Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(44): e2204242119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279466

RESUMO

The pathophysiological mechanisms underlying the constellation of symptoms that characterize COVID-19 are only incompletely understood. In an effort to fill these gaps, a "nicotinic hypothesis," which posits that nicotinic acetylcholine receptors (AChRs) act as additional severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptors, has recently been put forth. A key feature of the proposal (with potential clinical ramifications) is the suggested competition between the virus' spike protein and small-molecule cholinergic ligands for the receptor's orthosteric binding sites. This notion is reminiscent of the well-established role of the muscle AChR during rabies virus infection. To address this hypothesis directly, we performed equilibrium-type ligand-binding competition assays using the homomeric human α7-AChR (expressed on intact cells) as the receptor, and radio-labeled α-bungarotoxin (α-BgTx) as the orthosteric-site competing ligand. We tested different SARS-CoV-2 spike protein peptides, the S1 domain, and the entire S1-S2 ectodomain, and found that none of them appreciably outcompete [125I]-α-BgTx in a specific manner. Furthermore, patch-clamp recordings showed no clear effect of the S1 domain on α7-AChR-mediated currents. We conclude that the binding of the SARS-CoV-2 spike protein to the human α7-AChR's orthosteric sites-and thus, its competition with ACh, choline, or nicotine-is unlikely to be a relevant aspect of this complex disease.


Assuntos
COVID-19 , Receptores Nicotínicos , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Bungarotoxinas , Nicotina , Receptor Nicotínico de Acetilcolina alfa7 , Ligantes , SARS-CoV-2 , Receptores Nicotínicos/metabolismo , Colinérgicos , Colina
2.
Bioorg Med Chem ; 26(9): 2320-2330, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29588128

RESUMO

The ß2-adrenergic receptor (ß2AR), a G protein-coupled receptor, is an important therapeutic target. We recently described Cmpd-15, the first small molecule negative allosteric modulator (NAM) for the ß2AR. Herein we report in details the design, synthesis and structure-activity relationships (SAR) of seven Cmpd-15 derivatives. Furthermore, we provide in a dose-response paradigm, the details of the effects of these derivatives in modulating agonist-induced ß2AR activities (G-protein-mediated cAMP production and ß-arrestin recruitment to the receptor) as well as the binding affinity of an orthosteric agonist in radio-ligand competition binding assay. Our results show that some modifications, including removal of the formamide group in the para-formamido phenylalanine region and bromine in the meta-bromobenzyl methylbenzamide region caused dramatic reduction in the functional activity of Cmpd-15. These SAR results provide valuable insights into the mechanism of action of the NAM Cmpd-15 as well as the basis for future development of more potent and selective modulators for the ß2AR based on the chemical scaffold of Cmpd-15.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Dipeptídeos/farmacologia , Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/síntese química , Antagonistas de Receptores Adrenérgicos beta 2/química , Regulação Alostérica , Sítio Alostérico/efeitos dos fármacos , Ligação Competitiva , Linhagem Celular Tumoral , Dipeptídeos/síntese química , Dipeptídeos/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Radioisótopos do Iodo , Iodocianopindolol/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , beta-Arrestinas/metabolismo
3.
Biomolecules ; 13(2)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36830723

RESUMO

The split-green fluorescent protein (GFP) reassembly assay is a well-established approach to study protein-protein interactions (PPIs). In this assay, when two interacting proteins X and Y, respectively fused to residues 1-157 and to residues 158-237 of GFP, are co-expressed in E. coli, the two GFP halves are brought to sufficient proximity to reassociate and fold to recreate the functional GFP. At constant protein expression level, the intensity of fluorescence produced by the bacteria is proportional to the binding affinity of X to Y. We hypothesized that adding a third partner (Z) endowed with an affinity for either X or Y would lead to an in vivo competition assay. We report here the different steps of the set-up of this competition assay, and define the experimental conditions required to obtained reliable results. Results show that this competition assay is a potentially interesting tool for screening libraries of binding inhibitors, Z being either a protein or a chemical reagent.


Assuntos
Escherichia coli , Proteínas de Fluorescência Verde/metabolismo , Ligação Proteica , Escherichia coli/metabolismo , Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA