Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 475: 116633, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37482253

RESUMO

Bergenin (BG) is a polyphenolic substance which has therapeutic potential in the treatment of diabetic nephropathy (DN), a common complication of type II diabetes. However, the mechanisms underlying these effects remain unclear. We studied the protective effects and mechanisms of BG in DN mice, focusing on the TLR4/MyD88/NF-κB signalling pathway. C57BL/6 J mice were used as experiments (n=60), and 10 animals were randomly selected as normal control. The DN model was developed by administering an intraperitoneal injection of streptozotocin (40 mg/kg BW for three days) and a high-fat diet (n=50). BG (20, 40, and 80 mg/kg BW, once a day) was administered orally for four weeks. After BG treatment, the food and water intake of DN mice decreased, blood glucose levels decreased, and insulin resistance reduced. As a result, serum LDL-C, TC, and TG levels decreased; HDL-C levels increased; SOD, CAT, and GSH-Px levels decreased; and MDA levels increased. BG administration reduced AST, ALT, BUN, and CRE levels and inflammatory factors (including TNF-α, MCP-1, IL-1ß, and IL-6). Histopathology revealed a significant improvement in pathological damage to the liver, kidney, and spleen of mice treated with BG, and TLR4, MyD88, and NF-κB p65 were down-regulated at both mRNA and protein levels in the BG-treated group. Based on these results, BG therapeutic type II DN by hypoglycaemia, improving liver and kidney function, and anti-oxidative stress; reducing inflammation; and inhibiting the TLR4/MyD88/NF-κB signalling pathway. The results of this study suggest that BG can be used as an effective treatment for type II DN.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Ratos , Camundongos , Animais , NF-kappa B/metabolismo , Nefropatias Diabéticas/patologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Ratos Sprague-Dawley , Diabetes Mellitus Experimental/complicações , Camundongos Endogâmicos C57BL
2.
Lipids Health Dis ; 22(1): 203, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001454

RESUMO

OBJECTIVE: The goal of this study was to explore the hypolipidemic effects of bergenin extracted from Saxifraga melanocentra Franch (S. melanocentra), which is a frequently utilized Tibetan medicinal plant known for its diverse bioactivities. Establishing a quality control system for black stem saxifrage is crucial to ensure the rational utilization of its medicinal resources. METHODS: A one-step polyamide medium-pressure liquid chromatography technique was applied to isolate and prepare bergenin from a methanol extract of S. melanocentra. A zebrafish model of hyperlipidemia was used to investigate the potential hypolipidemic effects of bergenin. RESULTS: The results revealed that bergenin exhibited substantial hypo efficacy in vivo. Specifically, bergenin significantly reduced the levels of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) while simultaneously increasing high-density lipoprotein cholesterol (HDL-c) levels. At the molecular level, bergenin exerted its effects by inhibiting the expression of FASN, SREBF1, HMGCRα, RORα, LDLRα, IL-1ß, and TNF while promoting the expression of IL-4 at the transcriptional level. Molecular docking analysis further demonstrated the strong binding affinity of bergenin to proteins such as FASN, SREBF1, HMGCRα, RORα, LDLRα, IL-4, IL-1ß, and TNF. CONCLUSIONS: Findings indicate that bergenin modulates lipid metabolism by regulating lipid and cholesterol synthesis as well as inflammatory responses through signaling pathways associated with FASN, SREBF1, and RORα. These results position bergenin as a potential candidate for the treatment of hyperlipidemia.


Assuntos
Hiperlipidemias , Saxifragaceae , Animais , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/genética , Interleucina-4 , Simulação de Acoplamento Molecular , Peixe-Zebra , Triglicerídeos , LDL-Colesterol , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico
3.
Molecules ; 28(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513369

RESUMO

Bergenin (BER), a natural component of polyphenols, has a variety of pharmacological activities, especially in improving drug metabolism, reducing cholestasis, anti-oxidative stress and inhibiting inflammatory responses. The aim of this study was to investigate the effects of BER on liver injury induced by isonicotinic acid hydrazide (INH) and rifampicin (RIF) in mice. The mice model of liver injury was established with INH (100 mg/kg)+RIF (100 mg/kg), and then different doses of BER were used to intervene. The pathological morphology and biochemical indicators of mice were detected. Meanwhile, RNA sequencing was performed to screen the differentially expressed genes and signaling pathways. Finally, critical differentially expressed genes were verified by qRT-PCR and Western blot. RNA sequencing results showed that 707 genes were significantly changed in the INH+RIF group compared with the Control group, and 496 genes were significantly changed after the BER intervention. These differentially expressed genes were mainly enriched in the drug metabolism, bile acid metabolism, Nrf2 pathway and TLR4 pathway. The validation results of qRT-PCR and Western blot were consistent with the RNA sequencing. Therefore, BER alleviated INH+RIF-induced liver injury in mice. The mechanism of BER improving INH+RIF-induced liver injury was related to regulating drug metabolism enzymes, bile acid metabolism, Nrf2 pathway and TLR4 pathway.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Isoniazida/efeitos adversos , Rifampina/efeitos adversos , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 4 Toll-Like/metabolismo , Fígado , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
4.
Acta Pharmacol Sin ; 43(4): 963-976, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34267342

RESUMO

Bergenin is a natural PPARγ agonist that can prevent neutrophil aggregation, and often be used in clinics for treating respiratory diseases. Recent data show that Th17 cells are important for neutrophil aggregation and asthma through secreting IL-17A. In this study, we investigated the effects of bergenin on Th17 differentiation in vitro and subsequent neutrophilic asthma in mice. Naïve T cells isolated from mouse mesenteric lymph nodes were treated with IL-23, TGF-ß, and IL-6 to induce Th17 differentiation. We showed that in naïve T cells under Th17-polarizing condition, the addition of bergenin (3, 10, 30 µM) concentration-dependently decreased the percentage of CD4+ IL-17A+ T cells and mRNA expression of specific transcription factor RORγt, and function-related factors IL-17A/F, IL-21, and IL-22, but did not affect the cell vitality and apoptosis. Furthermore, bergenin treatment prevented GLS1-dependent glutaminolysis in the progress of Th17 differentiation, slightly affected the levels of SLC1A5, SLC38A1, GLUD1, GOT1, and GPT2. Glutamine deprivation, the addition of glutamate (1 mM), α-ketoglutarate (1 mM), or GLS1 plasmid all significantly attenuated the above-mentioned actions of bergenin. Besides, we demonstrated that bergenin (3, 10, and 30 µM) concentration-dependently activated PPARγ in naïve T cells, whereas PPARγ antagonist GW9662 and siPPARγ abolished bergenin-caused inhibition on glutaminolysis and Th17 differentiation. Furthermore, we revealed that bergenin inhibited glutaminolysis by regulating the level of CDK1, phosphorylation and degradation of Cdh1, and APC/C-Cdh1-mediated ubiquitin-proteasomal degradation of GLS1 after activating PPARγ. We demonstrated a correlation existing among bergenin-affected GLS1-dependent glutaminolysis, PPARγ, "CDK1-APC/C-Cdh1" signaling, and Th17 differentiation. Finally, the therapeutic effect and mechanisms for bergenin-inhibited Th17 responses and neutrophilic asthma were confirmed in a mouse model of neutrophilic asthma by administration of GW9662 or GLS1 overexpression plasmid in vivo. In conclusion, bergenin repressed Th17 differentiation and then alleviated neutrophilic asthma in mice by inhibiting GLS1-dependent glutaminolysis via regulating the "CDK1-APC/C-Cdh1" signaling after activating PPARγ.


Assuntos
Asma , Células Th17 , Animais , Asma/tratamento farmacológico , Asma/patologia , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Diferenciação Celular , Glutaminase , Camundongos , PPAR gama/metabolismo
5.
Chem Biodivers ; 19(2): e202100796, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34850548

RESUMO

Ardisia elliptica Thunb. (AE) has been used as food and in traditional medicine to prevent and treat fever, diarrhea, chest pain, liver poisoning, and parturition complications in Southeast Asian countries. This study focused on phytochemical constituents of AE extracts and their antioxidant and anti-inflammatory activity in vitro by evaluating nitric oxide production, and DPPH and FRAP radical scavenging activity. The bioactive compounds from different plant parts, including old leaves, young leaves, flowers, roots, and fruits, were identified. The results showed the highest phenolic and flavonoid content in the root extract among all extracts, which resulted in the most potent free radical scavenging activity revealed by the DPPH and FRAP assay. The roots and flowers showed the highest bergenin (3.36±0.22 mg/g dry weight) and quercetin (2.99±0.10 mg/g dry weight) content, respectively. In contrast, embelin was found only in the fruits. Interestingly, AE extracts significantly suppressed the mRNA expression of inducible nitric oxide synthase, leading to inhibition of nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages. Conclusively, the results suggest the natural products of AE extracts as effective antioxidant and anti-inflammatory agents that can be utilized for food and pharmaceutical applications.


Assuntos
Ardisia , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Ardisia/química , Flavonoides/química , Extratos Vegetais/química , Folhas de Planta/química
6.
Mol Cell Biochem ; 476(6): 2539-2549, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33635505

RESUMO

Naturally occurring phytochemicals of different origin and structure, arctigenin, bergenin, usnic acid and xanthohumol, were shown to affect Nrf2 pathway in the context of various diseases, but their effect on this pathway in cancer cells was not extensively investigated. This study aimed to evaluate the effect of these compounds on Nrf2 expression and activation in hypopharyngeal FaDu squamous cell carcinoma cells. FaDu cells were treated with 2 or 10 µM arctigenin, bergenin, (+)-usnic acid or xanthohumol for 24 h. While arctigenin, bergenin, and xanthohumol did not affect either Nrf2 expression or activation, (+)-usnic acid treatment increased its transcript level and increased the nuclear/cytosol Nrf2 protein ratio-the measure of Nrf2 pathway activation. Consequently, (+)-usnic acid enhanced the transcription and translation of Nrf2 target genes: NQO1, SOD, and to a lesser extent, GSTP. The treatment of FaDu cells with (+)-usnic acid decreased both GSK-3ß transcript and protein level, indicating its possible involvement in Nrf2 activation. All the tested compounds decreased Bax mRNA but did not change the level of Bax protein. (+)-Usnic acid tended to increase the percentage of early apoptotic cells and LC3 protein, autophagy marker. Significant induction of p53 also was observed after treatment with (+)-usnic acid. In summary, the results of this study indicate that low concentrations of (+)-usnic acid activate Nrf2 transcription factor, most probably as a result of ROS accumulation, but do not lead to FaDu hypopharyngeal carcinoma cells death.


Assuntos
Elementos de Resposta Antioxidante , Benzofuranos/farmacologia , Neoplasias Hipofaríngeas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias Hipofaríngeas/tratamento farmacológico , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/patologia , Fator 2 Relacionado a NF-E2/genética , Proteínas de Neoplasias/genética , Transdução de Sinais/genética
7.
Phytother Res ; 35(10): 5808-5822, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34375009

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by epithelial cell damage, fibroblast activation, and collagen deposition. IPF has high mortality and limited therapies, which urgently needs to develop safe and effective therapeutic drugs. Bergenin, a compound derived from a variety of medicinal plants, has demonstrated multiple pharmacological activities including anti-inflammatory and anti-tumor, also acts as a traditional Chinese medicine to treat chronic bronchitis, but its effect on the pulmonary fibrosis is unknown. In this study, we demonstrated that bergenin could attenuate bleomycin (BLM)-induced pulmonary fibrosis in mice. In vitro studies indicated that bergenin inhibited the transforming growth factor-ß1 (TGF-ß1)-induced fibroblast activation and the extracellular matrix accumulation by inhibiting the TGF-ß1/Smad signaling pathway. Further studies showed that bergenin could induce the autophagy formation of myofibroblasts by suppressing the mammalian target of rapamycin signaling and that bergenin could promote the myofibroblast apoptosis. In vivo experiments revealed that bergenin substantially inhibited the myofibroblast activation and the collagen deposition and promoted the autophagy formation. Overall, our results showed that bergenin attenuated the BLM-induced pulmonary fibrosis in mice by suppressing the myofibroblast activation and promoting the autophagy and the apoptosis of myofibroblasts.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Animais , Benzopiranos , Bleomicina/toxicidade , Fibroblastos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fator de Crescimento Transformador beta1
8.
Environ Toxicol ; 36(12): 2541-2550, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34499403

RESUMO

Bergenin is a C-glucoside of 4-O-methyl gallic acid with a variety of biological activities, such as antioxidant and anti-inflammatory. Herein, we investigated the involvement of bergenin in the protective effect against H2 O2 -induced oxidative stress and apoptosis in human nucleus pulposus cells (HNPCs) and the underlying mechanisms. HNPCs were cotreated with various concentrations of bergenin and 200 µM H2 O2 for 24 h. Cell viability was detected by Cell Counting Kit-8 and lactate dehydrogenase release assays. Reactive oxygen species (ROS) was evaluated utilizing 2',7'-dichlorofluorescein-diacetate. Superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) levels were measured to assess oxidative stress. Apoptosis was evaluated using terminal deoxynucleotidyl transferase dUTP nick end labeling and caspase-3/7 activity assays. Expression of protein was determined by western blotting. Results indicated that treatment with bergenin significantly alleviated H2 O2 -induced viability reduction and ROS overproduction in HNPCs in a dose-dependent manner. Bergenin alleviated H2 O2 -induced oxidative stress in HNPCs by increased activity of superoxide dismutase and level of glutathione peroxidase. H2 O2 -induced apoptosis and activity of caspase-3/7 were also suppressed by bergenin treatment in HNPCs. Western blotting showed that H2 O2 -induced decrease in expression of peroxisome proliferator-activated receptor γ (PPAR-γ) and increase in nuclear factor κB (NF-κB) were inhibited by bergenin. However, the inhibitory effect of bergenin on H2 O2 -induced viability reduction, oxidative stress and apoptosis were noticeably abrogated in PPAR-γ knockdown HNPCs. In conclusion, our results indicated that bergenin alleviates H2 O2 -induced oxidative stress and apoptosis in HNPCs by activating PPAR-γ and suppressing NF-κB pathway.


Assuntos
NF-kappa B , Núcleo Pulposo , Apoptose , Benzopiranos , NF-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Estresse Oxidativo , PPAR gama/genética , PPAR gama/metabolismo , Espécies Reativas de Oxigênio
9.
Drug Dev Res ; 82(2): 278-286, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33112006

RESUMO

Bladder cancer is one of the most common malignant tumors in the urinary system with high mortality and morbidity. Evidence revealed that bergenin could affect the development of cancer. Here, we aimed to investigate the effect of bergenin on bladder cancer progression and its mechanism. The effect of bergenin on cell function was first detected, followed by assessing the changes of the epithelial-mesenchymal transition (EMT) in bergenin-treated cells. The effect of bergenin on peroxisome proliferator-activated receptor γ (PPARγ)/phosphatase and tensin homolog (PTEN)/Akt signal pathway was measured by Western blotting, followed by the rescue experiments. The results showed that bergenin treatment significantly decreased cell viability and increased G1 phase arrest, accompanied by reduced expression of Ki67, cycling D1, and cycling B1 in bladder cancer cells. Apoptosis was induced by bergenin in bladder cancer cells, as evidenced by increased Bax and cleaved caspase 3 protein levels and decreased Bcl-2 level in bergenin-treated cells. Meanwhile, the inhibition of the invasion, migration, and EMT was also observed in bergenin-treated cells. Mechanism studies showed that bergenin treatment could activate PPARγ/PTEN/Akt signal pathway, as evidence by the increased nucleus PPARγ and phosphatase and tensin homolog (PTEN) expression and decreased Akt expression. Moreover, PPARγ inhibitor administration inverted the effects of bergenin on bladder cancer cell function, including the proliferation, apoptosis, invasion, and migration in bladder cancer cells. Our findings revealed that bergenin could inhibit bladder cancer progression via activating the PPARγ/PTEN/Akt signal pathway, indicating that bergenin may be a potential therapeutic medicine for bladder cancer treatment.


Assuntos
Benzopiranos/farmacologia , PPAR gama/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo , Benzopiranos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Progressão da Doença , Humanos , Transdução de Sinais/fisiologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia
10.
Int J Mol Sci ; 22(12)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203049

RESUMO

The present study aims to determine the neuroprotective effect of Bergenin against spatial memory deficit associated with neurodegeneration. Preliminarily, the protective effect of Bergenin was observed against H2O2-induced oxidative stress in HT-22 and PC-12 cells. Further studies were performed in 5xFAD Tg mouse model by administering Bergenin (1, 30 and 60 mg/kg; orally), whereas Bergenin (60 mg/kg) significantly attenuated the memory deficit observed in the Y-maze and Morris water maze (MWM) test. Fourier transform-infrared (FT-IR) spectroscopy displayed restoration of lipids, proteins and their derivatives compared to the 5xFAD Tg mice group. The differential scanning calorimeter (DSC) suggested an absence of amyloid beta (Aß) aggregation in Bergenin-treated mice. The immunohistochemistry (IHC) analysis suggested the neuroprotective effect of Bergenin by increasing Reelin signaling (Reelin/Dab-1) and attenuated Aß (1-42) aggregation in hippocampal regions of mouse brains. Furthermore, IHC and western blot results suggested antioxidant (Keap-1/Nrf-2/HO-1), anti-inflammatory (TLR-4/NF-kB) and anti-apoptotic (Bcl-2/Bax/Caspase-3) effect of Bergenin. Moreover, a decrease in Annexin V/PI-stained hippocampal cells suggested its effect against neurodegeneration. The histopathological changes were reversed significantly by Bergenin. In addition, a remarkable increase in antioxidant level with suppression of pro-inflammatory cytokines, oxidative stress and nitric oxide production were observed in specific regions of the mouse brains.


Assuntos
Benzopiranos/farmacologia , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Benzopiranos/química , Biomarcadores , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Ligação de Hidrogênio , Mediadores da Inflamação/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/diagnóstico , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Estrutura Molecular , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteína Reelina , Relação Estrutura-Atividade , Resultado do Tratamento
11.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445541

RESUMO

Mallotus japonicus is a valuable traditional medicinal plant in East Asia for applications as a gastrointestinal drug. However, the molecular components involved in the biosynthesis of bioactive metabolites have not yet been explored, primarily due to a lack of omics resources. In this study, we established metabolome and transcriptome resources for M. japonicus to capture the diverse metabolite constituents and active transcripts involved in its biosynthesis and regulation. A combination of untargeted metabolite profiling with data-dependent metabolite fragmentation and metabolite annotation through manual curation and feature-based molecular networking established an overall metabospace of M. japonicus represented by 2129 metabolite features. M. japonicus de novo transcriptome assembly showed 96.9% transcriptome completeness, representing 226,250 active transcripts across seven tissues. We identified specialized metabolites biosynthesis in a tissue-specific manner, with a strong correlation between transcripts expression and metabolite accumulations in M. japonicus. The correlation- and network-based integration of metabolome and transcriptome datasets identified candidate genes involved in the biosynthesis of key specialized metabolites of M. japonicus. We further used phylogenetic analysis to identify 13 C-glycosyltransferases and 11 methyltransferases coding candidate genes involved in the biosynthesis of medicinally important bergenin. This study provides comprehensive, high-quality multi-omics resources to further investigate biological properties of specialized metabolites biosynthesis in M. japonicus.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Mallotus (Planta)/metabolismo , Metaboloma , Proteínas de Plantas/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Mallotus (Planta)/genética , Mallotus (Planta)/crescimento & desenvolvimento , Especificidade de Órgãos , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
12.
J Biol Chem ; 294(21): 8555-8563, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30975902

RESUMO

The widespread availability and use of modern synthetic therapeutic agents have led to a massive decline in ethnomedical therapies. However, these synthetic agents often possess toxicity leading to various adverse effects. For instance, anti-tubercular treatment (ATT) is toxic, lengthy, and severely impairs host immunity, resulting in posttreatment vulnerability to reinfection and reactivation of tuberculosis (TB). Incomplete ATT enhances the risk for the generation of multidrug- or extensively drug-resistant (MDR or XDR, respectively) variants of Mycobacterium tuberculosis (M. tb), the TB-causing microbe. Therefore, a new therapeutic approach that minimizes these risks is urgently needed to combat this deadly disease and prevent future TB epidemics. Previously, we have shown that the phytochemical bergenin induces T helper 1 (Th1)- and Th17 cell-based protective immune responses and potently inhibits mycobacterial growth in a murine model of M. tb infection, suggesting bergenin as a potential adjunct agent to TB therapy. Here, we combined ATT therapy with bergenin and found that this combination reduces immune impairment and the length of treatment in mice. We observed that co-treatment with the anti-TB drug isoniazid and bergenin produces additive effects and significantly reduces bacterial loads compared with isoniazid treatment alone. The bergenin co-treatment also reduced isoniazid-induced immune impairment; promoted long-lasting, antigen-specific central memory T cell responses; and acted as a self-propelled vaccine. Of note, bergenin treatment significantly reduced the bacterial burden of a multidrug-resistant TB strain. These observations suggest that bergenin is a potent immunomodulatory agent that could be further explored as a potential adjunct to TB therapy.


Assuntos
Benzopiranos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Imunoterapia , Isoniazida/farmacologia , Mycobacterium tuberculosis/imunologia , Células Th1/imunologia , Células Th17/imunologia , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Farmacorresistência Bacteriana Múltipla/imunologia , Camundongos , Células Th1/patologia , Células Th17/patologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/imunologia , Tuberculose Resistente a Múltiplos Medicamentos/patologia
13.
Pulm Pharmacol Ther ; 62: 101921, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615160

RESUMO

BACKGROUND: Bergenin, a type of polyphenol compound, exhibits antiulcerogenic, anti-inflammatory, antitussive, and burn wound-healing properties. However, its therapeutic effect on tumor necrosis factor α (TNF-α)-induced proinflammatory responses in the airway and potential mechanisms of actions are still unclear. This study aimed to investigate the anti-inflammatory effects and mechanism of bergenin in TNF-α-stimulated human bronchial epithelial (16-HBE) cells. METHODS: Cell Counting Kit-8 was used to evaluate cytotoxicity. Cytokine expression was analyzed by reverse transcription-quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay. Immunofluorescence, western blot, and sirtuin-1 (SIRT1) activity assays were employed to investigate potential molecular mechanisms. RESULTS: Bergenin obviously decreased both mRNA and protein expression levels of interleukins 6 and 8 (IL-6 and IL-8) in TNF-α-stimulated 16-HBE cells. Bergenin blocked TNF-α-mediated activation of nuclear factor κB (NF-κB) signaling and NF-κB nuclear translocation. Interestingly, RT-qPCR and western blotting results revealed that bergenin did not affect SIRT1 expression, but significantly increased its activity. Bergenin-mediated SIRT1 activation was further confirmed by results indicating decreased acetylation levels of NF-κB-p65 and p53. Moreover, the inhibitory effects of bergenin on mRNA and protein expression levels of IL-6 and IL-8 were reversed by a SIRT1 inhibitor. In addition, combining bergenin and dexamethasone (DEX) yielded additive effects on the reduction of IL-6 and IL-8 expression. CONCLUSIONS: These findings demonstrate that bergenin could suppress TNF-α-induced proinflammatory responses by augmenting SIRT1 activity to block the NF-κB signaling pathway, which may provide beneficial effects for the treatment of airway inflammation associated with asthma.


Assuntos
Anti-Inflamatórios/farmacologia , Benzopiranos/farmacologia , Inflamação/tratamento farmacológico , NF-kappa B/efeitos dos fármacos , Sirtuína 1/metabolismo , Citocinas/efeitos dos fármacos , Dexametasona/farmacologia , Células Epiteliais , Humanos , NF-kappa B/metabolismo , Naftóis/farmacologia , Fenilpropionatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia
14.
Molecules ; 25(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256153

RESUMO

Bergenia (Saxifragaceae) genus is native to central Asia and encompasses 32 known species. Among these, nine are of pharmacological relevance. In the Indian system of traditional medicine (Ayurveda), "Pashanabheda" (stone breaker) is an elite drug formulation obtained from the rhizomes of B. ligulata. Bergenia species also possess several other biological activities like diuretic, antidiabetic, antitussive, insecticidal, anti-inflammatory, antipyretic, anti-bradykinin, antiviral, antibacterial, antimalarial, hepatoprotective, antiulcer, anticancer, antioxidant, antiobesity, and adaptogenic. This review provides explicit information on the traditional uses, phytochemistry, and pharmacological significance of the genus Bergenia. The extant literature concerned was systematically collected from various databases, weblinks, blogs, books, and theses to select 174 references for detailed analysis. To date, 152 chemical constituents have been identified and characterized from the genus Bergenia that belong to the chemical classes of polyphenols, phenolic-glycosides, lactones, quinones, sterols, tannins, terpenes, and others. B. crassifolia alone possesses 104 bioactive compounds. Meticulous pharmacological and phytochemical studies on Bergenia species and its conservation could yield more reliable compounds and products of pharmacological significance for better healthcare.


Assuntos
Medicina Tradicional , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Saxifragaceae/química , Fenômenos Químicos , Etnofarmacologia/métodos , Humanos , Medicina Tradicional/métodos , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/uso terapêutico
15.
Bioorg Chem ; 91: 103161, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31387060

RESUMO

In continuation of our investigation of pharmacologically-motivated natural products, we have isolated bergenin (1) as a major compound from Mallotus philippensis, which is deployed in different Indian traditional systems of medicine. Here, a series of bergenin-1,2,3-triazole hybrids were synthesized and evaluated for their potentials against a panel of cancer cell lines. Several of the hybrid derivatives were found more potent in comparison to parent compound bergenin (1). Among them, 4j demonstrated potent activity against A-549 and HeLa cell lines with IC50 values of 1.86 µM and 1.33 µM, respectively, and was equipotent to doxorubicin. Cell cycle analysis showed that 4j arrested HeLa cells at G2/M phase and lead to accumulation of Cyclin B1 protein. Cell based tubulin polymerization assays and docking studies demonstrated that 4j disrupts tubulin assembly by occupying colchicine binding pocket of tubulin.


Assuntos
Antimitóticos/farmacologia , Antineoplásicos/farmacologia , Benzopiranos/química , Cromonas/síntese química , Cromonas/farmacologia , Mitose , Triazóis/química , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/química , Antimitóticos/síntese química , Antineoplásicos/síntese química , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Polimerização , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química
16.
Biomed Chromatogr ; 33(7): e4513, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30793338

RESUMO

A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method for the determination of bergenin and its phase II metabolite in rat plasma, bile and urine has been developed. Biological samples were pretreated with protein precipitation extraction procedure and enzymatic hydrolysis method was used for converting glucuronide metabolite to its free form bergenin. Detection and quantitation were performed by MS/MS using electrospray ionization and multiple reaction monitoring. Negative electrospray ionization was employed as the ionization source. Sulfamethoxazole was used as the internal standard. The separation was performed on a reverse-phase C18 (250 × 4.6 mm, 5 µm) column with gradient elution consisting of methanol and 0.5% aqueous formic acid. The concentrations of bergenin in all biological samples were in accordance with the requirements of validation of the method. After oral administration of 12 mg/kg of the prototype drug, bergenin and its glucuronide metabolite were determined in plasma, bile and urine. Bergenin in bile was completely excreted in 24 h, and the main excreted amount of bergenin was 97.67% in the first 12 h. The drug recovery in bile within 24 h was 8.97%. In urine, the main excreted amount of bergenin was 95.69% in the first 24 h, and the drug recovery within 24 h was <22.34%. Total recovery of bergenin and its glucuronide metabolite was about 52.51% (20.31% in bile within 24 h, 32.20% in urine within 48 h). The validated method was successfully applied to pharmacokinetic and excretion studies of bergenin.


Assuntos
Benzopiranos/análise , Benzopiranos/farmacocinética , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Benzopiranos/química , Limite de Detecção , Modelos Lineares , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
17.
Molecules ; 24(5)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845642

RESUMO

Endopleura uchi (Huber) Cuatrec (Humiriaceae), known as uxi or uxi-amarelo in Brazil, is an endemic tree of the Amazon forest. In traditional medicine, its stem bark is used to treat a variety of health disorders, including cancer, diabetes, arthritis, uterine inflammation, and gynecological infections. According to HPLC analysis, the main constituent of the bark extract is the polyphenol bergenin. In the current study, we demonstrate by in vitro and in vivo experiments the antioxidant potential of a water extract from the stem bark of E. uchi. When tested in the model organism Caenorhabditis elegans, the extract enhanced stress resistance via the DAF-16/FOXO pathway. Additionally, the extract promoted an increase in the lifespan of the worms independent from caloric restriction. It also attenuated the age-related muscle function decline and formation of polyQ40 plaques, as a model for Huntington's disease. Thus, these data support anti-aging and anti-oxidant properties of E. uchi, which has not yet been described. More studies are needed to assess the real benefits of E. uchi bark for human health and its toxicological profile.


Assuntos
Benzopiranos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Phaeophyceae/química , Casca de Planta/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Proteínas de Caenorhabditis elegans/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Regulação da Expressão Gênica , Humanos , Doença de Huntington/metabolismo , Proteínas de Insetos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenol/química , Fenol/farmacologia , Extratos Vegetais/farmacologia , Transdução de Sinais
18.
J Appl Toxicol ; 38(4): 585-593, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29148590

RESUMO

Bergenin is the main chemical constituent of plants in the genus Bergenia, which are used in traditional medicines. Methylglyoxal (MG), a highly reactive dicarbonyl compound, is the major precursor for forming advanced glycation end products (AGEs). Pretreating MC3T3-E1 cells with bergenin prevented MG-induced protein adduct formation. Bergenin inhibited the MG-induced soluble receptor for AGE (sRAGE), interleukin, reactive oxygen species and mitochondrial superoxide production. Additionally bergenin increased glyoxalase I activity, glutathione, heme oxygenase-1 and nuclear factor erythroid 2-related factor 2 levels in the presence of MG. Pretreatment with bergenin before MG exposure reduced MG-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation, loss of adenosine triphosphate and reduced adenosine monophosphate-activated protein kinase. These results demonstrate that bergenin may prevent the development of diabetic osteopathy.


Assuntos
Benzopiranos/farmacologia , Osteoblastos/efeitos dos fármacos , Aldeído Pirúvico/farmacologia , Animais , Linhagem Celular , Produtos Finais de Glicação Avançada/metabolismo , Heme Oxigenase-1/metabolismo , Interleucinas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Aldeído Pirúvico/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Superóxidos/metabolismo
19.
Molecules ; 23(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336565

RESUMO

In this study, the aim was to investigate the effect of bergenin on immune function and antioxidation in cyclophosphamide (Cy)-induced immunosuppressed mice. Firstly, we estimated its effect on immune organs. Histological analysis and indexes of immune organs showed that cyclophosphamide exhibited spleen and thymus injury compared with the normal control, which was alleviated by bergenin. Secondly, bergenin also enhanced the humoral immune function through increasing the level of IgM and IgG in serum. Thirdly, bergenin also enhanced the cellular immune function. The results indicate that bergenin increased peritoneal macrophage functions, the proliferation of T and B lymphocytes, NK and CTL cell activities, and T (CD4⁺ and CD8⁺) lymphocyte subsets. Besides, bergenin also had the ability to modulate the Th1/Th2 balance. Moreover, bergenin prevented the Cy-induced decrease in numbers of peripheral RBC, WBC and platelets, providing supportive evidence for their anti-leukopenia activities. Finally, bergenin also reversed the Cy-induced decrease in the total antioxidant capacity including activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). In conclusion, bergenin protected against Cy-induced adverse reactions by enhancing humoral and cellular immune functions and augmenting antioxidative activity and could be considered as a potential immunomodulatory agent.


Assuntos
Antioxidantes/administração & dosagem , Benzopiranos/administração & dosagem , Hospedeiro Imunocomprometido/efeitos dos fármacos , Linfócitos T Citotóxicos/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Benzopiranos/metabolismo , Catalase/metabolismo , Ciclofosfamida/administração & dosagem , Glutationa Peroxidase/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Malondialdeído/metabolismo , Camundongos , Fagocitose/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Linfócitos T Citotóxicos/imunologia
20.
AAPS PharmSciTech ; 19(4): 1720-1729, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29556829

RESUMO

Bergenin (BN) is a Biopharmaceutics Classification System class IV (BCS IV) drug with poor hydrophilicity and lipophilicity and is potentially eliminated by the efflux function of P-glycoprotein (P-gp). These factors may explain its low oral bioavailability. In the present study, a BN-phospholipid complex solid dispersion (BNPC-SD) was prepared by solvent evaporation and characterized based on differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, infrared diffraction, solubility, octanol-water partition coefficient, and in vitro dissolution. To investigate how P-gp can inhibit BN absorption in vivo, the P-gp inhibitor verapamil was co-administered with BNPC-SD to Sprague Dawley rats. By in situ single-pass intestinal perfusion, the membrane permeability of BN from BNPC-SD was higher than that of BN given alone and was improved further by co-administered verapamil. A pharmacokinetics study was done in Sprague Dawley rats, with plasma BN levels estimated by high-performance liquid chromatography. Cmax and AUC0 → t values for BN were significantly higher for BNPC-SD than for BN given alone and were increased further by verapamil. Thus, the relative oral bioavailability of BNPC-SD as well as BNPC-SD co-administered with verapamil was 156.33 and 202.46%, respectively, compared with the value for BN given alone. These results showed that BNPC-SD can increase the oral bioavailability of BCS IV drugs.


Assuntos
Benzopiranos/química , Benzopiranos/metabolismo , Absorção Intestinal/fisiologia , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Administração Oral , Animais , Benzopiranos/administração & dosagem , Disponibilidade Biológica , Biofarmácia/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Absorção Intestinal/efeitos dos fármacos , Masculino , Fosfolipídeos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA