones of estuarine ecosystems remains poorly understood. In this study, we conducted sampling in the Yangtze River Estuary (YRE) to investigate potential variations in the composition and community assembly of FLB and PAB in nearshore and offshore regions. We collected 90 samples of surface, middle, and bottom water from 16 sampling stations and performed 16S rRNA gene amplicon analysis along with environmental factor measurements. The results unveiled that the nearshore communities demonstrated significantly greater species richness and Chao1 indices compared to the offshore communities. In contrast, the nearshore communities had lower values of Shannon and Simpson indices. When compared to the FLB, the PAB exhibit a higher level of biodiversity and abundance. However, no distinct alpha and beta diversity differences were observed between the bottom, middle, and surface water layers. The community assembly analysis indicated that nearshore communities are predominantly shaped by deterministic processes, particularly due to heterogeneous selection of PAB; In contrast, offshore communities are governed more by stochastic processes, largely due to homogenizing dispersal of FLB. Consequently, the findings of this study demonstrate that nearshore and PAB communities exhibit higher levels of species diversity, while stochastic and deterministic processes exert distinct influences on communities among near- and offshore regions. This study further sheds new light on our understanding of the mechanisms governing bacterial communities in estuarine ecosystems.


Assuntos
Ecossistema , Rios , Rios/microbiologia , Plâncton/genética , Estuários , RNA Ribossômico 16S/genética , Bactérias/genética , Água
6.
Appl Microbiol Biotechnol ; 108(1): 309, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661971

RESUMO

An alpha-proteobacterial strain JXJ CY 53 T was isolated from the cyanosphere of Microcystis sp. FACHB-905 (MF-905) collected from Lake Dianchi, China. JXJ CY 53 T was observed to be an aerobic, Gram-stain-negative, oval shaped, and mucus-secreting bacterium. It had C18:1ω7c and C16:0 as the major cellular fatty acids, Q-10 as the predominant ubiquinone, and sphingoglycolipid, diphosphatidylglycerol, phosphatidylcholine, and phosphatidylmethylethanolamine as the polar lipids. The G + C content of DNA was 65.85%. The bacterium had 16S rRNA gene sequence identities of 98.9% and 98.7% with Sphingomonas panni DSM 15761 T and Sphingomonas hankookensis KCTC 22579 T, respectively, while less than 97.4% identities with other members of the genus. Further taxonomic analysis indicated that JXJ CY 53 T represented a new member of Sphingomonas, and the species epithet was proposed as Sphingomonas lacusdianchii sp. nov. (type strain JXJ CY 53 T = KCTC 72813 T = CGMCC 1.17657 T). JXJ CY 53 T promoted the growth of MF-905 by providing bio-available phosphorus and nitrogen, plant hormones, vitamins, and carotenoids. It could modulate the relative abundances of nonculturable bacteria associated with MF-905 and influence the interactions of MF-905 and other bacteria isolated from the cyanobacterium, in addition to microcystin production characteristics. Meanwhile, MF-905 could provide JXJ CY 53 T dissolved organic carbon for growth, and control the growth of JXJ CY 53 T by secreting specific chemicals other than microcystins. Overall, these results suggest that the interactions between Microcystis and its attached bacteria are complex and dynamic, and may influence the growth characteristics of the cyanobacterium. This study provided new ideas to understand the interactions between Microcystis and its attached bacteria. KEY POINTS: • A novel bacterium (JXJCY 53 T) was isolated from the cyanosphere of Microcystis sp. FACHB-905 (MF-905) • JXJCY 53 T modulated the growth and microcystin production of MF-905 • MF-905 could control the attached bacteria by specific chemicals other than microcystins (MCs).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Sphingomonas , Sphingomonas/metabolismo , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Sphingomonas/classificação , RNA Ribossômico 16S/genética , China , Ácidos Graxos/metabolismo , DNA Bacteriano/genética , Fosfolipídeos/análise , Microcystis/genética , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , Lagos/microbiologia , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Simbiose , Ubiquinona
7.
Appl Microbiol Biotechnol ; 108(1): 42, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183480

RESUMO

The massive proliferation of Microcystis threatens freshwater ecosystems and degrades water quality globally. Understanding the mechanisms that contribute to Microcystis growth is crucial for managing Microcystis blooms. The lifestyles of bacteria can be classified generally into two groups: particle-attached (PA; > 3 µm) and free-living (FL; 0.2-3.0 µm). However, little is known about the response of PA and FL bacteria to Microcystis blooms. Using 16S rRNA gene high-throughput sequencing, we investigated the stability, assembly process, and co-occurrence patterns of PA and FL bacterial communities during distinct bloom stages. PA bacteria were phylogenetically different from their FL counterparts. Microcystis blooms substantially influenced bacterial communities. The time decay relationship model revealed that Microcystis blooms might increase the stability of both PA and FL bacterial communities. A contrasting community assembly mechanism was observed between the PA and FL bacterial communities. Throughout Microcystis blooms, homogeneous selection was the major assembly process that impacted the PA bacterial community, whereas drift explained much of the turnover of the FL bacterial community. Both PA and FL bacterial communities could be separated into modules related to different phases of Microcystis blooms. Microcystis blooms altered the assembly process of PA and FL bacterial communities. PA bacterial community appeared to be more responsive to Microcystis blooms than FL bacteria. Decomposition of Microcystis blooms may enhance cooperation among bacteria. Our findings highlight the importance of studying bacterial lifestyles to understand their functions in regulating Microcystis blooms. KEY POINTS: • Microcystis blooms alter the assembly process of PA and FL bacterial communities • Microcystis blooms increase the stability of both PA and FL bacterial communities • PA bacteria seem to be more responsive to Microcystis blooms than FL bacteria.


Assuntos
Ecossistema , Microcystis , Microcystis/genética , RNA Ribossômico 16S/genética , Água Doce , Sequenciamento de Nucleotídeos em Larga Escala
8.
Antonie Van Leeuwenhoek ; 117(1): 12, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170242

RESUMO

A novel alphaproteobacterial strain JXJ CY 41T was isolated from a culture mass of Microcystis, collected from Lake Dianchi, south-west, China. Strain JXJ CY 41T was gram-strain-negative, aerobic, motile, with rod-shaped cells (0.4-1.0 × 1.7-3.5 µm). It was positive for catalase and starch hydrolysis, negative for oxidase and hydrolysis of Tweens (20, 40, and 80). Growth occurred at 10-44 °C, pH 5.0-10.0, and 0-5.0% (w/v) NaCl. Major fatty acids included C16:0 (28.1%), 11-methyl C18:1 ω7c (36.7%) and C18:1 ω7c (20.8%). Q10 was the sole ubiquinone. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, glycolipid, and an unidentified lipid. The DNA G + C content was 63.1%. Its 16S rRNA gene sequence showed high similarities with Devosia oryziradicis G19T (99.5%; not validly published), D. yakushimensis Yak96BT (98.3%) and D. ginsengisoli Gsoil 520T (98.1%), and less than 98.1% similarities with other members of the genus Devosia. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain JXJ CY 41T and its 5 closest similar strains were 19.9-24.1% and 75.7-80.5%, respectively. Based on the data above, strain JXJ CY 41T was identified as a novel species of the genus Devosia, for which the epithet Devosia lacusdianchii sp. nov. was proposed. The type strain is JXJ CY 41T (= KCTC 72812T = CGMCC 1.17502T). Strain JXJ CY 41T exhibited different interactions with Microcystis aeruginosa FACHB-905 (Maf) under different conditions, and Maf could control the bacterial cellular density by secreting unknown specific chemical compounds according to its nutritional requirements.


Assuntos
Microcystis , Adolescente , Criança , Humanos , Microcystis/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Filogenia , Ácidos Graxos/química , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química
9.
Genomics ; 115(5): 110664, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37286013

RESUMO

This study aims to characterize the functional changes of the rumen epithelium associated with ruminal short-chain fatty acid (SCFA) concentration and epithelium-attached microbes during the weaning transition in dairy calves. Ruminal SCFA concentrations were determined, and transcriptome and microbiota profiling in biopsied rumen papillae were obtained from Holstein calves before and after weaning using RNA- and amplicon sequencing. Metabolic pathway analysis showed that pathways related to SCFA metabolism and cell apoptosis were up- and down-regulated postweaning, respectively. Functional analysis showed that genes related to SCFA absorption, metabolism, and protective roles against oxidative stress were positively correlated with ruminal SCFA concentrations. The relative abundance of epithelium-attached Rikenellaceae RC9 gut group and Campylobacter was positively correlated with genes involved in SCFA absorption and metabolism, suggesting that these microbes can cooperatively affect host functions. Future research should examine the contribution of attenuated apoptosis on rumen epithelial functional shifts during the weaning transition.


Assuntos
Microbiota , Rúmen , Animais , Bovinos , Rúmen/metabolismo , Desmame , Epitélio/metabolismo , Ácidos Graxos Voláteis/metabolismo , Perfilação da Expressão Gênica
10.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610390

RESUMO

One of the effective methods of non-destructive testing of structures is active vibration diagnostics. This approach consists of the local dynamic impact of the actuator on the structure and the registration of the vibration response. Testing of massive reinforced concrete structures is carried out with the use of actuators, which are able to create sufficiently high-impact loads. The actuators, which are based on piezoelectric elements, cannot provide a sufficient level of force and the areas where it is possible to register the vibrations excited by such actuators are quite small. In this paper, we propose a variant of a piezoactuator with attached mass, which ensures an increase in the level of dynamic impact on the structure. The effectiveness of this version is verified by numerical modeling of the dynamic interaction of the actuator with a concrete slab. The simulation was carried out within the framework of the theory of elasticity and coupled electroelasticity. An algorithm for selecting the value of the attached mass is described. It is shown that when vibrations are excited in a massive concrete slab, an actuator with an attached mass of 1.3 kg provides a 10,000-fold increase in the force compared to an actuator without attached mass. In the pulse mode, a 100-fold increase in force is achieved.

11.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892135

RESUMO

Podophyllotoxin (PPT) is an active pharmaceutical ingredient (API) with established antitumor potential. However, due to its systemic toxicity, its use is restricted to topical treatment of anogenital warts. Less toxic PPT derivatives (e.g., etoposide and teniposide) are used intravenously as anticancer agents. PPT has been exploited as a scaffold of new potential therapeutic agents; however, fewer studies have been conducted on the parent molecule than on its derivatives. We have undertaken a study of ultrastructural changes induced by PPT on HaCaT keratinocytes. We have also tracked the intracellular localization of PPT using its fluorescent derivative (PPT-FL). Moreover, we performed molecular docking of both PPT and PPT-FL to compare their affinity to various binding sites of tubulin. Using the Presto blue viability assay, we established working concentrations of PPT in HaCaT cells. Subsequently, we have used selected concentrations to determine PPT effects at the ultrastructural level. Dynamics of PPT distribution by confocal microscopy was performed using PPT-FL. Molecular docking calculations were conducted using Glide. PPT induces a time-dependent cytotoxic effect on HaCaT cells. Within 24 h, we observed the elongation of cytoplasmic processes, formation of cytoplasmic vacuoles, progressive ER stress, and shortening of the mitochondrial long axis. After 48 h, we noticed disintegration of the cell membrane, progressive vacuolization, apoptotic/necrotic vesicles, and a change in the cell nucleus's appearance. PPT-FL was detected within HaCaT cells after ~10 min of incubation and remained within cells in the following measurements. Molecular docking confirmed the formation of a stable complex between tubulin and both PPT and PPT-FL. However, it was formed at different binding sites. PPT is highly toxic to normal human keratinocytes, even at low concentrations. It promptly enters the cells, probably via endocytosis. At lower concentrations, PPT causes disruptions in both ER and mitochondria, while at higher concentrations, it leads to massive vacuolization with subsequent cell death. The novel derivative of PPT, PPT-FL, forms a stable complex with tubulin, and therefore, it is a useful tracker of intracellular PPT binding and trafficking.


Assuntos
Células HaCaT , Queratinócitos , Simulação de Acoplamento Molecular , Podofilotoxina , Tubulina (Proteína) , Humanos , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Podofilotoxina/química , Tubulina (Proteína)/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Corantes Fluorescentes/química , Sítios de Ligação , Estresse do Retículo Endoplasmático/efeitos dos fármacos
12.
J Environ Manage ; 365: 121709, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968889

RESUMO

The current work investigated the performance of an Integrated Fixed-Film Activated Sludge Sequencing Batch Reactor (IFAS-SBR) for Biological Nitrogen Removal (BNR) from mature landfill leachate through the nitritation-denitritation process. During the experimental period two IFAS-SBR configurations were examined using two different biocarrier types with the same filling ratio (50%). The dissolved oxygen (DO) concentration ranged between 2 and 3 mg/L and 4-6 mg/L in the first (baseline-IFAS) and the second (S8-IFAS) setup, respectively. Baseline-IFAS operated for 542 days and demonstrated a high and stable BNR performance maintaining a removal efficiency above 90% under a Nitrogen Loading Rate (NLR) up to 0.45 kg N/m3-d, while S8-IFAS, which operated for 230 days, was characterized by a limited and unstable BNR performance being unable to operate sufficiently under an NLR higher than 0.20 kg N/m3-d. It also experienced a severe inhibition period, when the BNR process was fully deteriorated. Moreover, S8-IFAS suffered from extensive biocarrier stagnant zones and a particularly poor sludge settleability. The attached biomass cultivated in both IFAS configurations had a negligible content of nitrifying bacteria, probably attributed to the insufficient DO diffusion through the biofilm, caused by the low DO concentration in the liquid in the baseline case and the extensive stagnant zones in the S8-IFAS case. As a result of the high biocarrier filling ratio, the S8-IFAS was unstable and low. This was probably attributed to the mass transfer limitations caused by the biocarrier stagnant zones, which hinder substrate and oxygen diffusion, thus reducing the biomass activity and increasing its vulnerability to inhibitory and toxic factors. Hence, the biocarrier filling fraction is a crucial parameter for the efficient operation of the IFAS-SBR and should be carefully selected taking into consideration both the media type and the overall reactor configuration.


Assuntos
Reatores Biológicos , Nitrogênio , Esgotos , Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Eliminação de Resíduos Líquidos/métodos , Desnitrificação , Biomassa
13.
J Environ Manage ; 351: 119886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142601

RESUMO

Comparing with single phytohormone application, applying multiple phytohormones to microalgae-based wastewater treatment systems can offer more extensive growth-promoting and stress-protecting effects for microalgae, yet the advantage of stress-relieving salicylic acid (SA) under combined phytohormones application scenario has not been exploited. Employing the improved capillary-driven attached microalgae culturing device (CD-PBR) previously used for single phytohormone application, this study compared the effects of mixed and single phytohormone(s) addition under as low as 10-7 M dosage. In order to make the best of SA for its stress-relieving property, postponed SA addition combined with applying other phytohormone(s) at the beginning of microalgae cultivation was also investigated. Combination of 10-6 M 6-benzylaminopurine (6-BA) with 10-7 M SA was sufficient for enhancing growth-promoting effects and anti-oxidative responses for attached Chlorella sp., while indole-3-acetic acid (IAA) addition was unnecessary. Combination of 6-BA addition at the beginning while postponed SA addition on Day 4 could further sustain such beneficial effects, while removing up to 99.7% total nitrogen (TN) and 97.9% total phosphorus (TP) from the bulk liquid. These results provided innovative strategies on mixed phytohormones addition for microalgae.


Assuntos
Chlorella , Microalgas , Reguladores de Crescimento de Plantas/farmacologia , Biofilmes , Nitrogênio , Biomassa
14.
J Physiol ; 601(17): 3847-3868, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470338

RESUMO

Cardiac voltage-gated sodium (Na+ ) channels (Nav 1.5) are crucial for myocardial electrical excitation. Recent studies based on single-channel recordings have suggested that Na+ channels interact functionally and exhibit coupled gating. However, the analysis of such recordings frequently relies on manual interventions, which can lead to bias. Here, we developed an automated pipeline to de-trend and idealize single-channel currents, and assessed possible functional interactions in cell-attached patch clamp experiments in HEK293 cells expressing human Nav 1.5 channels as well as in adult mouse and rabbit ventricular cardiomyocytes. Our pipeline involved de-trending individual sweeps by linear optimization using a library of predefined functions, followed by digital filtering and baseline offset. Subsequently, the processed sweeps were idealized based on the idea that the ensemble average of the idealized current identified by thresholds between current levels reconstructs at best the ensemble average current from the de-trended sweeps. This reconstruction was achieved by non-linear optimization. To ascertain functional interactions, we examined the distribution of the numbers of open channels at every time point during the activation protocol and compared it to the distribution expected for independent channels. We also examined whether the channels tended to synchronize their openings and closings. However, we did not uncover any solid evidence of such interactions in our recordings. Rather, our results indicate that wild-type Nav 1.5 channels are independent entities or exhibit only very weak functional interactions that are probably irrelevant under physiological conditions. Nevertheless, our unbiased analysis will be important for further studies examining whether auxiliary proteins potentiate functional Na+ channel interactions. KEY POINTS: Nav 1.5 channels are critical for cardiac excitation. They are part of macromolecular interacting complexes, and it was previously suggested that two neighbouring channels may functionally interact and exhibit coupled gating. Manual interventions when processing single-channel recordings can lead to bias and inaccurate data interpretation. We developed an automated pipeline to de-trend and idealize single-channel currents and assessed possible functional interactions between Nav 1.5 channels in HEK293 cells and cardiomyocytes during activation protocols using the cell-attached patch clamp technique. In recordings consisting of up to 1000 sweeps from the same patch, our analysis did not reveal any evidence of functional interactions or coupled gating between wild-type Nav 1.5 channels. Our unbiased analysis may be useful in further studies examining how Na+ channel interactions are affected by mutations and auxiliary proteins.


Assuntos
Miocárdio , Miócitos Cardíacos , Camundongos , Humanos , Animais , Coelhos , Células HEK293 , Miócitos Cardíacos/fisiologia
15.
J Neurophysiol ; 130(1): 56-60, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283483

RESUMO

Using single neurons of rat paratracheal ganglia (PTG) attached with presynaptic boutons, the effects of suplatast tosilate on excitatory postsynaptic currents (EPSCs) were investigated with nystatin-perforated patch-clamp recording technique. We found that suplatast concentration dependently inhibited the EPSC amplitude and its frequency in single PTG neurons attached with presynaptic boutons. EPSC frequency was higher sensitive to suplatast than EPSC amplitude. IC50 for EPSC frequency was 1.1 × 10-5 M, being similar to that for the effect on histamine release from mast cells and lower than that for the inhibitory effect on cytokine production. Suplatast also inhibited the EPSCs potentiated by bradykinin (BK), but it did not affect the potentiation itself by BK. Thus suplatast inhibited the EPSC of PTG neurons attached with presynaptic boutons at both the presynaptic and postsynaptic sites.NEW & NOTEWORTHY In this study, using single neurons of rat paratracheal ganglia (PTG) attached with presynaptic boutons, the effects of suplatast tosilate on excitatory postsynaptic currents (EPSCs) were investigated with patch-clamp recording technique. We found that suplatast concentration dependently inhibited the EPSC amplitude and its frequency in single PTG neurons attached with presynaptic boutons. Thus suplatast inhibited the function of PTG neurons at both of presynaptic and postsynaptic sites.


Assuntos
Neurônios , Compostos de Sulfônio , Ratos , Animais , Neurônios/fisiologia , Sulfonatos de Arila/farmacologia , Compostos de Sulfônio/farmacologia , Bradicinina/farmacologia , Gânglios
16.
Small ; 19(30): e2302906, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37183269

RESUMO

The hollow sandwich core-shell micro-nanomaterials are widely used in materials, chemistry, and medicine, but their fabrication, particularly for transition metal phosphides (TMPs), remains a great challenge. Herein, a general synthesis strategy is presented for binary TMPs hollow sandwich heterostructures with vertically interconnected nanosheets on the inside and outside surfaces of polyhedron FeCoPx /C, demonstrated by a variety of transition metals (including Co, Fe, Cd, Mn, Cu, Cr, and Ni). Density functional theory (DFT) calculation reveals the process and universal mechanism of layered double hydroxide (LDH) growth on Prussian blue analog (PBA) surface in detail for the first time, which provides the theoretical foundations for feasibility and rationality of the synthesis strategy. This unique structure exhibits a vertical nanosheet-shell-vertical nanosheet configuration combining the advantages of sandwich, hollow and vertical heterostructures, effectively achieving their synergistic effect. As a proof-of-concept of their applications, the CoNiPx @FeCoPx /C@CoNiPx hollow sandwich polyhedron architectures (representative samples) show excellent catalytic performance for the oxygen evolution reaction (OER) in alkaline electrolytes. This work provides a general method for constructing hollow-sandwich micro-nanostructures, which provides more ideas and directions for design of micro-nano materials with special geometric topology.

17.
Cell Mol Neurobiol ; 43(6): 2831-2856, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36732488

RESUMO

Several spinal motor output and essential rhythmic behaviors are controlled by supraspinal structures, although their contribution to neuronal networks for respiration and locomotion at birth still requires better characterization. As preparations of isolated brainstem and spinal networks only focus on local circuitry, we introduced the in vitro central nervous system (CNS) from neonatal rodents to simultaneously record a stable respiratory rhythm from both cervical and lumbar ventral roots (VRs).Electrical pulses supplied to multiple sites of brainstem evoked distinct VR responses with staggered onset in the rostro-caudal direction. Stimulation of ventrolateral medulla (VLM) resulted in higher events from homolateral VRs. Stimulating a lumbar dorsal root (DR) elicited responses even from cervical VRs, albeit small and delayed, confirming functional ascending pathways. Oximetric assessments detected optimal oxygen levels on brainstem and cortical surfaces, and histological analysis of internal brain structures indicated preserved neuron viability without astrogliosis. Serial ablations showed precollicular decerebration reducing respiratory burst duration and frequency and diminishing the area of lumbar DR and VR potentials elicited by DR stimulation, while pontobulbar transection increased the frequency and duration of respiratory bursts. Keeping legs attached allows for expressing a respiratory rhythm during hindlimb stimulation. Trains of pulses evoked episodes of fictive locomotion (FL) when delivered to VLM or to a DR, the latter with a slightly better FL than in isolated cords.In summary, suprapontine centers regulate spontaneous respiratory rhythms, as well as electrically evoked reflexes and spinal network activity. The current approach contributes to clarifying modulatory brain influences on the brainstem and spinal microcircuits during development. Novel preparation of the entire isolated CNS from newborn rats unveils suprapontine modulation on brainstem and spinal networks. Preparation views (A) with and without legs attached (B). Successful fictive respiration occurs with fast dissection from P0-P2 rats (C). Decerebration speeds up respiratory rhythm (D) and reduces spinal reflexes derived from both ventral and dorsal lumbar roots (E).


Assuntos
Tronco Encefálico , Medula Espinal , Ratos , Animais , Animais Recém-Nascidos , Ratos Sprague-Dawley , Estimulação Elétrica , Tronco Encefálico/fisiologia
18.
Microb Ecol ; 86(2): 795-809, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36323973

RESUMO

Particle-attached (PA) and free-living (FL) bacterial communities play essential roles in the biogeochemical cycling of essential nutrients in aquatic environments. However, little is known about the factors that drive the differentiation of bacterial lifestyles, especially in flooding lake systems. Here we assessed the compositional and functional similarities between the FL and PA bacterial fractions in a typical flooding lake-the Poyang Lake (PYL) of China. The results revealed that PA communities had significantly different compositions and functions from FL communities in every hydrological period, and the diversity of both PA and FL communities was affected mainly by the water regime rather than bacterial lifestyles. PA communities were more diverse and enriched with Proteobacteria and Bacteroidetes, while FL communities had more Actinobacteria. There was a higher abundance of photosynthetic and nitrogen-cycling bacterial groups in PA communities, but a higher abundance of members involved in hydrocarbon degradation, aromatic hydrocarbon degradation, and methylotrophy in FL communities. Water properties (e.g., temperature, pH, total phosphorus) significantly regulated the lifestyle variations of PA and FL bacteria in PYL. Collectively, our results have demonstrated a clear ecological differentiation of PA and FL bacterial communities in flooding lakes, suggesting that the connectivity between FL and PA bacterial fractions is water property-related rather than water regime-related.


Assuntos
Bactérias , Lagos , Lagos/microbiologia , Estações do Ano , Bactérias/genética , Bactérias/metabolismo , Bacteroidetes , China , Água/metabolismo
19.
J Phycol ; 59(5): 980-988, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37578996

RESUMO

Contrasting irradiation of senescent cells of the diatom Thalassiosira sp. in association with the bacterium Pseudomonas stutzeri showed the effect of intensity of irradiance on the transfer of singlet oxygen (1 O2 ) to bacteria attached to phytoplanktonic cells. Under low irradiances, 1 O2 is produced slowly, favors the oxidation of algal unsaturated lipids (photodynamic effect), and limits 1 O2 transfer to attached bacteria. However, high irradiances induce a rapid and intense production of 1 O2 , which diffuses out of the chloroplasts and easily reaches the attached bacteria, where it efficiently oxidizes their unsaturated membrane components. Analysis of numerous sinking particle samples collected in different regions of the Canadian Arctic showed that the photooxidation state of attached bacteria increased from ice-covered areas to open water, in agreement with in vitro results. Photooxidation of bacteria appeared to be particularly intense in sea ice, where the sympagic algae-bacteria association is maintained at relatively high irradiances for long periods of time.


Assuntos
Diatomáceas , Oxigênio Singlete , Canadá , Fitoplâncton , Bactérias
20.
Environ Res ; 236(Pt 2): 116784, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517498

RESUMO

Water scarcity is increasing worldwide due to rising population which is creating opportunities to unlock alternative green desalination techniques for seawater, such as biodesalination. Therefore, this study presents the utilization of the Phormidium keutzingianum strain in an attached growth-packed bed reactor to treat seawater in real-time in a continuous-flow stirred tank reactor for biodesalination. Two reactors were designed and developed, in which zeolites were used as the support media for the attached growth. The experiment was conducted in an open outdoor environment with a continuous air flow rate of 3 mL/min and two hydraulic retention times (HRT) of 7 and 15 d. Parameters such as the pH, chloride ion concentration, total organic carbon (TOC), and optical density were monitored regularly. The pH change was not significant in either reactor and remained within the range of 7.25-8.0. Chloride ion removal was the most crucial component of biodesalination efficiency, with d 7 removal efficiencies of approximately 40% and 32% for reactors 1 and 2, respectively. Reactor 1 exhibited a TOC reduction of 36% within the first 10 d at a HRT of 7, and when the HRT was set to 15 d, a TOC removal efficiency of 89% was achieved on d 53. For reactor 2, a TOC removal efficiency of approximately 81% was achieved on d 11 at HRT 7, and it reduced to less than 50% at an HRT of 15. The chloride ion and TOC removal phenomena were similar in both reactors. The optical density (OD) showed low measurement recordings, ranging from 0.005 to 0.01, indicating low cell detachment in the seawater effluent. Therefore, using the attached growth method for the biodesalination of seawater is feasible. Furthermore, biomass harvesting in attached growth systems is easier than that in suspension growth systems.


Assuntos
Reatores Biológicos , Phormidium , Cloretos , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA