Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 217, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748186

RESUMO

The vertebrate sense of taste allows rapid assessment of the nutritional quality and potential presence of harmful substances prior to ingestion. Among the five basic taste qualities, salty, sour, sweet, umami, and bitter, bitterness is associated with the presence of putative toxic substances and elicits rejection behaviors in a wide range of animals including humans. However, not all bitter substances are harmful, some are thought to be health-beneficial and nutritious. Among those compound classes that elicit a bitter taste although being non-toxic and partly even essential for humans are bitter peptides and L-amino acids. Using functional heterologous expression assays, we observed that the 5 dominant human bitter taste receptors responsive to bitter peptides and amino acids are activated by bile acids, which are notorious for their extreme bitterness. We further demonstrate that the cross-reactivity of bitter taste receptors for these two different compound classes is evolutionary conserved and can be traced back to the amphibian lineage. Moreover, we show that the cross-detection by some receptors relies on "structural mimicry" between the very bitter peptide L-Trp-Trp-Trp and bile acids, whereas other receptors exhibit a phylogenetic conservation of this trait. As some bile acid-sensitive bitter taste receptor genes fulfill dual-roles in gustatory and non-gustatory systems, we suggest that the phylogenetic conservation of the rather surprising cross-detection of the two substance classes could rely on a gene-sharing-like mechanism in which the non-gustatory function accounts for the bitter taste response to amino acids and peptides.


Assuntos
Ácidos e Sais Biliares , Peptídeos , Receptores Acoplados a Proteínas G , Paladar , Ácidos e Sais Biliares/metabolismo , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais , Paladar/fisiologia , Peptídeos/metabolismo , Filogenia , Células HEK293 , Aminoácidos/metabolismo , Membrana Celular/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999959

RESUMO

In the realm of colon carcinoma, significant genetic and epigenetic diversity is observed, underscoring the necessity for tailored prognostic features that can guide personalized therapeutic strategies. In this study, we explored the association between the type 2 bitter taste receptor (TAS2Rs) family-related genes and colon cancer using RNA-sequencing and clinical datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Our preliminary analysis identified seven TAS2Rs genes associated with survival using univariate Cox regression analysis, all of which were observed to be overexpressed in colon cancer. Subsequently, based on these seven TAS2Rs prognostic genes, two colon cancer molecular subtypes (Cluster A and Cluster B) were defined. These subtypes exhibited distinct prognostic and immune characteristics, with Cluster A characterized by low immune cell infiltration and less favorable outcomes, while Cluster B was associated with high immune cell infiltration and better prognosis. Finally, we developed a robust scoring system using a gradient boosting machine (GBM) approach, integrated with the gene-pairing method, to predict the prognosis of colon cancer patients. This machine learning model could improve our predictive accuracy for colon cancer outcomes, underscoring its value in the precision oncology framework.


Assuntos
Neoplasias do Colo , Regulação Neoplásica da Expressão Gênica , Receptores Acoplados a Proteínas G , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/mortalidade , Neoplasias do Colo/patologia , Prognóstico , Receptores Acoplados a Proteínas G/genética , Biomarcadores Tumorais/genética , Feminino , Aprendizado de Máquina , Perfilação da Expressão Gênica , Masculino
3.
FASEB J ; 36(3): e22175, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35107858

RESUMO

Bitterness is perceived in humans by 25 subtypes of bitter taste receptors (hTAS2R) that range from broadly tuned to more narrowly tuned receptors. hTAS2R5 is one of the most narrowly tuned bitter taste receptors in humans. In this study, we review the literature on this receptor and show there is no consensus about its role. We then compare the possible role of hTAS2R5 with that of the proteins of the TAS2R family in rat, mouse, and pig. A phylogenetic tree of all mammalian TAS2R domain-containing proteins showed that human hTAS2R5 has no ortholog in pig, mouse, or rat genomes. By comparing the agonists that are common to hTAS2R5 and other members of the family, we observed that hTAS2R39 is the receptor that shares most agonists with hTAS2R5. In mouse, some of these agonists activate mTas2r105 and mTas2r144, which are distant paralogs of hTAS2R5. mTas2r144 seems to be the receptor that is most similar to hTAS2R5 because they are both activated by the same agonists and have affinities in the same range of values. Then, we can conclude that hTAS2R5 has a unique functional specificity in humans as it is activated by selective agonists and that its closest functional homolog in mouse is the phylogenetically distant mTas2r144.


Assuntos
Receptores Acoplados a Proteínas G/genética , Paladar/genética , Animais , Genômica/métodos , Humanos , Filogenia , Paladar/fisiologia , Papilas Gustativas/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835092

RESUMO

Bitter taste receptors (TAS2Rs) are G protein-coupled receptors localized in the taste buds of the tongue. They may also be present in non-lingual organs, including the brain, lung, kidney, and gastrointestinal (GI) tract. Recent studies on bitter taste receptor functions have suggested TAS2Rs as potential therapeutic targets. The human bitter taste receptor subtype hTAS2R50 responds to its agonist isosinensetin (ISS). Here, we demonstrated that, unlike other TAS2R agonists, isosinensetin activated hTAS2R50 as well as increased Glucagon-like peptide 1 (GLP-1) secretion through the Gßγ-mediated pathway in NCI-H716 cells. To confirm this mechanism, we showed that ISS increased intracellular Ca2+ and was suppressed by the IP3R inhibitor 2-APB as well as the PLC inhibitor U73122, suggesting that TAS2Rs alters the physiological state of enteroendocrine L cells in a PLC-dependent manner. Furthermore, we demonstrated that ISS upregulated proglucagon mRNA and stimulated GLP-1 secretion. ISS-mediated GLP-1 secretion was suppressed in response to small interfering RNA-mediated silencing of Gα-gust and hTAS2R50 as well as 2-APB and U73122. Our findings improved the understanding of how ISS modulates GLP-1 secretion and indicates the possibility of using ISS as a therapeutic agent in the treatment of diabetes mellitus.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Células Enteroendócrinas/metabolismo , Trato Gastrointestinal/metabolismo , Peptídeo 1 Semelhante ao Glucagon/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901926

RESUMO

The bitter taste receptors (T2Rs) expressed in human sinonasal mucosae are known to elicit innate immune responses involving the release of nitric oxide (NO). We investigated the expression and distribution of two T2Rs, T2R14 and T2R38, in patients with chronic rhinosinusitis (CRS) and correlated the results with fractional exhaled NO (FeNO) levels and genotype of the T2R38 gene (TAS2R38). Using the Japanese Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis (JESREC) phenotypic criteria, we identified CRS patients as either eosinophilic (ECRS, n = 36) or non-eosinophilic (non-ECRS, n = 56) patients and compared these groups with 51 non-CRS subjects. Mucosal specimens from the ethmoid sinus, nasal polyps, and inferior turbinate were collected from all subjects, together with blood samples, for RT-PCR analysis, immunostaining, and single nucleotide polymorphism (SNP) typing. We observed significant downregulation of T2R38 mRNA levels in the ethmoid mucosa of non-ECRS patients and in the nasal polyps of ECRS patients. No significant differences in T2R14 or T2R38 mRNA levels were found among the inferior turbinate mucosae of the three groups. Positive T2R38 immunoreactivity was localized mainly in epithelial ciliated cells, whereas secretary goblet cells generally showed lack of staining. The patients in the non-ECRS group showed significantly lower oral and nasal FeNO levels compared with the control group. There was a trend towards higher CRS prevalence in the PAV/AVI and AVI/AVI genotype groups as compared to the PAV/PAV group. Our findings reveal complex but important roles of T2R38 function in ciliated cells associated with specific CRS phenotypes, suggesting the T2R38 pathway as a potential therapeutic target for promotion of endogenous defense mechanisms.


Assuntos
Pólipos Nasais , Seios Paranasais , Rinite , Sinusite , Humanos , Doença Crônica , Receptores Acoplados a Proteínas G/genética , Sinusite/metabolismo , Paladar
6.
FASEB J ; 35(3): e21375, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559200

RESUMO

Host-pathogen interactions play an important role in defining the outcome of a disease. Recent studies have shown that the bacterial quorum sensing molecules (QSM) can interact with host cell membrane proteins, mainly G protein-coupled receptors (GPCRs), and induce innate immune responses. However, few studies have examined QSM-GPCR interactions and their influence on oral innate immune responses. In this study, we examined the role of bitter taste receptor T2R14 in sensing competence stimulating peptides (CSPs) secreted by cariogenic bacterium Streptococcus mutans and in mediating innate immune responses in gingival epithelial cells (GECs). Transcriptomic and western blot analyses identify T2R14 to be highly expressed in GECs. Our data show that only CSP-1 from S. mutans induces robust intracellular calcium mobilization compared to CSP-2 and CSP-3. By using CRISPR-Cas9, we demonstrate that CSP-1 induced calcium signaling and secretion of cytokines CXCL-8/IL-8, TNF-α, and IL-6 is mediated through T2R14 in GECs. Interestingly, the NF-kB signaling activated by CSP-1 in GECs was independent of T2R14. CSP-1-primed GECs attracted differentiated HL-60 immune cells (dHL-60) and this effect was abolished in T2R14 knock down GECs and also in cells primed with T2R14 antagonist 6-Methoxyflavone (6-MF). Our findings identify S. mutans CSP-1 as a peptide ligand for the T2R family. Our study establishes a novel host-pathogen interaction between cariogenic S. mutans CSP-1 and T2R14 in GECs leading to an innate immune response. Collectively, these findings suggest T2Rs as potential therapeutic targets to modulate innate immune responses upon oral bacterial infections.


Assuntos
Proteínas de Bactérias/fisiologia , Gengiva/imunologia , Interações Hospedeiro-Patógeno , Percepção de Quorum/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Streptococcus mutans/fisiologia , Cálcio/metabolismo , Linhagem Celular , Movimento Celular , Citocinas/biossíntese , Células Epiteliais/imunologia , Gengiva/citologia , Humanos , Imunidade Inata , NF-kappa B/fisiologia , Fosfolipase C beta/fisiologia
7.
Biol Pharm Bull ; 45(8): 1185-1190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908900

RESUMO

Bitter taste receptors (TAS2Rs) are expressed by oral cavity cells in mammals and classically function as sensors for bitter compounds. There are 25 functional isoforms of human TAS2Rs, with individual bitter ligands. Each human TAS2R isoform is distributed in several tissues, such as the airway epithelia and gastrointestinal tract, and plays an important role in physiological functions. However, quantification of each isoform is difficult because of highly homologous sequences between some TAS2R isoforms. Therefore, differentiating the isoforms by their expression levels is suitable for clarifying the tissue-specific effects of bitter compounds. In this study, we developed a real-time quantitative PCR (qPCR) method to determine the expression of each TAS2R isoform. Using plasmid standards harboring each isoform, we confirmed that the current assay can quantify the gene expression of each isoform, with negligible interference from other isoforms. In addition, our methods can successfully discriminate between the mRNA expression of each isoform in human cell lines and tissues. Therefore, this qPCR method can successfully quantify the mRNA level of each TAS2R isoform. This method will contribute to a better understanding of the molecular mechanisms underlying the TAS2R ligand-activated signal transduction.


Assuntos
Isoformas de Proteínas , Receptores Acoplados a Proteínas G , Paladar , Animais , Humanos , Ligantes , Isoformas de Proteínas/genética , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transcrição Gênica
8.
Cell Mol Life Sci ; 78(23): 7605-7615, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34687318

RESUMO

Bitter taste receptors (TAS2Rs) are a poorly understood subgroup of G protein-coupled receptors (GPCRs). The experimental structure of these receptors has yet to be determined, and key-residues controlling their function remain mostly unknown. We designed an integrative approach to improve comparative modeling of TAS2Rs. Using current knowledge on class A GPCRs and existing experimental data in the literature as constraints, we pinpointed conserved motifs to entirely re-align the amino-acid sequences of TAS2Rs. We constructed accurate homology models of human TAS2Rs. As a test case, we examined the accuracy of the TAS2R16 model with site-directed mutagenesis and in vitro functional assays. This combination of in silico and in vitro results clarifies sequence-function relationships and proposes functional molecular switches that encode agonist sensing and downstream signaling mechanisms within mammalian TAS2Rs sequences.


Assuntos
Mutação , Receptores Acoplados a Proteínas G/metabolismo , Paladar/fisiologia , Sequência de Aminoácidos , Humanos , Mutagênese Sítio-Dirigida , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética
9.
Biosci Biotechnol Biochem ; 86(10): 1431-1437, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35881472

RESUMO

The mouse bitter taste receptors (Tas2rs) that respond to resveratrol, a bitter-tasting polyphenolic compound, were identified. Among 35 members of the Tas2r family, Tas2r108, 109, 131, and 137 responded to resveratrol treatment. mRNA expression levels of Tas2r108 and Tas2r137 were higher than those of Tas2r109 and Tas2r131 in mouse circumvallate papillae, indicating that Tas2r108 and Tas2r137 may play important roles in detecting the bitterness of resveratrol in the oral cavity. The mRNA expression levels of Tas2r137 and Tas2r108 were also observed in several tissues, suggesting that Tas2r108 and Tas2r137 may also be involved in the physiological action of resveratrol.


Assuntos
Papilas Gustativas , Paladar , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Resveratrol/farmacologia
10.
Handb Exp Pharmacol ; 275: 177-202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33580389

RESUMO

Bitter taste receptors (T2Rs) belong to the G protein-coupled receptor superfamily. Humans express 25 T2Rs that are known to detect several bitter compounds including bacterial quorum sensing molecules (QSM). Primarily found to be key receptors for bitter sensation T2Rs are known to play an important role in mediating innate immune responses in oral and extraoral tissues. Several studies have led to identification of Gram-negative and Gram-positive bacterial QSMs as agonists for T2Rs in airway epithelial cells and immune cells. However, the pharmacological characterization for many of the QSM-T2R interactions remains poorly defined. In this chapter, we discuss the extraoral roles including localization of T2Rs in extracellular vesicles, molecular pharmacology of QSM-T2R interactions, role of T2Rs in mediating innate immune responses, and some of the challenges in understanding T2R pharmacology.


Assuntos
Interações entre Hospedeiro e Microrganismos , Receptores Acoplados a Proteínas G , Células Epiteliais , Humanos , Imunidade Inata , Sistema Respiratório , Paladar
11.
Hereditas ; 159(1): 46, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36529808

RESUMO

BACKGROUND: The bitter taste receptor gene TAS2R38 is a member of the human TAS2R gene family. Polymorphisms in TAS2R38 affect the ability to taste the bitterness of phenylthiourea (PTC) compounds, thus affecting an individual's food preference and health status. METHODS: We investigated polymorphisms in the TAS2R38 gene and the sensitivity to PTC bitterness among healthy Chinese college students in Hubei province. The association of TAS2R38 polymorphisms and PTC sensitivity with body mass index (BMI), food preference, and health status was also analyzed. A total of 320 healthy college students were enrolled (male: 133, female: 187; aged 18-23 years). The threshold value method was used to measure the perception of PTC bitterness, and a questionnaire was used to analyze dietary preferences and health status. Polymerase chain reaction (PCR) was used to analyze polymorphisms at three common TAS2R38 loci (rs713598, rs1726866, and rs10246939). RESULTS: In our study population, 65.00% of individuals had medium sensitivity to the bitterness of PTC; in contrast, 20.94% were highly sensitive to PTC bitterness, and 14.06% were not sensitive. For the TAS2R38 gene, the PAV/PAV and PAV/AAI diplotypes were the most common (42.19% and 40.63%, respectively), followed by the homozygous AVI/AVI (8.75%) and PAV/AVI (5.00%) diplotypes. CONCLUSION: There was a significant correlation between the sensitivity to PTC bitterness and sex, but there was no correlation between the common diplotypes of TAS2R38 and gender. Polymorphisms in the TAS2R38 gene were associated with the preference for tea, but not with one's native place, BMI, health status, or other dietary preferences. There was no significant correlation between the perception of PTC bitterness and one's native place, BMI, dietary preference, or health status. We hope to find out the relationship between PTC sensitivity and TAS2R38 gene polymorphisms and dietary preference and health status of Chinese population through this study, providing relevant guidance and suggestions for dietary guidance and prevention of some chronic diseases in Chinese population.


Assuntos
Feniltioureia , Receptores Acoplados a Proteínas G , Paladar , Feminino , Humanos , Masculino , Povo Asiático/genética , Receptores Acoplados a Proteínas G/genética , Estudantes , Paladar/genética
12.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897692

RESUMO

Expression of taste 2 receptor (T2R) genes, also known as bitter taste receptor genes, has been reported in a variety of tissues. The white adipose tissue of mice has been shown to express Tas2r108, Tas2r126, Tas2r135, Tas2r137, and Tas2r143, but the function of T2Rs in adipocytes remains unclear. Here, we show that fasting and stimulation by bitter compounds both increased Tas2r expression in mouse white adipose tissue, and serum starvation and stimulation by bitter compounds both increased the expression of Tas2r genes in 3T3-L1 adipocytes, suggesting that T2Rs have functional roles in adipocytes. RNA sequencing analysis of 3T3-L1 adipocytes stimulated by epicatechin, the ligand of Tas2r126, suggested that this receptor may play a role in the differentiation of adipocytes. Overexpression of Tas2r126 in 3T3-L1 preadipocytes decreases fat accumulation after induction of differentiation and reduces the expression of adipogenic genes. Together, these results indicate that Tas2r126 may be involved in adipocyte differentiation.


Assuntos
Papilas Gustativas , Paladar , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia/genética , Animais , Diferenciação Celular/genética , Camundongos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
13.
Chimia (Aarau) ; 76(5): 418-424, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069713

RESUMO

G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants. Besides human senses like vision and olfaction, taste perception is mostly mediated by GPCRs. Hence, the bitter taste receptor family TAS2R comprises 25 distinct receptors and plays a key role in food acceptance and drug compliance. The TAS2R14 subtype is the most broadly tuned bitter taste receptor, recognizing a range of chemically highly diverse agonists. Besides other tissues, it is expressed in human airway smooth muscle and may represent a novel drug target for airway diseases. Several natural products as well as marketed drugs including flufenamic acid have been identified to activate TAS2R14, but higher potency ligands are needed to investigate the ligand-controlled physiological function and to facilitate the targeted modulate for potential future clinical applications. A combination of structure-based molecular modeling with chemical synthesis and in vitro profiling recently resulted in new flufenamic acid agonists with improved TAS2R14 potency and provided a validated and refined structural model of ligand-TAS2R14 interactions, which can be applied for future drug design projects.

14.
J Cell Physiol ; 236(9): 6407-6423, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33559206

RESUMO

Bitter taste receptors (TAS2Rs) and their signaling elements are detected throughout the body, and bitter tastants induce a wide variety of biological responses in tissues and organs outside the mouth. However, the roles of TAS2Rs in these responses remain to be tested and established genetically. Here, we employed the CRISPR/Cas9 gene-editing technique to delete three bitter taste receptors-Tas2r143/Tas2r135/Tas2r126 (i.e., Tas2r triple knockout [TKO]) in mice. The fidelity and effectiveness of the Tas2r deletions were validated genetically at DNA and messenger RNA levels and functionally based on the tasting of TAS2R135 and TAS2R126 agonists. Bitter tastants are known to relax airways completely. However, TAS2R135 or TAS2R126 agonists either failed to induce relaxation of pre-contracted airways in wild-type mice and Tas2r TKO mice or relaxed them dose-dependently, but to the same extent in both types of mice. These results indicate that TAS2Rs are not required for bitter tastant-induced bronchodilation. The Tas2r TKO mice also provide a valuable model to resolve whether TAS2Rs mediate bitter tastant-induced responses in many other extraoral tissues.


Assuntos
Deleção de Genes , Relaxamento Muscular , Receptores Acoplados a Proteínas G/genética , Paladar/fisiologia , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Ligantes , Cloreto de Metacolina/farmacologia , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Paladar/efeitos dos fármacos , Língua/efeitos dos fármacos , Língua/metabolismo
15.
Proc Biol Sci ; 288(1948): 20210346, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33849315

RESUMO

Bitter taste facilitates the detection of potentially harmful substances and is perceived via bitter taste receptors (TAS2Rs) expressed on the tongue and oral cavity in vertebrates. In primates, TAS2R16 specifically recognizes ß-glucosides, which are important in cyanogenic plants' use of cyanide as a feeding deterrent. In this study, we performed cell-based functional assays for investigating the sensitivity of TAS2R16 to ß-glucosides in three species of bamboo lemurs (Prolemur simus, Hapalemur aureus and H. griseus), which primarily consume high-cyanide bamboo. TAS2R16 receptors from bamboo lemurs had lower sensitivity to ß-glucosides, including cyanogenic glucosides, than that of the closely related ring-tailed lemur (Lemur catta). Ancestral reconstructions of TAS2R16 for the bamboo-lemur last common ancestor (LCA) and that of the Hapalemur LCA showed an intermediate sensitivity to ß-glucosides between that of the ring-tailed lemurs and bamboo lemurs. Mutagenetic analyses revealed that P. simus and H. griseus had separate species-specific substitutions that led to reduced sensitivity. These results indicate that low sensitivity to ß-glucosides at the cellular level-a potentially adaptive trait for feeding on cyanogenic bamboo-evolved independently after the Prolemur-Hapalemur split in each species.


Assuntos
Lemur , Lemuridae , Animais , Glucosídeos , Especificidade da Espécie , Paladar
16.
Pharmacol Res ; 167: 105557, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33737243

RESUMO

Evidence indicates a critical role of neuroinflammatory response as an underlying pathophysiological process in several central nervous system disorders, including neurodegenerative diseases. However, the molecular mechanisms that trigger neuroinflammatory processes are not fully known. The discovery of bitter taste receptors in regions other than the oral cavity substantially increased research interests on their functional roles in extra-oral tissues. It is now widely accepted that bitter taste receptors, for instance, in the respiratory, intestinal, reproductive and urinary tracts, are crucial not only for sensing poisonous substances, but also, act as immune sentinels, mobilizing defense mechanisms against pathogenic aggression. The relatively recent discovery of bitter taste receptors in the brain has intensified research investigation on the functional implication of cerebral bitter taste receptor expression. Very recent data suggest that responses of bitter taste receptors to neurotoxins and microbial molecules, under normal condition, are necessary to prevent neuroinflammatory reactions. Furthermore, emerging data have revealed that downregulation of key components of the taste receptor signaling cascade leads to increased oxidative stress and inflammasome signaling in neurons that ultimately culminate in neuroinflammation. Nevertheless, the mechanisms that link taste receptor mediated surveillance of the extracellular milieu to neuroinflammatory responses are not completely understood. This review integrates new data on the molecular mechanisms that link bitter taste receptor sensing to neuroinflammatory responses. The role of bitter taste receptor-mediated sensing of toxigenic substances in brain disorders is also discussed. The therapeutic significance of targeting these receptors for potential treatment of neurodegenerative diseases is also highlighted.


Assuntos
Encéfalo/fisiopatologia , Doenças Neuroinflamatórias/fisiopatologia , Papilas Gustativas/fisiopatologia , Percepção Gustatória , Animais , Encéfalo/metabolismo , Humanos , Doenças Neuroinflamatórias/metabolismo , Estresse Oxidativo , Receptores Acoplados a Proteínas G/metabolismo , Paladar , Papilas Gustativas/metabolismo
17.
Int J Med Sci ; 18(8): 1848-1856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746602

RESUMO

The intestines have been recognized as important tissues for metabolic regulation, including glycemic control, but their vital role in promoting the anti-diabetic effects of bitter melon, the fruit of Momordica charantia L, has seldom been characterized, nor acknowledged. Evidence suggests that bitter melon constituents can have substantial interactions with the intestinal epithelial cells before circulating to other tissues. We therefore characterized the effects of bitter melon extract (BME) on intestinal epithelial cells. BME was found to contain substantial amounts of carbohydrates, proteins, and triterpenoids. TNF-α induced insulin resistance in an enterocyte cell line of IEC-18 cells, and BME promoted glucose utilization of the insulin-resistant cells. Further analysis suggested that the increased glucose consumption was a result of the combined effects of insulin sensitizing and insulin substitution functions of BME. The functions of insulin substitution were likely generated due to the activation of AMP-activated protein kinase. Meanwhile, BME acted as a glucagon-like peptide 1 (GLP-1) secretagogue on enteroendocrine cells, which may be mediated by the activation of bitter-taste receptors. Therefore, BME possesses insulin sensitizing, insulin substitution, and GLP-1 secretagogue functions upon intestinal cells. These effects of BME on intestinal cells likely play a significant part in the anti-diabetic action of bitter melon.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Momordica charantia/química , Extratos Vegetais/farmacologia , Linhagem Celular , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Mucosa Intestinal/metabolismo , Extratos Vegetais/uso terapêutico
18.
Cell Mol Life Sci ; 77(3): 531-542, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31236627

RESUMO

Human bitter taste receptors (TAS2Rs) are a subfamily of 25 G protein-coupled receptors that mediate bitter taste perception. TAS2R14 is the most broadly tuned bitter taste receptor, recognizing a range of chemically diverse agonists with micromolar-range potency. The receptor is expressed in several extra-oral tissues and is suggested to have physiological roles related to innate immune responses, male fertility, and cancer. Higher potency ligands are needed to investigate TAS2R14 function and to modulate it for future clinical applications. Here, a structure-based modeling approach is described for the design of TAS2R14 agonists beginning from flufenamic acid, an approved non-steroidal anti-inflammatory analgesic that activates TAS2R14 at sub-micromolar concentrations. Structure-based molecular modeling was integrated with experimental data to design new TAS2R14 agonists. Subsequent chemical synthesis and in vitro profiling resulted in new TAS2R14 agonists with improved potency compared to the lead. The integrated approach provides a validated and refined structural model of ligand-TAS2R14 interactions and a general framework for structure-based discovery in the absence of closely related experimental structures.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Percepção Gustatória/fisiologia , Paladar/fisiologia , Linhagem Celular , Fertilidade/fisiologia , Células HEK293 , Humanos , Imunidade Inata/fisiologia , Ligantes , Modelos Moleculares , Neoplasias/metabolismo
19.
Biosci Biotechnol Biochem ; 85(6): 1526-1529, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33844825

RESUMO

Many functional food ingredients activate human bitter taste receptors (hTAS2Rs). In this study, A novel inhibitor, Trp-Trp, for hTAS2R14 was identified by searching for the agonist peptide's analogs. Trp-Trp also inhibited hTAS2R16, hTAS2R43, and hTAS2R46, which share the same agonists with hTAS2R14. The multifunctional characteristic of Trp-Trp is advantageous for use as bitterness-masking agents in functional foods.


Assuntos
Dipeptídeos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Alimento Funcional/análise , Humanos , Paladar/efeitos dos fármacos
20.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576085

RESUMO

Bitter-taste receptors (T2Rs) have emerged as key players in host-pathogen interactions and important modulators of oral innate immunity. Previously, we reported that T2R14 is expressed in gingival epithelial cells (GECs) and interacts with competence stimulating peptides (CSPs) secreted by the cariogenic Streptococcus mutans. The underlying mechanisms of the innate immune responses and physiological effects of T2R14 on Gram-positive bacteria are not well characterized. In this study, we examined the role of T2R14 in internalization and growth inhibitory effects on Gram-positive bacteria, namely Staphylococcus aureus and S. mutans. We utilized CRISPR-Cas9 T2R14 knockdown (KD) GECs as the study model to address these key physiological mechanisms. Our data reveal that the internalization of S. aureus is significantly decreased, while the internalization of S. mutans remains unaffected upon knockdown of T2R14 in GECs. Surprisingly, GECs primed with S. mutans CSP-1 resulted in an inhibition of growth for S. aureus, but not for S. mutans. The GECs infected with S. aureus induced T2R14-dependent human ß-defensin-2 (hBD-2) secretion; however, S. mutans-infected GECs did not induce hBD-2 secretion, but induced T2R14 dependent IL-8 secretion. Interestingly, our results show that T2R14 KD affects the cytoskeletal reorganization in GECs, thereby inhibiting S. aureus internalization. Our study highlights the distinct mechanisms and a direct role of T2R14 in influencing physiological responses to Gram-positive bacteria in the oral cavity.


Assuntos
Endocitose , Células Epiteliais/metabolismo , Gengiva/citologia , Bactérias Gram-Positivas/metabolismo , Viabilidade Microbiana , Receptores Acoplados a Proteínas G/metabolismo , Paladar , Actinas/metabolismo , Linhagem Celular , Células Epiteliais/ultraestrutura , Humanos , Interleucina-8/metabolismo , Modelos Biológicos , Nitratos/metabolismo , Nitritos/metabolismo , Staphylococcus aureus/metabolismo , Streptococcus mutans/metabolismo , beta-Defensinas/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA