Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985755

RESUMO

Bifacial dye-sensitized solar cells (DSSCs) were fabricated utilizing dye cocktails of two dyes, Z-907 and SQ-140, which have complementary light absorption and photon harvesting in the visible and near-infrared wavelength regions, for panchromatic photon harvesting. The investigation of the rate of dye adsorption and the binding strengths of the dyes on mesoporous TiO2 corroborated the finding that the Z-907 dye showed a rate of dye adsorption that was about >15 times slower and a binding that was about 3 times stronger on mesoporous TiO2 as compared to SQ-140. Utilizing the dye cocktails Z-907 and SQ-140 from ethanol, the formation of the dye bilayer, which was significantly influenced by the ratio of dyes and adsorption time, was demonstrated. It was demonstrated that the dyes of Z-907 and SQ-140 prepared in 1:9 or 9:1 molar ratios favoured the dye bilayer formation by subtly controlling the adsorption time. In contrast, the 1:1 ratio counterpart was prone to form mixed dye adsorption; the best performance of the BF-DSSCs was shown when a dye cocktail of Z-907 and SQ-140 in a molar 9:1 ratio was used to prepare a photoanode for 1 h of dye adsorption. The BF-DSSCs thus exhibited PCEs of 4.23% and 3.48% upon the front and rear side light illuminations, a cumulated PCE of 7.71%, and a very good BBF of 83%.

2.
Chem Asian J ; 18(6): e202201142, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36710260

RESUMO

A combustion-assisted polyol reduction (CPR) method has been developed to deposit electrocatalytically efficient and transparent Pt counter electrodes (CEs) for bifacial dye-sensitized solar cells (DSSCs). Compared with conventional thermal decomposition of Pt precursors, CPR allows for a decrease in reduction temperature to 150 °C. The low-temperature processing is attributed to adding an organic fuel, acetylacetone (Hacac), which provides extra heat to lower reduction energy. In addition, the stable Pt complexes can simultaneously be formed in ethylene glycol (EG) and Hacac system, which leads to Pt nanoparticle size regulation. A ratio of Hacac to EG is optimized to achieve excellent electrocatalytic activity and high visible light transmittance for CEs. The bifacial DSSCs fabricated with CPR-Pt CEs (EG : Hacac=1 : 16) reach efficiencies of 6.71±0.16% and 6.41±0.15% in front and back irradiations, respectively.

3.
Adv Mater ; 34(4): e2106805, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34935204

RESUMO

Bifacial solar cells hold the potential to achieve a higher power output per unit area than conventional monofacial devices without significantly increasing manufacturing costs. However, efficient bifacial designs are challenging to implement in inorganic thin-film solar cells because of their short carrier lifetimes and high rear surface recombination. The emergence of perovskite photovoltaic (PV) technology creates a golden opportunity to realize efficient bifacial thin-film solar cells, owing to their outstanding optoelectronic properties and unique features of device physics. More importantly, transparent conducting oxide electrodes can prevent electrode corrosion by halide ions, mitigating one major instability issue of the perovskite devices. Here, the theory of bifacial PV devices is summarized and the advantages of bifacial perovskite solar cells, such as high power output, enhanced device durability, and low economic and environmental costs, are reviewed. The limitations and challenges for bifacial perovskite solar cells are also discussed. Finally, the awareness of bifacial solar cells as a feasible commercialization pathway of perovskite PV for mainstream solar power generation and building-integrated PV is advocated and future research directions are suggested.

4.
Heliyon ; 8(6): e09800, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35800715

RESUMO

In recent years, solar cells made of tungsten diselenide (WSe2) have received comprehensive consideration because of their good photoelectric properties. The planar WSe2-based heterojunction solar cell with a preliminary device structure of Au/WSe2/electron transport layer (ETL)/FTO/Al was designed and investigated numerically by SCAPS-1D. CdS ETL is widely used in thin film solar cells (TFSCs). Due to environmental issues and the low band gap (2.42 eV) of CdS ETL, an alternative to CdS ETL was being explored for WSe2 solar cells. In this work, the photovoltaic (PV) performance of the WSe2-based TFSCs with different ETLs were simulated, analyzed and compared, in an attempt to track down a suitable substitute for the CdS ETL. In addition to CdS ETL, ZnO, TiO2 and SnO2 ETLs were independently used to simulate the PV performance of WSe2-based TCSCs. In the wake of analyzing the J-V curves of different cell configurations, SnO2 ETL yielded the best results with PCE of 27.14 % for the single-junction WSe2/SnO2 TFSC. Then, our simulation predicted that the PV performance of the WSe2 device can be improved significantly by using N doped Cu2O as a hole transport layer (HTL). The optimized WSe2 device with SnO2 ETL and Cu2O:N HTL showed an improved PCE of 33.84 % with very good performance stability at higher temperature. Furthermore, this article proposes to use the Au/Cu2O:N/WSe2/SnO2/FTO/Al heterojunction solar cell in bifacial mode and PV performance of the proposed bifacial device have been also studied using SCAPS-1D. Bifacial WSe2 device leads to enhanced PV performance with bifaciality factor for PCE is 83.64 %. Bifacial gain of the proposed device under simultaneous irradiation of 1 sun from the front and 20 % of 1 sun from back side is found to be 13.95 %. Our simulation predicts that the proposed WSe2 bifacial solar cell is capable of converting solar energy into electricity with an efficiency of about 38.38 %.

