Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(19): 5482-5508, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37466251

RESUMO

Human activities and climate change threaten coldwater organisms in freshwater ecosystems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges. We review current understanding of cold-water refuges, identify gaps between science and management, and evaluate policies aimed at protecting thermally sensitive species. Existing policies include designating cold-water habitats, restricting fishing during warm periods, and implementing threshold temperature standards or guidelines. However, these policies are rare and uncoordinated across spatial scales and often do not consider input from Indigenous peoples. We propose that cold-water refuges be managed as distinct operational landscape units, which provide a social and ecological context that is relevant at the watershed scale. These operational landscape units provide the foundation for an integrated framework that links science and management by (1) mapping and characterizing cold-water refuges to prioritize management and conservation actions, (2) leveraging existing and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive management practices across scales. Our findings show that while there are many opportunities for scientific advancement, the current state of the sciences is sufficient to inform policy and management. Our proposed framework provides a path forward for managing and protecting cold-water refuges using existing and new policies to protect coldwater organisms in the face of global change.


Assuntos
Ecossistema , Rios , Humanos , Água Doce , Temperatura Baixa , Mudança Climática , Água
2.
J Therm Biol ; 114: 103550, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37344023

RESUMO

How to predict animals' heat-avoidance behaviors is critical since behavior stands the first line for animals dealing with frequent heat events under ongoing climate warming. However, the discrepancy between the scarcity of research on heat-avoidance behaviors and the commonness of eco-physiological data for thermal tolerance and for thermal sensitivity such as the temperature-dependent survival time makes it difficult to link physiological thermal traits to heat-avoidance behavior. Aphids usually suck plant sap on a fixed site on the host plants at moderate temperatures, but they will leave and seek cooler feeding sites under stressful temperatures. Here we take the cereal aphid assemblages comprising different species with various development stages as a model system. We tested the hypotheses that heat tolerance (critical thermal maximum, CTmax) or heat sensitivity (temperature-dependent declining rate of survival time, similarly hereinafter) would associate with the temperature at which aphid activate heat-avoidance behavior. Specifically, we hypothesized the aphids with less heat tolerance or greater heat sensitivity would take a lower heat risk by leaving the host plant earlier. By mimicking the linear increase in ambient temperature during the daytime, we measured the CTmax and the heat-avoidance temperature (HAT, at which aphids leave the host plant to find cooler places) to understand their heat tolerance and heat-avoidance behavior. Then, we tested the survival time of aphids at different temperatures and calculated the slope of survival time declining with temperature to assess their heat sensitivity (HS). Finally, we examined the relationships between CTmax and HAT and between HS and HAT to understand if the heat-avoidance behavior associates with heat tolerance or with heat sensitivity. The results showed that HS and HAT had a strong correlation, with more heat sensitive individuals displayed lower HAT. By contrast, CTmax and HAT had a weak correlation. Our results thus provide evidence that heat sensitivity is a more reliable indicator than thermal tolerance linking with the heat-avoidance behavior in the aphid assemblages. Most existing studies use the indexes related to thermal tolerance to predict warming impacts. Our findings highlight the urgency to incorporate thermal sensitivity when predicting animal responses to climate change.


Assuntos
Afídeos , Termotolerância , Animais , Afídeos/fisiologia , Aprendizagem da Esquiva , Temperatura Alta , Comportamento Animal
3.
Am Nat ; 199(2): 302-312, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35077281

RESUMO

AbstractClimate is expected to have broad effects on ecological communities, but this occurs in the context of significant daily temperature variation in many localities. Because many ectotherms can restrict activity to thermally suitable places and times, daily temperature variation offers the potential to buffer impacts of warming. Using thermal activity data from a montane ground-nesting ant community, we explore how a simulated increase in temperature is expected to alter the duration of suitable activity windows. Counterintuitively, we found that simulated warming lengthens activity times for cold-active species and shortens activity times for warm-active species. We explain this result through a simulation model in which time elapsed within a range of suitable temperatures is considered as an additive resource. Fundamentally, our model results rely on the fact that the mathematical function that relates time to temperature through a day (the Parton-Logan function) is concave before and after noon and convex through the night. These properties are common across terrestrial environments with characteristic deceleration in temperature near both the daily maximum and the daily minimum. Our results suggest that the time of day during which an animal's activity temperatures occur may be an important but rarely considered feature of natural history that contributes to the predicted impact of climate change. Thermally restricted diurnal species may need to compensate for shortened daily activity windows through means such as seasonal shifts or expansions, broadened activity temperatures, or range shifts.


Assuntos
Mudança Climática , Solo , Animais , Temperatura
4.
Biosci Biotechnol Biochem ; 86(8): 1060-1070, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35671161

RESUMO

Commensal bacteria affect many aspects of host physiology. In this study, we focused on the role of commensal bacteria in the thermoregulatory behavior of Drosophila melanogaster. We demonstrated that the elimination of commensal bacteria caused an increase in the preferred temperature of Drosophila third-instar larvae without affecting the activity of transient receptor potential ankyrin 1 (TRPA1)-expressing thermosensitive neurons. We isolated eight bacterial strains from the gut and culture medium of conventionally reared larvae and found that the preferred temperature of the larvae was decreased by mono-association with Lactobacillus plantarum or Corynebacterium nuruki. Mono-association with these bacteria did not affect the indices of energy metabolism such as ATP and glucose levels of larvae, which are closely linked to thermoregulation in animals. Thus, we show a novel role for commensal bacteria in host thermoregulation and identify two bacterial species that affect thermoregulatory behavior in Drosophila.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Bactérias , Regulação da Temperatura Corporal , Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Larva/fisiologia , Simbiose
5.
J Therm Biol ; 104: 103193, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35180970

RESUMO

Ambient temperature has a substantial influence on the thermoregulation costs of small mammals due to their high surface-to-volume ratio. Shrews are among the smallest of mammals and have adopted different behavioral and physiological strategies to deal with cold temperatures. In this study, we assessed the use of an external heat source in the thermoregulatory strategy of two Crocidurinae species, Crocidura russula and C. suaveolens, and one Soricinae species, Sorex araneus. Crocidura russula inhabits western Europe and is better adapted to a Mediterranean climate; C. suaveolens inhabits central Europe; and S. araneus inhabits northern Europe and is better adapted to a Palearctic climate. We predicted that C. russula (most southern species) would spend larger amounts of time using an external heat source because it is the most cold-sensitive species, while S. araneus (most northern species) would spend less time using an external heat source or not respond to it. Shrews were experimentally tested in captivity inside a terrarium where they had access to a heat rock, which could be turned off (cold) or on (heated), depending on treatment. Our results confirmed our initial prediction: C. russula was the species that spent significantly more time on the heated rock, followed by C. suaveolens. Only a quarter of S. araneus individuals spent large amounts of time on the heat rock, which suggests this thermoregulation strategy is not generally adopted by this species, but may be rather associated with some individual personalities. We also analyzed the influence of the heat rock on rewarming from heterothermy, but heterothermy was not different between rock treatments. Overall, our results show that shrew species use external heat sources for thermoregulation according to their sensitivity to cold.


Assuntos
Regulação da Temperatura Corporal , Musaranhos/fisiologia , Adaptação Fisiológica , Animais , Temperatura Baixa , Europa (Continente) , Feminino , Temperatura Alta , Masculino , Musaranhos/classificação
6.
J Exp Biol ; 224(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34137867

RESUMO

Characterizing the thermal preference of fish is important in conservation, environmental and evolutionary physiology and can be determined using a shuttle box system. Initial tank acclimation and trial lengths are important considerations in experimental design, yet systematic studies of these factors are missing. Three different behavioral assay experimental designs were tested to determine the effect of tank acclimation and trial length (hours of tank acclimation:behavioral trial: 12:12, 0:12, 2:2) on the temperature preference of juvenile lake whitefish (Coregonus clupeaformis), using a shuttle box. Average temperature preferences for the 12 h:12 h, 0 h:12 h, 2 h:2 h experimental designs were 16.10±1.07°C, 16.02±1.56°C and 16.12±1.59°C respectively, with no significant differences between experimental designs (P=0.9337). Ultimately, length of acclimation time and trial length had no significant effect on thermal preference.


Assuntos
Aclimatação , Salmonidae , Animais , Evolução Biológica , Temperatura
7.
J Therm Biol ; 96: 102857, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33627285

RESUMO

The osprey (Pandion haliaetus) is a cosmopolitan and long-distant migrant, found at all thermal extremes ranging from polar to tropical climates. Since ospreys may have an unusually flexible thermal physiology due to their migration over, and use of, a wide range of habitats, they represent an interesting study system to explore thermoregulatory adaptations in a raptor. In this study, we investigated the efficiency of heat exchange between body and environment in ospreys using micro-computed tomography (µ-CT), infrared thermography and behavioral observations. µ-CT revealed that the osprey bill has its largest potential for heat exchange at the proximal bill region, where arteries are situated most closely under the surface. However, thermal images of 10 juvenile ospreys showed that the bill contributes to only 0.3% of the bird's total heat exchange. The long legs and protruding claws played a more prominent role as heat dissipation areas with a contribution of 6% and 7%, respectively. Operative thresholds, i.e. the ambient temperature below which heat is lost, were high (>38.5 °C) in these body parts. However, we found no indication of active regulation of heat exchange. Instead we observed multiple behavioral adaptations starting at relatively low ambient temperatures. At 26.3 °C ospreys had a 50% probability of showing panting behavior and above 27.9 °C they additionally spread their wings to enable heat dissipation from the less insulated ventral side. The thermal images revealed that at an ambient temperature of 32.1 °C ospreys had a 50% probability of developing a ≥2 °C and up to 7.5 °C colder stripe on the head, which was likely caused by cutaneous evaporation. Our observations suggest that ospreys more strongly rely on behavioral mechanisms than on active thermal windows to cope with heat stress. This study not only improves our understanding of the role of different body parts in ospreys' total heat exchange with the environment but further provides an insight about additional adaptations of this raptor to cope with heat stress.


Assuntos
Aves/fisiologia , Regulação da Temperatura Corporal , Animais , Bico/irrigação sanguínea , Bico/diagnóstico por imagem , Bico/fisiologia , Extremidades/diagnóstico por imagem , Extremidades/fisiologia , Olho/diagnóstico por imagem , Feminino , Cabeça/diagnóstico por imagem , Cabeça/fisiologia , Casco e Garras/diagnóstico por imagem , Casco e Garras/fisiologia , Masculino , Fenômenos Fisiológicos Oculares , Temperatura , Termografia , Tronco/diagnóstico por imagem , Tronco/fisiologia , Microtomografia por Raio-X
8.
Am Nat ; 193(5): 677-687, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31002566

RESUMO

Realistic projections of the biological impacts of climate change require predicting fitness responses to variations in environmental conditions. For ectotherms, this challenge requires methods to scale-up microclimatic information into actual body temperatures, Tb, while dealing with uncertainty regarding individual behaviors and physiological constraints. Here, we propose an information-theoretical model to derive microhabitat selection and Tb distributions of ectotherm populations from microclimatic data. The model infers the most probable allocation of individuals among the available microenvironments and the associated population-level Tb distribution. Using empirical Tb data of 41 species of desert lizards from three independently evolved systems-Western North America, Kalahari Desert, and Western Australia-we show that the model accurately predicts empirical Tb distributions across the three systems. Moreover, the framework naturally provides a way to quantify the importance of thermoregulation in a thermal environment and thereby a measurement for the constraint imposed by the climatic conditions. By predicting Tb distributions of ectotherm populations even without exhaustive information on the underpinning mechanisms, our approach forms a solid theoretical basis for upscaling microclimatic and physiological information into a population-level fitness trait. This scaling process is a first step to reliably project the biological impacts of climate change to broad temporal and spatial scales.


Assuntos
Distribuição Animal , Lagartos , Microclima , Modelos Biológicos , Animais , Temperatura Corporal , Mudança Climática
9.
Glob Chang Biol ; 25(9): 3110-3120, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31148329

RESUMO

Laboratory measurements of physiological and demographic tolerances are important in understanding the impact of climate change on species diversity; however, it has been recognized that forecasts based solely on these laboratory estimates overestimate risk by omitting the capacity for species to utilize microclimatic variation via behavioral adjustments in activity patterns or habitat choice. The complex, and often context-dependent nature, of microclimate utilization has been an impediment to the advancement of general predictive models. Here, we overcome this impediment and estimate the potential impact of warming on the fitness of ectotherms using a benefit/cost trade-off derived from the simple and broadly documented thermal performance curve and a generalized cost function. Our framework reveals that, for certain environments, the cost of behavioral thermoregulation can be reduced as warming occurs, enabling behavioral buffering (e.g., the capacity for behavior to ameliorate detrimental impacts) and "behavioral rescue" from extinction in extreme cases. By applying our framework to operative temperature and physiological data collected at an extremely fine spatial scale in an African lizard, we show that new behavioral opportunities may emerge. Finally, we explore large-scale geographic differences in the impact of behavior on climate-impact projections using a global dataset of 38 insect species. These multiple lines of inference indicate that understanding the existing relationship between thermal characteristics (e.g., spatial configuration, spatial heterogeneity, and modal temperature) is essential for improving estimates of extinction risk.


Assuntos
Mudança Climática , Lagartos , Animais , Regulação da Temperatura Corporal , Microclima , Temperatura
10.
Oecologia ; 191(4): 817-827, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31679039

RESUMO

A classic question in evolutionary biology is whether behavioral flexibility hastens or hinders evolutionary change. The latter idea, that behavior reduces the number of environmental states experienced by an organism and buffers that organism against selection, has been dubbed the "Bogert Effect" after Charles Bogert, the biologist who first popularized the phenomenon using data from lizards. The Bogert Effect is pervasive when traits like body temperature, which tend to be invariant across space in species that behaviorally thermoregulate, are considered. Nevertheless, behavioral thermoregulation decreases or stops when spatial variation in operative temperature is low. We compared environmental temperatures, thermoregulatory behavior, and a suite of physiological and morphological traits between two populations of the southern rock agama (Agama atra) in South Africa that experience different climatic regimes. Individuals from both populations thermoregulated efficiently, maintaining body temperatures within their preferred temperature range throughout most of their activity cycle. Nevertheless, they differed in the thermal sensitivity of resting metabolic rate at cooler body temperatures and in morphology. Our results support the common assertion that thermoregulatory behavior may prevent divergence in traits like field-active body temperature, which are measured during periods of high environmental heterogeneity. Nevertheless, we show that other traits may be free to diverge if they are under selection during times when environments are homogenous. We argue that the importance of the Bogert Effect is critically dependent on the nature of environmental heterogeneity and will therefore be relevant to some traits and irrelevant to others in many populations.


Assuntos
Regulação da Temperatura Corporal , Lagartos , Animais , Evolução Biológica , África do Sul , Temperatura
11.
Proc Natl Acad Sci U S A ; 113(38): 10595-600, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601639

RESUMO

Although most organisms thermoregulate behaviorally, biologists still cannot easily predict whether mobile animals will thermoregulate in natural environments. Current models fail because they ignore how the spatial distribution of thermal resources constrains thermoregulatory performance over space and time. To overcome this limitation, we modeled the spatially explicit movements of animals constrained by access to thermal resources. Our models predict that ectotherms thermoregulate more accurately when thermal resources are dispersed throughout space than when these resources are clumped. This prediction was supported by thermoregulatory behaviors of lizards in outdoor arenas with known distributions of environmental temperatures. Further, simulations showed how the spatial structure of the landscape qualitatively affects responses of animals to climate. Biologists will need spatially explicit models to predict impacts of climate change on local scales.


Assuntos
Comportamento Animal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Lagartos/fisiologia , Modelos Teóricos , Animais , Mudança Climática , Meio Ambiente , Temperatura
12.
J Therm Biol ; 79: 155-165, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30612677

RESUMO

River warming poses an existential threat to many Pacific salmon (Oncorhynchus spp) populations. However, temperature-mediated risks to salmon are often complex and addressing them requires species- and population-specific data collected over large spatial and temporal scales. In this study, we combined radiotelemetry with archival depth and temperature sensors to collect continuous thermal exposure histories of 21 adult spring- and summer-run Chinook salmon (O. tshawytscha) as they migrated hundreds of kilometers upstream in the Columbia River basin. Salmon thermal histories in impounded reaches of the Columbia and Snake rivers were characterized by low daily temperature variation but frequent and extensive vertical movements. Dives were associated with slightly cooler salmon body temperatures (~ 0.01 to 0.02 °C/m), but there was no evidence for use of cool-water thermal refuges deep in reservoirs or at tributary confluences along the migration route. In tributaries, salmon were constrained to relatively shallow water, and they experienced ~ 2-5 °C diel temperature fluctuations. Differences in migration timing and among route-specific thermal regimes resulted in substantial among-individual variation in migration temperature exposure. Bioenergetics models using the collected thermal histories and swim speeds ranging from 1.0 to 1.5 body-lengths/s predicted median energetic costs of ~ 24-40% (spring-run) and ~ 37-60% (summer-run) of initial reserves. Median declines in total mass were ~ 16-24% for spring-run salmon and ~ 19-29% for summer-run salmon. A simulated + 2 °C increase in water temperatures resulted in 4.0% (spring-run) and 6.3% (summer-run) more energy used per fish, on average. The biotelemetry data provided remarkable spatial and temporal resolution on thermal exposure. Nonetheless, substantial information gaps remain for the development of robust bioenergetics and climate effects models for adult Chinook salmon.


Assuntos
Migração Animal , Temperatura Corporal , Salmão/fisiologia , Aclimatação , Animais
13.
J Therm Biol ; 82: 10-17, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31128637

RESUMO

Ectothermic animals contend with variable environmental temperature through behavioral thermoregulation, including selection of activity-times and microhabitat spaces with suitable operative temperatures. Thus, an important component to understanding the influence of temperature on animals is through the assessment of thermal constraints on time and space usage. Thermal ecologists have recognized that postural adjustments are an important part of behavioral thermoregulation. However, the impact of postural adjustments on available space and time has received little attention. We hypothesized that postural adjustments would significantly affect the thermal availability of space and time for surface activity. To test our hypothesis, we used data collected over a four-year study of the thermal ecology of Eastern Collared Lizards (Crotaphytus collaris) in Arkansas. We used a novel approach to model three distinct postures used by C. collaris, and to assess the impact of posture on available space and time. For our study species and habitat, posture had a significant impact on several indices of available space and time including: a) a 13% increase in length of the reproductive activity season, b) a 35% increase in the frequency distribution of habitat within active body temperature range and c) a 42% increase in average thermal quality index. We conclude that posture can significantly impact space and time available for surface activity in species that employ it for thermoregulation. Thus, a clearer understanding of the thermal constraints on time-space usage in ectotherms requires consideration of the impact of posture on the spatiotemporal distribution of thermally suitable microhabitats.


Assuntos
Regulação da Temperatura Corporal , Lagartos/fisiologia , Animais , Arkansas , Comportamento Animal , Temperatura Corporal , Ecossistema , Lagartos/anatomia & histologia , Postura , Reprodução , Estações do Ano
14.
J Therm Biol ; 79: 135-143, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30612673

RESUMO

Although the importance of thermoregulation and plasticity as compensatory mechanisms for climate change has long been recognized, they have largely been studied independently. Thus, we know comparatively little about how they interact to shape physiological variation in natural populations. Here, we test the hypothesis that behavioral thermoregulation and thermal acclimatization interact to shape physiological phenotypes in a natural population of the diurnal lizard, Sceloporus torquatus. Every month for one year we examined thermoregulatory effectiveness and changes in the population mean in three physiological parameters: cold tolerance (Ctmin), heat tolerance (Ctmax), and the preferred body temperature (Tpref), to indirectly assess thermal acclimatization in population means. We discovered that S. torquatus is an active thermoregulator throughout the year, with body temperature varying little despite strong seasonal temperature shifts. Although we did not observe a strong signal of acclimatization in Ctmax, we did find that Ctmin shifts in parallel with nighttime temperatures throughout the year. This likely occurs, at least in part, because thermoregulation is substantially less effective at buffering organisms from selection on lower physiological limits than upper physiological limits. Active thermoregulation is effective at limiting exposure to extreme temperatures during the day, but is less effective at night, potentially contributing to greater plasticity in Ctmin than Ctmax. Importantly, however, Tpref tracked seasonal changes in temperature, which is one the factors contributing to highly effective thermoregulation throughout the year. Thus, behavior and physiological plasticity do not always operate independently, which could impact how organisms can respond to rising temperatures.


Assuntos
Aclimatação , Comportamento Animal , Regulação da Temperatura Corporal , Lagartos/fisiologia , Animais , Fotoperíodo , Estações do Ano
15.
J Therm Biol ; 76: 126-138, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30143287

RESUMO

The insect cuticle serves a multitude of purposes, including: mechanical and thermal protection, water-repelling, acoustic signal absorption and coloration. The influence of cuticular structures on infrared radiation exchange and thermal balance is still largely unexplored. Here we report on the micro- and nanostructured setae covering the elytra of the longicorn beetle Rosalia alpina (Linnaeus, 1758) (Coleoptera: Cerambycidae) that help the insect to survive in hot, summer environments. In the visible part of the spectrum, scale-like setae, covering the black patches of the elytra, efficiently absorb light due to the radiation trap effect. In the infrared part of the spectrum, setae of the whole elytra significantly contribute to the radiative heat exchange. From the biological point of view, insect elytra facilitate camouflage, enable rapid heating to the optimum body temperature and prevent overheating by emitting excess thermal energy.


Assuntos
Exoesqueleto/química , Regulação da Temperatura Corporal , Besouros/anatomia & histologia , Animais , Temperatura Alta , Luz , Modelos Biológicos , Termografia
16.
Molecules ; 23(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567399

RESUMO

Capsaicin is known to activate heat receptor TRPV1 and induce changes in thermoregulatory processes of mammals. However, the mechanism by which capsaicin induces thermoregulatory responses in invertebrates is unknown. Insect thermoreceptors belong to the TRP receptors family, and are known to be activated not only by temperature, but also by other stimuli. In the following study, we evaluated the effects of different ligands that have been shown to activate (allyl isothiocyanate) or inhibit (camphor) heat receptors, as well as, activate (camphor) or inhibit (menthol and thymol) cold receptors in insects. Moreover, we decided to determine the effect of agonist (capsaicin) and antagonist (capsazepine) of mammalian heat receptor on the American cockroach's thermoregulatory processes. We observed that capsaicin induced the decrease of the head temperature of immobilized cockroaches. Moreover, the examined ligands induced preference for colder environments, when insects were allowed to choose the ambient temperature. Camphor exposure resulted in a preference for warm environments, but the changes in body temperature were not observed. The results suggest that capsaicin acts on the heat receptor in cockroaches and that TRP receptors are involved in cockroaches' thermosensation.


Assuntos
Capsaicina/química , Isotiocianatos/química , Animais , Capsaicina/análogos & derivados , Baratas , Mentol/química , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Temperatura , Timol/química
17.
J Therm Biol ; 65: 1-7, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28343561

RESUMO

Medicinal leeches (Hirudo verbana) thermoregulate with respect to their sanguivorous feeding behavior. Immediate postprandial preferences are for warmer than their initial acclimation temperature (Ta, 21°C, Petersen et al. 2011), while unfed leeches have a lower preferred temperature (Tpref, 12.5°C). This may reduce energy expenditure and defer starvation if feeding opportunities are limited. Energetic benefits may have an associated cost if low temperatures reduce mobility and the ability to locate further hosts. These costs could be limited if mobility is unimpaired at low temperatures, or if acclimation can restore locomotor performance to the levels at Ta. The transition from Ta to the unfed Tpref significantly reduced speed and propulsive cycle frequency during swimming, and extension and retraction rates during crawling. Aerobic metabolic rate was also reduced from 0.20±0.03Wkg-1 at Ta to 0.10±0.03Wkg-1 at Tpref. The Q10 values of 1.7-2.9 for energetic and swimming parameters indicate a substantial temperature effect, although part of the decline in swimming performance can be attributed to temperature-related changes in water viscosity. 6 weeks at Ta resulted in no detectable acclimation in locomotor performance or aerobic metabolism. The energetic savings associated with a lower Tpref in unfed leeches effectively doubled the estimated time until depletion of energy reserves. Given that some mobility is still retained at Tpref, and that acclimation is in itself costly, the energetic benefits of selecting cooler temperatures between feedings may outweigh the costs associated with reduced locomotor performance.


Assuntos
Regulação da Temperatura Corporal , Hirudo medicinalis/fisiologia , Aclimatação , Animais , Temperatura Baixa , Metabolismo Energético , Comportamento Alimentar , Locomoção , Natação
18.
J Therm Biol ; 69: 171-177, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29037379

RESUMO

The regulation of body temperature is a critical function for animals. Although reliant on ambient temperature as a heat source, reptiles, and especially lizards, make use of multiple voluntary and involuntary behaviors to thermoregulate, including postural changes in body orientation, either toward or away from solar sources of heat. This thermal orientation may also result from a thermoregulatory drive to maintain precise control over cranial temperatures or a rostrally-driven sensory bias. The purpose of this work was to examine thermal orientation behavior in adult and neonatal bearded dragons (Pogona vitticeps), to ascertain its prevalence across different life stages within a laboratory situation and its interaction with behavioral thermoregulation. Both adult and neonatal bearded dragons were placed in a thermal gradient and allowed to voluntarily select temperatures for up to 8h to observe the presence and development of a thermoregulatory orientation preference. Both adult and neonatal dragons displayed a non-random orientation, preferring to face toward a heat source while achieving mean thermal preferences of ~ 33-34°C. Specifically, adult dragons were more likely to face a heat source when at cooler ambient temperatures and less likely at warmer temperatures, suggesting that orientation behavior counter-balances local selected temperatures but contributes to their thermoregulatory response. Neonates were also more likely to select cooler temperatures when facing a heat source, but required more experience before this orientation behavior emerged. Combined, these results demonstrate the importance of orientation to behavioral thermoregulation in multiple life stages of bearded dragons.


Assuntos
Regulação da Temperatura Corporal , Lagartos/fisiologia , Orientação , Animais , Comportamento Animal , Temperatura Corporal , Feminino , Masculino , Temperatura
19.
Am J Primatol ; 78(7): 745-54, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26890578

RESUMO

Regulation of body temperature poses significant problems for organisms that inhabit environments with extreme and seasonally fluctuating ambient temperatures. To help alleviate the energetic costs of autonomic responses, these organisms often thermoregulate through behavioral mechanisms. Among primates, lemurs in Madagascar experience uncharacteristically seasonal and unpredictable climates relative to other primate-rich regions. Malagasy primates are physiologically flexible, but different species use different mechanisms to influence their body temperatures. Lemur catta, the ring-tailed lemur, experiences particularly acute diurnal temperature fluctuations in its mostly open-canopy habitat in south and southwest Madagascar. Ring-tailed lemurs are also atypical among lemurs in that they appear to use both sun basking postures and huddling to maintain body temperature when ambient temperatures are cold. To our knowledge, however, no one has systematically tested whether these behaviors function in thermoregulation. We present evidence that ring-tailed lemurs use these postures as behavioral thermoregulation strategies, and that different environmental variables are associated with the use of each posture. Major predictors of sunning included ambient temperature, time of day, and season. Specifically, L. catta consistently assumed sunning postures early after daybreak when ambient temperatures were <13°C, and ceased sunning around 10:00a.m., after ambient temperatures approached 26°C. Sunning occurred more often during austral winter months. Huddling was associated with time of day, but not with ambient temperature or season. We conclude that L. catta tend to sun, rather than huddle, under cold weather conditions when sunning is possible. However, both sunning and huddling are important behavioral adaptations of L. catta that augment chemical thermoregulation and the absence of a dynamic, insulating pelage. Sunning and huddling help to account for the great ecological flexibility of the species, but these adaptations may be insufficient in the face of future changes in protective vegetation and temperature. Am. J. Primatol. 78:745-754, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Regulação da Temperatura Corporal , Lemur , Animais , Ecossistema , Lemuridae , Madagáscar
20.
Int J Biometeorol ; 60(12): 1925-1932, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27146287

RESUMO

Thermal sensation represents the primary stimulus for behavioral and autonomic thermoregulation. We assessed whether the sensation of skin and core temperatures for the driving force of behavioral thermoregulation was modified by postural change from the supine (Sup) to sitting (Sit) during mild hyperthermia. Seventeen healthy young men underwent measurements of noticeable increase and decrease (±0.1 °C/s) of skin temperature (thresholds of warm and cold sensation on the skin, 6.25 cm2 of area) at the forearm and chest and of the whole-body warm sensation in the Sup and Sit during normothermia (NT; esophageal temperature (Tes), ∼36.6 °C) and mild hyperthermia (HT; Tes, ∼37.2 °C; lower legs immersion in 42 °C of water). The threshold for cold sensation on the skin at chest was lower during HT than NT in the Sit (P < 0.05) but not in Sup, and at the forearm was lower during HT than NT in the Sup and further in Sit (both, P < 0.05), with interactive effects of temperature (NT vs. HT) × posture (Sup vs. Sit) (chest, P = 0.08; forearm, P < 0.05). The threshold for warm sensation on the skin at both sites remained unchanged with changes in body posture or temperature. The whole-body warm sensation was higher during HT than NT in both postures and higher in the Sit than Sup during both NT and HT (all, P < 0.05). Thus, thermal sensation during mild hyperthermia is modulated by postural change from supine to sitting to sense lesser cold on the skin and more whole-body warmth.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Postura/fisiologia , Sensação Térmica/fisiologia , Adulto , Pressão Sanguínea , Frequência Cardíaca , Humanos , Masculino , Fluxo Sanguíneo Regional , Pele/irrigação sanguínea , Temperatura Cutânea , Sudorese , Temperatura , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA