Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 33(19-20): 1441-1455, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31467088

RESUMO

Rapid perturbation of protein function permits the ability to define primary molecular responses while avoiding downstream cumulative effects of protein dysregulation. The auxin-inducible degron (AID) system was developed as a tool to achieve rapid and inducible protein degradation in nonplant systems. However, tagging proteins at their endogenous loci results in chronic auxin-independent degradation by the proteasome. To correct this deficiency, we expressed the auxin response transcription factor (ARF) in an improved inducible degron system. ARF is absent from previously engineered AID systems but is a critical component of native auxin signaling. In plants, ARF directly interacts with AID in the absence of auxin, and we found that expression of the ARF PB1 (Phox and Bem1) domain suppresses constitutive degradation of AID-tagged proteins. Moreover, the rate of auxin-induced AID degradation is substantially faster in the ARF-AID system. To test the ARF-AID system in a quantitative and sensitive manner, we measured genome-wide changes in nascent transcription after rapidly depleting the ZNF143 transcription factor. Transcriptional profiling indicates that ZNF143 activates transcription in cis and regulates promoter-proximal paused RNA polymerase density. Rapidly inducible degradation systems that preserve the target protein's native expression levels and patterns will revolutionize the study of biological systems by enabling specific and temporally defined protein dysregulation.


Assuntos
Técnicas Genéticas , Proteínas/metabolismo , Proteólise , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ácidos Indolacéticos/farmacologia , Leupeptinas/farmacologia , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Transativadores/genética , Transativadores/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(11): e2219916120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36881630

RESUMO

The signaling molecule auxin coordinates many growth and development processes in plants, mainly through modulating gene expression. Transcriptional response is mediated by the family of auxin response factors (ARF). Monomers of this family recognize a DNA motif and can homodimerize through their DNA-binding domain (DBD), enabling cooperative binding to an inverted binding site. Most ARFs further contain a C-terminal PB1 domain that is capable of homotypic interactions and mediating interactions with Aux/IAA repressors. Given the dual role of the PB1 domain, and the ability of both DBD and PB1 domain to mediate dimerization, a key question is how these domains contribute to DNA-binding specificity and affinity. So far, ARF-ARF and ARF-DNA interactions have mostly been approached using qualitative methods that do not provide a quantitative and dynamic view on the binding equilibria. Here, we utilize a DNA binding assay based on single-molecule Förster resonance energy transfer (smFRET) to study the affinity and kinetics of the interaction of several Arabidopsis thaliana ARFs with an IR7 auxin-responsive element (AuxRE). We show that both DBD and PB1 domains of AtARF2 contribute toward DNA binding, and we identify ARF dimer stability as a key parameter in defining binding affinity and kinetics across AtARFs. Lastly, we derived an analytical solution for a four-state cyclic model that explains both the kinetics and the affinity of the interaction between AtARF2 and IR7. Our work demonstrates that the affinity of ARFs toward composite DNA response elements is defined by dimerization equilibrium, identifying this as a key element in ARF-mediated transcriptional activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição , Arabidopsis/genética , Sítios de Ligação , Ácidos Indolacéticos , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo
3.
Development ; 149(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36520083

RESUMO

Arabinogalactan proteins are functionally diverse cell wall structural glycoproteins that have been implicated in cell wall remodeling, although the mechanistic actions remain elusive. Here, we identify and characterize two AGP glycoproteins, SLEEPING BEAUTY (SB) and SB-like (SBL), that negatively regulate the gametophore bud initiation in Physcomitrium patens by dampening cell wall loosening/softening. Disruption of SB and SBL led to accelerated gametophore formation and altered cell wall compositions. The function of SB is glycosylation dependent and genetically connected with the class C auxin response factor (ARF) transcription factors PpARFC1B and PpARFC2. Transcriptomics profiling showed that SB upregulates PpARFC2, which in turn suppresses a range of cell wall-modifying genes that are required for cell wall loosening/softening. We further show that PpARFC2 binds directly to multiple AuxRE motifs on the cis-regulatory sequences of PECTIN METHYLESTERASE to suppress its expression. Hence, our results demonstrate a mechanism by which the SB modulates the strength of intracellular auxin signaling output, which is necessary to fine-tune the timing of gametophore initials formation.


Assuntos
Bryopsida , Regulação da Expressão Gênica de Plantas , Glicoproteínas de Membrana/metabolismo , Bryopsida/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(50): e2210338119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36472959

RESUMO

Salt stress impairs nutrient metabolism in plant cells, leading to growth and yield penalties. However, the mechanism by which plants alter their nutrient metabolism processes in response to salt stress remains elusive. In this study, we identified and characterized the rice (Oryza sativa) rice salt tolerant 1 (rst1) mutant, which displayed improved salt tolerance and grain yield. Map-based cloning revealed that the gene RST1 encoded an auxin response factor (OsARF18). Molecular analyses showed that RST1 directly repressed the expression of the gene encoding asparagine synthetase 1 (OsAS1). Loss of RST1 function increased the expression of OsAS1 and improved nitrogen (N) utilization by promoting asparagine production and avoiding excess ammonium (NH4+) accumulation. RST1 was undergoing directional selection during domestication. The superior haplotype RST1Hap III decreased its transcriptional repression activity and contributed to salt tolerance and grain weight. Together, our findings unravel a synergistic regulator of growth and salt tolerance associated with N metabolism and provide a new strategy for the development of tolerant cultivars.


Assuntos
Aspartato-Amônia Ligase , Oryza , Tolerância ao Sal/genética , Oryza/genética , Aspartato-Amônia Ligase/genética , Expressão Gênica
5.
BMC Plant Biol ; 24(1): 993, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39438786

RESUMO

Plant height is a critical agronomic trait closely linked to yield, primarily regulated by Gibberellins (GA) and auxins, which interact in complex ways. However, the mechanism underlying their interactions remain incompletely understood. In this study, we identified a tomato mutant exhibiting significantly reduced plant height. Through gene cloning and bulked segregant analysis (BSA) sequencing, we found that the mutant gene corresponds to the tomato auxin response factor gene SlARF5/MP. Here, we show that overexpression of SlARF5/MP significantly enhances plant height. Additionally, treatment with GA3 restored the plant height of the mutant to wild-type (WT) levels, indicating that GA content is a key factor influencing plant height. We also observed significant upregulation of GA-biosynthesis genes, including GA2-oxidases GA20ox3 and GA20ox4, as well as the GA3 biosynthesis gene GA3ox1, in SlARF5-overexpressing plants. Furthermore, we demonstrated that SlARF5 directly binds to SlGA2ox3, which mediates the conversion of GA3 to inactive GA, therebyregulating its expression. Our findings suggest that SlARF5 modulates GA3 metabolism by regulating GA synthesis genes, ultimately leading to alterations in plant height.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Giberelinas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
6.
BMC Plant Biol ; 24(1): 267, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600459

RESUMO

BACKGROUND: The Auxin Responsive Factor (ARF) family plays a crucial role in mediating auxin signal transduction and is vital for plant growth and development. However, the function of ARF genes in Korean pine (Pinus koraiensis), a conifer species of significant economic value, remains unclear. RESULTS: This study utilized the whole genome of Korean pine to conduct bioinformatics analysis, resulting in the identification of 13 ARF genes. A phylogenetic analysis revealed that these 13 PkorARF genes can be classified into 4 subfamilies, indicating the presence of conserved structural characteristics within each subfamily. Protein interaction prediction indicated that Pkor01G00962.1 and Pkor07G00704.1 may have a significant role in regulating plant growth and development as core components of the PkorARFs family. Additionally, the analysis of RNA-seq and RT-qPCR expression patterns suggested that PkorARF genes play a crucial role in the development process of Korean pine. CONCLUSION: Pkor01G00962.1 and Pkor07G00704.1, which are core genes of the PkorARFs family, play a potentially crucial role in regulating the fertilization and developmental process of Korean pine. This study provides a valuable reference for investigating the molecular mechanism of embryonic development in Korean pine and establishes a foundation for cultivating high-quality Korean pine.


Assuntos
Pinus , Filogenia , Pinus/genética , Ácidos Indolacéticos , Desenvolvimento Embrionário , República da Coreia
7.
Planta ; 259(6): 133, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668881

RESUMO

MAIN CONCLUSION: PlARF2 can positively regulate the seed dormancy in Paeonia lactiflora Pall. and bind the RY cis-element. Auxin, a significant phytohormone influencing seed dormancy, has been demonstrated to be regulated by auxin response factors (ARFs), key transcriptional modulators in the auxin signaling pathway. However, the role of this class of transcription factors (TFs) in perennials with complex seed dormancy mechanisms remains largely unexplored. Here, we cloned and characterized an ARF gene from Paeonia lactiflora, named PlARF2, which exhibited differential expression levels in the seeds during the process of seed dormancy release. The deduced amino acid sequence of PlARF2 had high homology with those of other plants and contained typical conserved Auxin_resp domain of the ARF family. Phylogenetic analysis revealed that PlARF2 was closely related to VvARF3 in Vitis vinifera. The subcellular localization and transcriptional activation assay showed that PlARF2 is a nuclear protein possessing transcriptional activation activity. The expression levels of dormancy-related genes in transgenic callus indicated that PlARF2 was positively correlated with the contents of PlABI3 and PlDOG1. The germination assay showed that PlARF2 promoted seed dormancy. Moreover, TF Centered Yeast one-hybrid assay (TF-Centered Y1H), electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay analysis (Dual-Luciferase) provided evidence that PlARF2 can bind to the 'CATGCATG' motif. Collectively, our findings suggest that PlARF2, as TF, could be involved in the regulation of seed dormancy and may act as a repressor of germination.


Assuntos
Regulação da Expressão Gênica de Plantas , Paeonia , Filogenia , Dormência de Plantas , Proteínas de Plantas , Paeonia/genética , Paeonia/fisiologia , Paeonia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dormência de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Germinação/genética , Plantas Geneticamente Modificadas , Sequência de Aminoácidos
8.
New Phytol ; 241(3): 1177-1192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985404

RESUMO

The locular gel, produced by the placenta, is important for fruit flavor and seed development in tomato. However, the mechanism underlying locule and placenta development is not fully understood yet. Here, we show that two SlARF transcription factors, SlARF8B and SlARF8A (SlARF8A/B), promote the development of locular and placenta tissues. The expression of both SlARF8A and SlARF8B is repressed by sly-microRNA167 (sly-miR167), allowing for the activation of auxin downstream genes. In slarf8a, slarf8b, and slarf8a/b mutants, the auxin (IAA) levels are decreased, whereas the levels of inactive IAA conjugates including IAA-Ala, IAA-Asp, and IAA-Glu are increased. We further find that SlARF8B directly inhibits the expression of SlGH3.4, an acyl acid amino synthetase that conjugates the amino acids to IAA. Disruption of such auxin balance by the increased expression of SlGH3.4 or SlGH3.2 results in defective locular and placental tissues. Taken together, our findings reveal an important regulatory module constituted by sly-miR167-SlARF8A/B-SlGH3.4 during the development of locular and placenta tissues of tomato fruits.


Assuntos
Frutas , Solanum lycopersicum , Gravidez , Feminino , Humanos , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retroalimentação , Placenta/metabolismo , Ácidos Indolacéticos/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas
9.
Genetica ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365431

RESUMO

The auxin response factor (ARF) is a plant-specific transcription factor that regulates the expression of auxin response genes by binding directly to their promoters. They play an important role in the regulation of plant growth and development, as well as in the response to biotic and abiotic stresses. However, the identification and functional analysis of ARFs in Fagopyrum dibotrys are still unclear. In this study, a total of 26 FdARF genes were identified using bioinformatic methods. Their chromosomal location, gene structure, physical and chemical properties of their encoded protein, subcellular location, phylogenetic tree, conserved motifs and cis-acting elements in FdARF promoters were analyzed. The results showed that 26 FdARF genes were unevenly distributed on 8 chromosomes, with the largest distribution on chromosome 4 and the least distribution on chromosome 3. Most FdARF proteins are located in the nucleus, except for the proteins FdARF7 and FdARF21 located to the cytoplasm and nucleus, while FdARF14, FdARF16, and FdARF25 proteins are located outside the chloroplast and nucleus. According to phylogenetic analysis, 26 FdARF genes were divided into 6 subgroups. Duplication analysis indicates that the expansion of the FdARF gene family was derived from segmental duplication rather than tandem duplication. The prediction based on cis-elements of the promoter showed that 26 FdARF genes were rich in multiple stress response elements, suggesting that FdARFs may be involved in the response to abiotic stress. Expression profiling analysis showed that most of the FdARF genes were expressed in the roots, stems, leaves, and tubers of F. dibotrys, but their expression exhibits a certain degree of tissue specificity. qRT-PCR analysis revealed that most members of the FdARF gene were up- or down-regulated in response to abiotic stress. The results of this study expand our understanding of the functional role of FdARFs in response to abiotic stress and lay a theoretical foundation for further exploration of other functions of FdARF genes.

10.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125955

RESUMO

BACKGROUND: Auxin, a plant hormone, plays diverse roles in the modulation of plant growth and development. The transport and signal transduction of auxin are regulated by various factors involved in shaping plant morphology and responding to external environmental conditions. The auxin signal transduction is primarily governed by the following two gene families: the auxin response factor (ARF) and auxin/indole-3-acetic acid (AUX/IAA). However, a comprehensive genomic analysis involving the expression profiles, structures, and functional features of the ARF and AUX/IAA gene families in Vaccinium bracteatum has not been carried out to date. RESULTS: Through the acquisition of genomic and expression data, coupled with an analysis using online tools, two gene family members were identified. This groundwork provides a distinguishing characterization of the chosen gene families in terms of expression, interaction, and response in the growth and development of plant fruits. In our genome-wide search of the VaARF and VaIAA genes in Vaccinium bracteatum, we identified 26 VaARF and 17 VaIAA genes. We analyzed the sequence and structural characteristics of these VaARF and VaIAA genes. We found that 26 VaARF and 17 VaIAA genes were divided into six subfamilies. Based on protein interaction predictions, VaIAA1 and VaIAA20 were designated core members of VaIAA gene families. Moreover, an analysis of expression patterns showed that 14 ARF genes and 12 IAA genes exhibited significantly varied expressions during fruit development. CONCLUSION: Two key genes, namely, VaIAA1 and VaIAA20, belonging to a gene family, play a potentially crucial role in fruit development through 26 VaARF-IAAs. This study provides a valuable reference for investigating the molecular mechanism of fruit development and lays the foundation for further research on Vaccinium bracteatum.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Família Multigênica , Proteínas de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Vaccinium/genética , Vaccinium/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Physiol Mol Biol Plants ; 30(6): 921-944, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974352

RESUMO

Auxin response factors (ARFs), as the main components of auxin signaling, play a crucial role in various processes of plant growth and development, as well as in stress response. So far, there have been no reports on the genome-wide identification of the ARF transcription factor family in Cyclocarya paliurus, a deciduous tree plant in the family Juglaceae. In this study, a total of 34 CpARF genes were identified based on whole genome sequence, and they were unevenly distributed on 16 chromosomes, with the highest distribution on chromosome 6. Domain analysis of CpARF proteins displayed that 31 out of 34 CpARF proteins contain a typical B3 domain (DBD domain), except CpARF12/ CpARF14/CpARF31, which all belong to Class VI. And 20 CpARFs (58.8%) contain an auxin_IAA binding domain, and are mainly distributed in classes I, and VI. Phylogenetic analysis showed that CpARF was divided into six classes (I-VI), each containing 4, 4, 1, 8, 4, and 13 members, respectively. Gene duplication analysis showed that there are 14 segmental duplications and zero tandem repeats were identified in the CpARF gene family of the C. paliurus genome. The Ka/Ks ratio of duplicate gene pairs indicates that CpARF genes are subjected to strong purification selection pressure. Synteny analysis showed that C. paliurus shared the highest homology in 74 ARF gene pairs with Juglans regia, followed by 73, 51, 25, and 11 homologous gene pairs with Populus trichocarpa, Juglans cathayensis, Arabidopsis, and rice, respectively. Promoter analysis revealed that 34 CpARF genes had cis-elements related to hormones, stress, light, and growth and development except for CpARF12. The expression profile analysis showed that almost all CpARF genes were differentially expressed in at least one tissue, and several CpARF genes displayed tissue-specific expression. Furthermore, 24 out of the 34 CpARF genes have significantly response to drought stress (P < 0.05), and most of them (16) being significantly down-regulated under moderate drought treatment. Meanwhile, the majority of CpARF genes (28) have significantly response to drought stress (P < 0.05), and most of them (26) are significantly down-regulated under severe drought treatment. Furthermore, 32 out of the 34 CpARF genes have significantly response to high, middle, and low salt stress under salt treatment (P < 0.05). Additionally, subcellular localization analysis confirmed that CpARF16 and CpARF32 were all localized to nucleus. Thus, our findings expand the understanding of the function of CpARF genes and provide a basis for further functional studies on CpARF genes in C. paliurus. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01474-1.

12.
Plant Mol Biol ; 112(1-2): 85-98, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37103774

RESUMO

The Orchidaceae is a large family of perennial herbs especially noted for the exceptional diversity of specialized flowers. Elucidating the genetic regulation of flowering and seed development of orchids is an important research goal with potential utility in orchid breeding programs. Auxin Response Factor (ARF) genes encode auxin-responsive transcription factors, which are involved in the regulation of diverse morphogenetic processes, including flowering and seed development. However, limited information on the ARF gene family in the Orchidaceae is available. In this study, 112 ARF genes were identified in the genomes of 5 orchid species (Apostasia shenzhenica, Dendrobium catenatum, Phalaenopsis aphrodite, Phalaenopsis equestris and Vanilla planifolia,). These genes were grouped into 7 subfamilies based on their phylogenetic relationships. Compared with the ARF family in model plants, such as Arabidopsis thaliana and Oryza sativa, one group of ARF genes involved in pollen wall synthesis has been lost during evolution of the Orchidaceae. This loss corresponds with absence of the exine in the pollinia. Through mining of the published genomic and transcriptomic data for the 5 orchid species: the ARF genes of subfamily 4 may play an important role in flower formation and plant growth, whereas those of subfamily 3 are potentially involved in pollen wall development. the study results provide novel insights into the genetic regulation of unique morphogenetic phenomena of orchids, which lay a foundation for further analysis of the regulatory mechanisms and functions of sexual reproduction-related genes in orchids.


Assuntos
Orchidaceae , Orchidaceae/genética , Transcriptoma , Filogenia , Melhoramento Vegetal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Plant Cell Physiol ; 63(12): 1980-1993, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34977939

RESUMO

Plant viruses cause systemic diseases that severely impair plant growth and development. While the accumulation of viruses in the root system has long been established, little is known as to how viruses affect root architecture. Here, we examined how the emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), alters root development in tomato. We found that ToBRFV and tobacco mosaic virus both invaded root systems during the first week of infection. ToBRFV infection of tomato plants resulted in a significant decrease in root biomass and elongation and root-to-shoot ratio and a marked suppression of root branching. Mutation in RNA-dependent RNA polymerase 6 increased the susceptibility of tomato plants to ToBRFV, resulting in severe reduction of various root growth parameters including root branching. Viral root symptoms were associated with the accumulation of auxin response factor 10a (SlARF10a) transcript, a homolog of Arabidopsis ARF10, a known suppressor of lateral root development. Interestingly, loss-of-function mutation in SlARF10a moderated the effect of ToBRFV on root branching. In contrast, downregulation of sly-miR160a, which targets SlARF10a, was associated with constitutive suppression root branching independent of viral infection. In addition, overexpression of a microRNA-insensitive mutant of SlARF10a mimicked the effect of ToBRFV on root development, suggesting a specific role for SlARF10a in ToBRFV-mediated suppression of root branching. Taken together, our results provide new insights into the impact of tobamoviruses on root development and the role of ARF10a in the suppression of root branching in tomato.


Assuntos
Solanum lycopersicum , Tobamovirus , Solanum lycopersicum/genética , Tobamovirus/genética , Fator Xa/genética , Ácidos Indolacéticos , Mutação , Doenças das Plantas
14.
Planta ; 258(2): 26, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37354348

RESUMO

MAIN CONCLUSION: LBD18 and IAA14 antagonistically interact with ARF7 through the electrostatic faces in the ARF7PB1 domain, modulating ARF7 transcriptional activity. Auxin Response Factor 7 (ARF7)/ARF19 control lateral root development by directly activating Lateral Organ Boundaries Domain 16 (LBD16)/LBD18 genes in Arabidopsis. LBD18 upregulates ARF19 expression by binding to the ARF19 promoter. It also interacts with ARF7 through the Phox and Bem1 (PB1) domain to enhance the ARF7 transcriptional activity, forming a dual mode of positive feedback loop. LBD18 competes with the repressor indole-3-acetic acid 14 (IAA14) for ARF7 binding through the PB1 domain. In this study, we examined the molecular determinant of the ARF7 PB1 domain for interacting with LBD18 and showed that the electronic faces in the ARF7 PB1 domain are critical for interacting with LBD18 and IAA14/17. We used a luminescence complementation imaging assay to determine protein-protein interactions. The results showed that mutation of the invariant lysine residue and the OPCA motif in the PB1 domain in ARF7 significantly reduces the protein interaction between ARF7 and LBD18. Transient gene expression assays with Arabidopsis protoplasts showed that IAA14 suppressed transcription-enhancing activity of LBD18 on the LUC reporter gene fused to the ARF19 promoter harboring an auxin response element, but mutation of the invariant lysine residue and OPCA motif in the PB1 domain of IAA14 reduced the repression capability of IAA14 for transcription-enhancing activity of LBD18. We further showed that the same mutation in the PB1 domain of IAA14 reduces its repression capability, thereby increasing the LUC activity induced by both ARF7 and LBD18 compared with IAA14. These results suggest that LBD18 competes with IAA14 for ARF7 binding via the electrostatic faces of the ARF7 PB1 domain to modulate ARF7 transcriptional activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fator VII/genética , Fator VII/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Lisina/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo
15.
J Exp Bot ; 74(22): 6922-6932, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37431145

RESUMO

Most plant growth and development processes are regulated in one way or another by auxin. The best-studied mechanism by which auxin exerts its regulatory effects is through the nuclear auxin pathway (NAP). In this pathway, Auxin Response Factors (ARFs) are the transcription factors that ultimately determine which genes become auxin regulated by binding to specific DNA sequences. ARFs have primarily been studied in Arabidopsis thaliana, but recent studies in other species have revealed family-wide DNA binding specificities for different ARFs and the minimal functional system of the NAP system, consisting of a duo of competing ARFs of the A and B classes. In this review, we provide an overview of key aspects of ARF DNA binding such as auxin response elements (TGTCNN) and tandem repeat motifs, and consider how structural biology and in vitro studies help us understand ARF DNA preferences. We also highlight some recent aspects related to the regulation of ARF levels inside a cell, which may alter the DNA binding profile of ARFs in different tissues. We finally emphasize the need to study minimal NAP systems to understand fundamental aspects of ARF function, the need to characterize algal ARFs to understand how ARFs evolved, how cutting-edge techniques can increase our understanding of ARFs, and which remaining questions can only be answered by structural biology.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Proc Natl Acad Sci U S A ; 117(16): 9112-9121, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253321

RESUMO

Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (double-stranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection.


Assuntos
Regulação da Expressão Gênica de Plantas/imunologia , Oryza/imunologia , Proteínas de Plantas/metabolismo , Vírus de Plantas/imunologia , Vírus de RNA/imunologia , Fatores de Transcrição/metabolismo , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Ácidos Indolacéticos/metabolismo , Mutação , Oryza/genética , Oryza/virologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Vírus de Plantas/metabolismo , Plantas Geneticamente Modificadas , Multimerização Proteica/imunologia , Vírus de RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/imunologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Fatores de Transcrição/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
17.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373299

RESUMO

Rhizobia form symbiotic relationships with legumes, fixing atmospheric nitrogen into a plant-accessible form within their root nodules. Nitrogen fixation is vital for sustainable soil improvements in agriculture. Peanut (Arachis hypogaea) is a leguminous crop whose nodulation mechanism requires further elucidation. In this study, comprehensive transcriptomic and metabolomic analyses were conducted to assess the differences between a non-nodulating peanut variety and a nodulating peanut variety. Total RNA was extracted from peanut roots, then first-strand and second-strand cDNA were synthesized and purified. After sequencing adaptors were added to the fragments, the cDNA libraries were sequenced. Our transcriptomic analysis identified 3362 differentially expressed genes (DEGs) between the two varieties. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the DEGs were mainly involved in metabolic pathways, hormone signal transduction, secondary metabolic biosynthesis, phenylpropanoid biosynthesis, or ABC transport. Further analyses indicated that the biosynthesis of flavonoids, such as isoflavones, flavonols, and flavonoids, was important for peanut nodulation. A lack of flavonoid transport into the rhizosphere (soil) could prevent rhizobial chemotaxis and the activation of their nodulation genes. The downregulation of AUXIN-RESPONSE FACTOR (ARF) genes and lower auxin content could reduce rhizobia's invasion of peanut roots, ultimately reducing nodule formation. Auxin is the major hormone that influences the cell-cycle initiation and progression required for nodule initiation and accumulates during different stages of nodule development. These findings lay the foundation for subsequent research into the nitrogen-fixation efficiency of peanut nodules.


Assuntos
Fabaceae , Flavonoides , Flavonoides/metabolismo , Arachis/metabolismo , Transcriptoma , Nodulação/genética , Ácidos Indolacéticos/metabolismo , Fabaceae/genética , Simbiose/genética , Hormônios/metabolismo , Solo , Nitrogênio/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo
18.
Int J Mol Sci ; 24(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37446183

RESUMO

Auxin response factors (ARFs) are critical components of the auxin signaling pathway, and are involved in diverse plant biological processes. However, ARF genes have not been investigated in flax (Linum usitatissimum L.), an important oilseed and fiber crop. In this study, we comprehensively analyzed the ARF gene family and identified 33 LuARF genes unevenly distributed on the 13 chromosomes of Longya-10, an oil-use flax variety. Detailed analysis revealed wide variation among the ARF family members and predicted nuclear localization for all proteins. Nineteen LuARFs contained a complete ARF structure, including DBD, MR, and CTD, whereas the other fourteen lacked the CTD. Phylogenetic analysis grouped the LuARFs into four (I-V) clades. Combined with sequence analysis, the LuARFs from the same clade showed structural conservation, implying functional redundancy. Duplication analysis identified twenty-seven whole-genome-duplicated LuARF genes and four tandem-duplicated LuARF genes. These duplicated gene pairs' Ka/Ks ratios suggested a strong purifying selection pressure on the LuARF genes. Collinearity analysis revealed that about half of the LuARF genes had homologs in other species, indicating a relatively conserved nature of the ARFs. The promoter analysis identified numerous hormone- and stress-related elements, and the qRT-PCR experiment revealed that all LuARF genes were responsive to phytohormone (IAA, GA3, and NAA) and stress (PEG, NaCl, cold, and heat) treatments. Finally, expression profiling of LuARF genes in different tissues by qRT-PCR indicated their specific functions in stem or capsule growth. Thus, our findings suggest the potential functions of LuARFs in flax growth and response to an exogenous stimulus, providing a basis for further functional studies on these genes.


Assuntos
Linho , Ácidos Indolacéticos , Ácidos Indolacéticos/metabolismo , Filogenia , Linho/genética , Linho/metabolismo , Família Multigênica , Reguladores de Crescimento de Plantas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
19.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614182

RESUMO

Auxin is a key regulator that virtually controls almost every aspect of plant growth and development throughout its life cycle. As the major components of auxin signaling, auxin response factors (ARFs) play crucial roles in various processes of plant growth and development. In this study, a total of 35 PtrARF genes were identified, and their phylogenetic relationships, chromosomal locations, synteny relationships, exon/intron structures, cis-elements, conserved motifs, and protein characteristics were systemically investigated. We also analyzed the expression patterns of these PtrARF genes and revealed that 16 of them, including PtrARF1, 3, 7, 11, 13-17, 21, 23, 26, 27, 29, 31, and 33, were preferentially expressed in primary stems, while 15 of them, including PtrARF2, 4, 6, 9, 10, 12, 18-20, 22, 24, 25, 28, 32, and 35, participated in different phases of wood formation. In addition, some PtrARF genes, with at least one cis-element related to indole-3-acetic acid (IAA) or abscisic acid (ABA) response, responded differently to exogenous IAA and ABA treatment, respectively. Three PtrARF proteins, namely PtrARF18, PtrARF23, and PtrARF29, selected from three classes, were characterized, and only PtrARF18 was a transcriptional self-activator localized in the nucleus. Moreover, Y2H and bimolecular fluorescence complementation (BiFC) assay demonstrated that PtrARF23 interacted with PtrIAA10 and PtrIAA28 in the nucleus, while PtrARF29 interacted with PtrIAA28 in the nucleus. Our results provided comprehensive information regarding the PtrARF gene family, which will lay some foundation for future research about PtrARF genes in tree development and growth, especially the wood formation, in response to cellular signaling and environmental cues.


Assuntos
Populus , Madeira , Madeira/metabolismo , Populus/metabolismo , Filogenia , Família Multigênica , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Hormônios , Regulação da Expressão Gênica de Plantas
20.
J Integr Plant Biol ; 65(3): 617-632, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36263892

RESUMO

Auxin is a crucial phytohormone that has various effects on the regulators of plant growth and development. Auxin signal transduction is mainly controlled by two gene families: auxin response factor (ARF) and auxin/indole-3-acetic acid (Aux/IAA). ARFs are plant-specific transcription factors that bind directly to auxin response elements in the promoters of auxin-responsive genes. ARF proteins contain three conserved regions: a conserved N-terminal B3 DNA-binding domain, a variable intermediate middle region domain that functions in activation or repression, and a C-terminal domain including the Phox and Bem1p region for dimerization, similar to the III and IV elements of Aux/IAA, which facilitate protein-protein interaction through homodimerization of ARF proteins or heterodimerization of ARF and Aux/IAA proteins. In the two decades following the identification of the first ARF, 23 ARF members have been identified and characterized in Arabidopsis. Using whole-genome sequencing, 22, 25, 23, 25, and 36 ARF genes have been identified in tomato, rice, wheat, sorghum, and maize, respectively, in addition to which the related biofunctions of some ARFs have been reported. ARFs play crucial roles in regulating the growth and development of roots, leaves, flowers, fruits, seeds, responses to biotic and abiotic stresses, and phytohormone signal crosstalk. In this review, we summarize the research progress on the structures and functions of ARFs in Arabidopsis, tomato, and cereal crops, to provide clues for future basic research on phytohormone signaling and the molecular design breeding of crops.


Assuntos
Arabidopsis , Reguladores de Crescimento de Plantas , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA