Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(17): 21476-21495, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37073785

RESUMO

Several studies have shown that nanosilicate-reinforced scaffolds are suitable for bone regeneration. However, hydrogels are inherently too soft for load-bearing bone defects of critical sizes, and hard scaffolds typically do not provide a suitable three-dimensional (3D) microenvironment for cells to thrive, grow, and differentiate naturally. In this study, we bypass these long-standing challenges by fabricating a cell-free multi-level implant consisting of a porous and hard bone-like framework capable of providing load-bearing support and a softer native-like phase that has been reinforced with nanosilicates. The system was tested with rat bone marrow mesenchymal stem cells in vitro and as a cell-free system in a critical-sized rat bone defect. Overall, our combinatorial and multi-level implant design displayed remarkable osteoconductivity in vitro without differentiation factors, expressing significant levels of osteogenic markers compared to unmodified groups. Moreover, after 8 weeks of implantation, histological and immunohistochemical assays indicated that the cell-free scaffolds enhanced bone repair up to approximately 84% following a near-complete defect healing. Overall, our results suggest that the proposed nanosilicate bioceramic implant could herald a new age in the field of orthopedics.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Ratos , Animais , Osso e Ossos , Regeneração Óssea , Alicerces Teciduais
2.
Materials (Basel) ; 15(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35591436

RESUMO

The use of resorbable magnesium alloys in the design of implants represents a new direction in the healthcare domain. Two main research avenues are currently explored for developing or improving metallic biomaterials: (i) increase of their corrosion resistance by designed compositional and structural modifications, and (ii) functionalization of their surfaces by coating with ceramic or polymeric layers. The main objective of this work was to comparatively assess bio-functional coatings (i.e., highly-crystallized hydroxyapatite and silica-rich glass) deposited by radio-frequency magnetron sputtering (RF-MS) on a biodegradable Mg-0.8Ca alloy (0.8 wt.% of Ca). After probing their morphology (by scanning electron microscopy) and structure (by Fourier transform infrared spectroscopy and grazing incidence X-ray diffraction), the corrosion resistance of the RF-MS coated Mg-0.8Ca substrates was electrochemically tested (in synthetic biological media with different degrees of biomimicry), and their cytocompatibility was assessed in osteoblast and fibroblast cell cultures. By collective assessment, the most promising performances, in terms of mass loss (~7% after 12 days), hydrogen release rate (~6 mL/cm2 after 12 days), electrochemical corrosion parameters and cytocompatibility, were obtained for the crystalline HA coating.

3.
J Mech Behav Biomed Mater ; 119: 104517, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872922

RESUMO

Phosphate glasses of calcium oxide have been well proved materials for various bio bones and dental implants. However, still there is a lot of scope and demand to produce efficient elastic bio implants and resource. In view of this, ZrxCa30-xP70 phosphate materials are prepared by using melt quenching method. Bio, physical, thermoluminescence and elastic techniques are used to characterize the samples. Additionally, simulated body fluid was prepared and it is used especially for bio techniques. Further, the glasses are taken for different dose (~0, 10, 20 & 50 kGy) of gamma irradiation around half an hour. And again similar techniques are used to characterize the samples. All the findings from bio, physical, thermoluminescence and elastic characterization results are analysed and took for better comparison with previous studies to develop various bio bone (or) bio dental resource. Structural reports suggests that the ZrxCa30-xP70 materials were glassy before immersion in SBF solution and immersed (~720 h) samples are showing partial ceramic nature. The weight loss and pH reports suggests them for alternative bio resource as a bio bones and dental implants. Observed thermal stability, microhardness and elastic modulus evaluations of ZrxCa30-xP70 materials in required standards are also additional advantage. Furthermore, thermoluminiscence (TL) under different γ-irradiation doses is reported for glasses with and without immersing in a simulated body fluid. The glasses lose TL intensity when immersed in simulated body fluid for nearly 720 h. This is useful to modulate bio-behaviour in terms of hydroxyapatite layer growth on the glass surface.


Assuntos
Líquidos Corporais , Vidro , Materiais Biocompatíveis , Cerâmica , Durapatita , Módulo de Elasticidade , Teste de Materiais
4.
Prog Biomater ; 9(4): 239-248, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33211299

RESUMO

The present paper describes the in vitro bioactivity, cytocompatibility and degradation performance of SiO2-CaO-Na2O bio-glass synthesized using bio-waste. Egg shells and rice husk ash (RHA) bio-wastes were used as sources of calcium oxide (CaO) and silica (SiO2), respectively. Glass samples were obtained by melt-quenching technique. Bioactivity was studied using in vitro experiments in simulated body fluid (SBF), degradation behaviour was evaluated in Tris-HCl buffer solutions recommended by ISO 10993-14 standards and cytocompatibility was estimated using MTT assay. The formation of hydroxyapatite was characterized by XRD, FTIR and SEM-EDS after soaking the glass samples in SBF solution. XRD confirmed the phase of hydroxyapatite with its standard JCPDS data. FTIR analyses revealed the occurrence of distinctive functional groups related to hydroxyapatite. Surface micrographs showed the agglomerated globular shape morphology of hydroxyapatite, while EDS analysis confirmed the existence of biological elements of apatite such as Ca, P and O. Degradation study results showed that the glass thus prepared has considerable controlled degradation rate. MTT assay revealed the cytocompatibility nature for different dosages (1000-50 µg/mL) of the prepared glass with MG-63 cells. These results perfectly established that egg shells and RHA are potentially beneficial resources for the production of bio-glasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA