Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; : 1-11, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155661

RESUMO

Ivermectin (IVM) is a semi-synthetic antiparasitic derived from abamectin, one of the natural avermectins. The liver promotes metabolism and excretion of IVM, representing a risk of toxicity to this organ. The use of antioxidants to alleviate damage caused by chemicals has been increasingly studied. Thus, the aim of this study was to evaluate the effects of IVM on HepG2 cells to elucidate the mechanisms related to its toxicity and the possible protection provided by tetrahydrocurcumin (THC) and vitamin C. HepG2 cells were treated with IVM (1-25 µM) for 24 and 48 h. IVM was cytotoxic to HepG2 cells, denoted by a dose-dependent decrease in cell proliferation and metabolic activity. In addition, IVM induced damage to the cell membrane at all tested concentrations and for both incubation times. IVM significantly decreased the mitochondrial membrane potential from concentrations of 5 µM (24 h) and 1 µM (48 h). Additionally, IVM showed a time- and dose-dependent decrease in cellular adenosine triphosphate levels. The levels of reduced glutathione were decreased in a time- and dose-dependent manner, while IVM stimulated the production of reactive oxygen and nitrogen species (RONS) at all tested doses, reaching rates above 50% following treatment at 7.5 µM (24 h) or 5 µM (48 h). Treatment with THC (50 µM) and vitamin C (50 µM) protected against IVM-induced cytotoxicity and RONS production. These results suggest that oxidative damage is involved in IVM-induced toxicity in HepG2 cells, and that THC and vitamin C can mitigate the toxic effects caused by the compound.

2.
Parasitol Res ; 122(3): 867-876, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36764962

RESUMO

A possible synergistic effect of macrocyclic lactones' (MLs) combination has been previously described against resistant gastrointestinal nematodes of cattle. In addition to synergism, drug-drug interactions between MLs can also result in additive or antagonistic effect, considering the different MLs pharmacokinetics, pharmacodynamics, and interactions with molecular mechanisms of resistance. Therefore, the aim of the current work was evaluated the effect of different MLs combinations against Haemonchus contortus. Infecting larvae of two isolates (one susceptible and one resistant to ivermectin) were used in the larval migration inhibition test. After estimating the half maximal effective concentration of abamectin (ABA), eprinomectin, (EPR), ivermectin (IVM), and moxidectin (MOX) for both isolates, combinations were delineated by a simplex-centroid mixture experiment, and the mixture regression analysis was applied to the special cubic model. A synergistic effect was found for the EPR + MOX against the susceptible isolate as well as the EPR + MOX, IVM + MOX, and ABA + EPR + IVM against the resistant isolate. An antagonistic effect of ABA + IVM + MOX was found against the susceptible isolate. For the susceptible isolate, a higher inhibition was found with greater proportions of EPR and lower proportions of the other drugs compared to the reference mixture. For the resistant isolate, inhibition greater than that of the reference mixture was found with higher proportions of IVM as well as lower proportions of the other drugs. The synergistic and antagonistic effects were dependent on the following: (a) parasite drug resistance profile, (b) the composition of the combination, and (c) the proportions used, with EPR and IVM exerting a greater impact on these effects.


Assuntos
Anti-Helmínticos , Haemonchus , Animais , Bovinos , Ivermectina/farmacologia , Lactonas/farmacologia , Interações Medicamentosas , Resistência a Medicamentos , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
3.
Environ Res ; 203: 111902, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34416252

RESUMO

Agricultural pesticides have been one of the most extensively used compounds throughout the world. The main sources of contamination for humans are dietary intake and occupational exposure. The impairments caused by agricultural pesticide exposure have been a significant global public health problem. Recent studies have shown that low-level agricultural pesticide exposure during the critical period of neurodevelopment (pregnancy and lactation) is closely related to autism spectrum disorder (ASD). Inhibition of acetylcholinesterase, gut microbiota, neural dendrite morphology, synaptic function, and glial cells are targets for the effects of pesticides during nervous system development. In the present review, we summarize the associations between several highly used and frequently studied pesticides (e.g., glyphosate, chlorpyrifos, pyrethroids, and avermectins) and ASD. We also discusse future epidemiological and toxicological research directions on the relationship between pesticides and ASD.


Assuntos
Transtorno do Espectro Autista , Clorpirifos , Praguicidas , Efeitos Tardios da Exposição Pré-Natal , Acetilcolinesterase , Transtorno do Espectro Autista/induzido quimicamente , Clorpirifos/toxicidade , Feminino , Humanos , Praguicidas/toxicidade , Gravidez
4.
Appl Microbiol Biotechnol ; 106(5-6): 2191-2205, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35258669

RESUMO

Avermectins (AVEs) are economically potent anthelmintic agents produced by Streptomyces avermitilis. Among eight AVE components, B1a exhibits the highest insecticidal activity. The purpose of this study was to enhance B1a production, particularly in the high-yielding industrial strain A229, by a combination strategy involving the following steps. (i) aveC gene was engineered to increase B1a:B2a ratio. Three aveC variants (aveC2m, aveC5m, and aveC8m, respectively encoding two, five, and eight amino acid mutations) were synthesized by fusion PCR. B1a:B2a ratio in A229 derivative having kasOp*-controlled aveC8m reached 1.33 (B1a and B2a titers were 8120 and 6124 µg/mL). Corresponding values in A229 were 0.99 and 6447 and 6480 µg/mL. (ii) ß-oxidation pathway genes fadD and fadAB were overexpressed in wild-type (WT) strain and A229 to increase supply of acyl-CoA precursors for AVE production. The resulting strains all showed increased B1a titer. Co-overexpression of pkn5p-driven fadD and fadAB in A229 led to B1a titer of 8537 µg/mL. (iii) Genes bicA and ecaA involved in cyanobacterial CO2-concentrating mechanism (CCM) were introduced into WT and A229 to enhance carboxylation velocity of acetyl-CoA and propionyl-CoA carboxylases, leading to increased supply of malonyl- and methylmalonyl-CoA precursors and increased B1a titer. Co-expression of bicA and ecaA in A229 led to B1a titer of 8083 µg/mL. (iv) aveC8m, fadD-fadAB, and bicA-ecaA were co-overexpressed in A229, resulting in maximal B1a titer (9613 µg/mL; 49.1% increase relative to A229). Our findings demonstrate that the combination strategy we provided here is an efficient approach for improving B1a production in industrial strains.Key points• aveC mutation increased avermectin B1a:B2a ratio and B1a titer.• Higher levels of acyl-CoA precursors contributed to enhanced B1a production.• B1a titer in an industrial strain was increased by 49.1% via a combination strategy.


Assuntos
Anti-Helmínticos , Inseticidas , Streptomyces , Anti-Helmínticos/química , Inseticidas/metabolismo , Ivermectina/análogos & derivados , Streptomyces/genética , Streptomyces/metabolismo
5.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054958

RESUMO

Avermectins are macrocyclic lactones with anthelmintic activity. Recently, they were found to be effective against Mycobacterium tuberculosis, which accounts for one third of the worldwide deaths from antimicrobial resistance. However, their anti-mycobacterial mode of action remains to be elucidated. The activity of selamectin was determined against a panel of M. tuberculosis mutants. Two strains carrying mutations in DprE1, the decaprenylphosphoryl-ß-D-ribose oxidase involved in the synthesis of mycobacterial arabinogalactan, were more susceptible to selamectin. Biochemical assays against the Mycobacterium smegmatis DprE1 protein confirmed this finding, and docking studies predicted a binding site in a loop that included Leu275. Sequence alignment revealed variants in this position among mycobacterial species, with the size and hydrophobicity of the residue correlating with their MIC values; M. smegmatis DprE1 variants carrying these point mutations validated the docking predictions. However, the correlation was not confirmed when M. smegmatis mutant strains were constructed and MIC phenotypic assays performed. Likewise, metabolic labeling of selamectin-treated M. smegmatis and M. tuberculosis cells with 14C-labeled acetate did not reveal the expected lipid profile associated with DprE1 inhibition. Together, our results confirm the in vitro interactions of selamectin and DprE1 but suggest that selamectin could be a multi-target anti-mycobacterial compound.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Antiparasitários/farmacologia , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ivermectina/análogos & derivados , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ivermectina/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Relação Estrutura-Atividade
6.
Microb Ecol ; 81(2): 493-505, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32839879

RESUMO

Symbiotic bacteria have a significant impact on the formation of defensive mechanisms against fungal pathogens and insecticides. The microbiome of the mosquito Aedes aegypti has been well studied; however, there are no data on the influence of insecticides and pathogenic fungi on its structure. The fungus Metarhizium robertsii and a neurotoxic insecticide (avermectin complex) interact synergistically, and the colonization of larvae with hyphal bodies is observed after fungal and combined (conidia + avermectins) treatments. The changes in the bacterial communities (16S rRNA) of Ae. aegypti larvae under the influence of fungal infection, avermectin toxicosis, and their combination were studied. In addition, we studied the interactions between the fungus and the predominant cultivable bacteria in vitro and in vivo after the coinfection of the larvae. Avermectins increased the total bacterial load and diversity. The fungus decreased the diversity and insignificantly increased the bacterial load. Importantly, avermectins reduced the relative abundance of Microbacterium (Actinobacteria), which exhibited a strong antagonistic effect towards the fungus in in vitro and in vivo assays. The avermectin treatment led to an increased abundance of Chryseobacterium (Flavobacteria), which exerted a neutral effect on mycosis development. In addition, avermectin treatment led to an elevation of some subdominant bacteria (Pseudomonas) that interacted synergistically with the fungus. We suggest that avermectins change the bacterial community to favor the development of fungal infection.


Assuntos
Aedes/microbiologia , Inseticidas/farmacologia , Metarhizium/fisiologia , Microbiota/efeitos dos fármacos , Animais , Antibiose/efeitos dos fármacos , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Carga Bacteriana , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Larva/microbiologia , Controle de Mosquitos , Esporos Fúngicos/fisiologia
7.
Ecotoxicology ; 30(9): 1841-1853, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34224071

RESUMO

Pharmaceutical drugs have emerged as major micropollutants in aquatic ecosystems. Their presence has been systematically reported in monitoring surveys, and their wide distribution and constant presence in the wild is a direct consequence of their massive use, in both human and veterinary therapeutics. Drugs used to treat parasitic infections in livestock are major contaminants, given the amounts in which they are administered, and reach the aquatic compartment in high amounts, where they may affect non target species. Some of these drugs are prone to find their final deposit in sediments of estuarine areas, exerting their toxic effects preferentially at these locations. Sediment dwelling organisms of coastal areas, such as polychaetas, are especially prone to have their major physiological functions compromised after being exposed to pharmaceutical drugs. Ivermectin is one of the most used antiparasitic drugs, and its effects are not limited to biochemical traits, but also behavioral features may be compromised considering their neurotoxic actions. Despite these putative effects, little is known about their toxicity on polychaetas. The present study aimed to characterize the toxicity of realistic levels of ivermectin on the polychaeta Hediste diversicolor, in biochemical and behavioral terms. The obtained results showed that low levels of ivermectin are capable of causing significant disturbances in mobility and burrowing activity of exposed worms, as well as alterations of metabolic and anti-oxidant defense efficacy of exposed animals, suggesting that its environmental presence may mean a major environmental concern.


Assuntos
Poliquetos , Poluentes Químicos da Água , Animais , Antiparasitários/toxicidade , Ecossistema , Humanos , Ivermectina/toxicidade , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
8.
Pharmacol Res ; 156: 104763, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32201246

RESUMO

Transmembrane member 16A (TMEM16A) encoded Ca2+-activated Cl- channels were found to be involved in tumorigenesis. Previous studies suggest the effect of TMEM16A gene amplification on tumorigenic proliferation is exerted through its channel function. TMEM16A-specific and potent small molecule inhibitors have been proposed to potentially be useful for the treatment of cancer. Thus, we screened six analogues of avermectin for their inhibitory activities on TMEM16A mediated currents. A whole-cell patch technique was used to record the currents. The IC50 and Emax values for TMEM16A inhibition of five tested avermectins (avermectin B1, ivermectin, doramectin, selamectin, and moxidectin) were 0.15-1.32 µM and 65-87 %, respectively. In addition, these avermectins significantly inhibited endogenous TMEM16A mediated currents and thus, the proliferation, migration, inducing apoptosis of LA795 cancer cells. Eprinomectin (4"-(acetylamino)-4"-deoxy-avermectin B1) and two other important macrolides (erythromycin and azithromycin), which have minimal or no TMEM16A inhibitory effects, were used as negative control drugs. These drugs were found to have limited effects on the proliferation, migration, and apoptosis of LA795 cells. Finally, avermectin B1 and ivermectin dramatically inhibited the growth of xenograft tumors in mice. These data demonstrate that avermectins are novel TMEM16A inhibitors and are potentially useful in specific cancer therapies. These findings also provide a new opportunity to develop TMEM16A modulators.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Anoctamina-1/antagonistas & inibidores , Antineoplásicos/farmacologia , Ivermectina/análogos & derivados , Neoplasias Pulmonares/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Anoctamina-1/genética , Anoctamina-1/metabolismo , Apoptose/efeitos dos fármacos , Células CHO , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cricetulus , Ivermectina/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos
9.
Vet Pathol ; 57(2): 281-285, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31763954

RESUMO

This report presents a novel canine condition in 32 dogs in which aberrant migration of Spirocerca lupi larvae through mesenteric arteries, instead of gastric arteries, led to small or large intestinal infarction. This form of spirocercosis was first recognized in Israel in 2013 and is currently ongoing. Typical clinical signs were anorexia and weakness of 3 to 4 days and, less frequently, vomiting and diarrhea, followed by collapse, bloody diarrhea, and severe vomiting. Exploratory laparotomy showed 1 or more infarcted and often perforated intestinal segments in all cases. Microscopically, there was intestinal mucosal to transmural coagulative necrosis and mesenteric multifocal necrotizing eosinophilic arteritis, thrombosis, hemorrhage, and early fibroplasia. Third-stage S. lupi larvae were identified by morphologic features in 9 of 32 (28%) cases, and the species was confirmed by polymerase chain reaction in 4 cases. Nearly 50% of the dogs had been receiving prophylactic therapy, which did not prevent this form of spirocercosis.


Assuntos
Doenças do Cão/parasitologia , Hemorragia/veterinária , Infarto/veterinária , Poliarterite Nodosa/veterinária , Infecções por Spirurida/veterinária , Thelazioidea/isolamento & purificação , Trombose/veterinária , Animais , Doenças do Cão/patologia , Cães , Feminino , Hemorragia/parasitologia , Hemorragia/patologia , Infarto/parasitologia , Infarto/patologia , Intestinos/parasitologia , Intestinos/patologia , Israel , Larva , Masculino , Artérias Mesentéricas/parasitologia , Artérias Mesentéricas/patologia , Poliarterite Nodosa/parasitologia , Poliarterite Nodosa/patologia , Reação em Cadeia da Polimerase/veterinária , Infecções por Spirurida/parasitologia , Infecções por Spirurida/patologia , Thelazioidea/genética , Trombose/parasitologia , Trombose/patologia
10.
Ecotoxicol Environ Saf ; 183: 109489, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31394379

RESUMO

Avermectins and moxidectin are antiparasitics widely used as active pharmaceutical ingredients in veterinary medicine, as well as in pesticide formulations for pest control in agriculture. Although the use of these compounds provides benefits to agribusiness, they can impact the environment, since a large part of these substances may reach the soil and water from the excreta of treated animals and following direct applications to crops. The present work had the objective of evaluating the dissipation behaviors of abamectin, doramectin, eprinomectin, ivermectin, and moxidectin in four native Brazilian soils of different textural classes (clay, sandy-clay, sandy, and sandy-clay-loam), following OECD Guideline 307. The studies were conducted in a climate chamber at 22 °C, 71% relative humidity, and protected from light. The dissipation studies were carried out with all drugs together, since no difference was verified when studies were done with each drug separately. The concentrations of the drugs in the soils were determined using an ultra-high performance liquid chromatograph coupled to a fluorescence detector or a tandem mass spectrometer. The dissipation half-life (DT50) values ranged from 9 to 16 days and the calculated GUS index values were in the range from -1.10 to 0.08, indicating low mobility of the drugs in the soils evaluated and low tendency for leaching. In addition, a field study was carried out to evaluate the dissipation of abamectin after application of a foliar pesticide in an orange crop. A DT50 of 9 days was determined, which was similar to that obtained under controlled conditions in the climate chamber (12 days), indicating that biotransformation was the primary process influencing the overall dissipation.


Assuntos
Antiparasitários/química , Ivermectina/análogos & derivados , Macrolídeos/metabolismo , Praguicidas/química , Poluentes do Solo/química , Solo/química , Antiparasitários/análise , Brasil , Monitoramento Ambiental , Meia-Vida , Ivermectina/análise , Ivermectina/química , Ivermectina/metabolismo , Macrolídeos/análise , Macrolídeos/química , Praguicidas/análise , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA