RESUMO
Ligand bias is the ability of ligands to differentially activate certain receptor signaling responses compared with others. It reflects differences in the responses of a receptor to specific ligands and has implications for the development of highly specific therapeutics. Whereas ligand bias has been studied primarily for G protein-coupled receptors (GPCRs), there are also reports of ligand bias for receptor tyrosine kinases (RTKs). However, the understanding of RTK ligand bias is lagging behind the knowledge of GPCR ligand bias. In this review, we highlight how protocols that were developed to study GPCR signaling can be used to identify and quantify RTK ligand bias. We also introduce an operational model that can provide insights into the biophysical basis of RTK activation and ligand bias. Finally, we discuss possible mechanisms underpinning RTK ligand bias. Thus, this review serves as a primer for researchers interested in investigating ligand bias in RTK signaling.
Assuntos
Comunicação Celular , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Ativação Enzimática , Humanos , LigantesRESUMO
OBJECTIVE: To determine, based on indirect calorimetry measurements, the biases of predictive equations specifically developed recently for estimating resting energy expenditure (REE) in ventilated critically ill children, or developed for healthy populations but used in critically ill children. STUDY DESIGN: A secondary analysis study was performed using our data on REE measured in a previous prospective study on protein and energy needs in pediatric intensive care unit. We included 75 ventilated critically ill children (median age, 21 months) in whom 407 indirect calorimetry measurements were performed. Fifteen predictive equations were used to estimate REE: the equations of White, Meyer, Mehta, Schofield, Henry, the World Health Organization, Fleisch, and Harris-Benedict and the tables of Talbot. Their differential and proportional biases (with 95% CIs) were computed and the bias plotted in graphs. The Bland-Altman method was also used. RESULTS: Most equations underestimated and overestimated REE between 200 and 1000 kcal/day. The equations of Mehta, Schofield, and Henry and the tables of Talbot had a bias ≤10%, but the 95% CI was large and contained values by far beyond ±10% for low REE values. Other specific equations for critically ill children had even wider biases. CONCLUSIONS: In ventilated critically ill children, none of the predictive equations tested met the performance criteria for the entire range of REE between 200 and 1000 kcal/day. Even the equations with the smallest bias may entail a risk of underfeeding or overfeeding, especially in the youngest children. Indirect calorimetry measurement must be preferred.