5.
Data Brief ; 45: 108609, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36425958

RESUMO

The development of a highly efficient multijunction technology is a key challenge for the future of photovoltaic and for the transition to more renewable energy sources. In this scenario, four-terminal architecture (4T) compared to the classic tandem design allows a large intrinsic robustness to the variations of the solar spectrum, which continuously occur under normal outdoor operation conditions. On the other hand, bifacial solar cells and modules have already proven to be able to increase the energy yield of solar farms at reduced costs. For these reasons, a thorough investigation of the compatibility between these two solutions has been performed by combining a III-V semiconductor with the silicon heterojunction technology in a four-terminal device. This work has been designed in support of the research article entitled "Outdoor performance of GaAs/Bifacial Si Heterojunction four-terminal system using optical spectrum splitting" [1], which showed, through data modeling and an accurate daily analysis of the spectral distribution of solar light, how a four-terminal architecture guarantees the consistency of the bifacial gain and more robust performances than a two-terminal system. Here additional data on the manufacturing, optimization and characterization of the device are presented.

6.
ACS Appl Mater Interfaces ; 11(3): 3290-3298, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30592216

RESUMO

Stretchable electronics has enabled many unforeseen applications in a variety of fields. Mechanical design concepts to achieve the stretchability without affecting the device functionality, however, are limited to few known practices, such as mechanical buckling, serpentine shape, or simple elastomeric composites. In this paper, we propose another mechanics design principle for high stretchability (>100%) based on the composite of vertical array of Si micropillars embedded into elastomer poly(dimethylsiloxane). The orthogonalization of active functional elements to applied strain direction enables highly stretchable electronic devices, where the applied strain is mostly absorbed into elastomer on interpillar space. On the other hand, the vertical pillars do not experience any noticeable strain at all. As a proof-of-concept demonstration, we fabricate stretchable Si-organic hybrid solar cells using such a design and the cell shows reasonable level of cell efficiency compared with planar counterparts. The cell can be stretched reversibly without any noticeable performance degradation. Furthermore, the cell can be operated in a bifacial mode by employing stretchable, transparent Ag nanowire-based electrodes. The mechanical design for stretchability demonstrated here would provide new opportunities for stretchable electronics.

7.
ACS Appl Mater Interfaces ; 10(10): 8611-8620, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29485266

RESUMO

Dye-sensitized solar cells (DSCs) are promising solar energy conversion devices with aesthetically favorable properties such as being colorful and having transparent features. They are also well-known for high and reliable performance even under ambient lighting, and these advantages distinguish DSCs for applications in window-type building-integrated photovoltaics (BIPVs) that utilize photons from both lamplight and sunlight. Therefore, investigations on bifacial DSCs have been done intensively, but further enhancement in performance under back-illumination is essential for practical window-BIPV applications. In this research, highly efficient bifacial DSCs were prepared by a combination of electropolymerized poly(3,4-ethylenedioxythiphene) (PEDOT) counter electrodes (CEs) and cobalt bipyridine redox ([Co(bpy)3]3+/2+) electrolyte, both of which manifested superior transparency when compared with conventional Pt and iodide counterparts, respectively. Keen electrochemical analyses of PEDOT films verified that superior electrical properties were achievable when the thickness of the film was reduced, while their high electrocatalytic activities were unchanged. The combination of the PEDOT thin film and [Co(bpy)3]3+/2+ electrolyte led to an unprecedented power conversion efficiency among bifacial DSCs under back-illumination, which was also over 85% of that obtained under front-illumination. Furthermore, the advantage of the electropolymerization process, which does not require an elevation of temperature, was demonstrated by flexible bifacial DSC applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA