Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(5): 2126-2141, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38156813

RESUMO

PURPOSE: Tensor-valued diffusion encoding can disentangle orientation dispersion and subvoxel anisotropy, potentially offering insight into microstructural changes after cerebral ischemia. The purpose was to evaluate tensor-valued diffusion MRI in human acute ischemic stroke, assess potential confounders from diffusion time dependencies, and compare to Monte Carlo diffusion simulations of axon beading. METHODS: Linear (LTE) and spherical (STE) b-tensor encoding with inherently different effective diffusion times were acquired in 21 acute ischemic stroke patients between 3 and 57 h post-onset at 3 T in 2.5 min. In an additional 10 patients, STE with 2 LTE yielding different effective diffusion times were acquired for comparison. Diffusional variance decomposition (DIVIDE) was used to estimate microscopic anisotropy (µFA), as well as anisotropic, isotropic, and total diffusional variance (MKA , MKI , MKT ). DIVIDE parameters, and diffusion tensor imaging (DTI)-derived mean diffusivity and fractional anisotropy (FA) were compared in lesion versus contralateral white matter. Monte Carlo diffusion simulations of various cylindrical geometries for all b-tensor protocols were used to interpret parameter measurements. RESULTS: MD was ˜40% lower in lesions for all LTE/STE protocols. The DIVIDE parameters varied with effective diffusion time: higher µFA and MKA in lesion versus contralateral white matter for STE with longer effective diffusion time LTE, whereas the shorter effective diffusion time LTE protocol yielded lower µFA and MKA in lesions. Both protocols, regardless of diffusion time, were consistent with simulations of greater beading amplitude and intracellular volume fraction. CONCLUSION: DIVIDE parameters depend on diffusion time in acute stroke but consistently indicate neurite beading and larger intracellular volume fraction.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , AVC Isquêmico/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/patologia , Acidente Vascular Cerebral/diagnóstico por imagem , Anisotropia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
2.
Res Sq ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38946952

RESUMO

Despite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes. This study aimed to investigate the sensitivity of tensor-valued diffusion encoding in detecting such changes in brain microstructural integrity in cART-treated PWH. Additionally, it explored relationships between these metrics, neurocognitive scores, and plasma levels of neurofilament light (NFL) chain and glial fibrillary acidic protein (GFAP). Using MRI at 3T, 24 PWH and 31 healthy controls underwent cross-sectional examination. The results revealed significant variations in b-tensor encoding metrics across white matter regions, with associations observed between these metrics, cognitive performance, and blood markers of neuronal and glial injury (NFL and GFAP). Moreover, a significant interaction between HIV status and imaging metrics was observed, particularly impacting total cognitive scores in both gray and white matter. These findings suggest that b-tensor encoding metrics offer heightened sensitivity in detecting subtle changes associated with axonal injury in HIV infection, underscoring their potential clinical relevance in understanding neurocognitive impairment in PWH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA