Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.184
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23646, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38795328

RESUMO

Multiple regulatory mechanisms are in place to ensure the normal processes of bone metabolism, encompassing both bone formation and absorption. This study has identified chaperone-mediated autophagy (CMA) as a critical regulator that safeguards bone formation from the detrimental effects of excessive inflammation. By silencing LAMP2A or HSCA8, we observed a hindrance in the osteoblast differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in vitro. To further elucidate the role of LAMP2A, we generated LAMP2A gene knockdown and overexpression of mouse BMSCs (mBMSCs) using adenovirus. Our results showed that LAMP2A knockdown led to a decrease in osteogenic-specific proteins, while LAMP2A overexpression favored the osteogenesis of mBMSCs. Notably, active-ß-catenin levels were upregulated by LAMP2A overexpression. Furthermore, we found that LAMP2A overexpression effectively protected the osteogenesis of mBMSCs from TNF-α, through the PI3K/AKT/GSK3ß/ß-catenin pathway. Additionally, LAMP2A overexpression significantly inhibited osteoclast hyperactivity induced by TNF-α. Finally, in a murine bone defect model, we demonstrated that controlled release of LAMP2A overexpression adenovirus by alginate sodium capsule efficiently protected bone healing from inflammation, as confirmed by imaging and histological analyses. Collectively, our findings suggest that enhancing CMA has the potential to safeguard bone formation while mitigating hyperactivity in bone absorption.


Assuntos
Autofagia Mediada por Chaperonas , Glicogênio Sintase Quinase 3 beta , Inflamação , Proteína 2 de Membrana Associada ao Lisossomo , Células-Tronco Mesenquimais , Osteogênese , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , beta Catenina , Animais , Osteogênese/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , beta Catenina/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Transdução de Sinais , Masculino , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Diferenciação Celular , Osteoclastos/metabolismo
2.
Small ; 20(24): e2306389, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38168513

RESUMO

In view of the increased levels of reactive oxygen species (ROS) that disturb the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), the repair of diabetic bone defects remains a great challenge. Herein, a factor-free hydrogel is reported with ROS scavenging and responsive degradation properties for enhanced diabetic bone healing. These hydrogels contain ROS-cleavable thioketal (TK) linkers and ultraviolet (UV)-responsive norbornene (NB) groups conjugated with 8-arm PEG macromers, which are formed via UV crosslinking-mediated gelation. Upon reacting with high levels of ROS in the bone defect microenvironment, ROS-cleavable TK linkers are destroyed, allowing the responsive degradation of hydrogels, which promotes the migration of BMSCs. Moreover, ROS levels are reduced through hydrogel-mediated ROS scavenging to reverse BMSC differentiation from adipogenic to osteogenic phenotype. As such, a favorable microenvironment is created after simultaneous ROS scavenging and hydrogel degradation, leading to the effective repair of bone defects in diabetic mouse models, even without the addition of growth factors. Thus, this study presents a responsive hydrogel platform that regulates ROS scavenging and stromal degradation in bone engineering.


Assuntos
Diferenciação Celular , Hidrogéis , Células-Tronco Mesenquimais , Osteogênese , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Camundongos , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Cicatrização/efeitos dos fármacos , Osso e Ossos , Masculino
3.
Small ; 20(21): e2306612, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126683

RESUMO

Healing of large calvarial bone defects remains challenging. An RNA-guided Split dCas12a system is previously harnessed to activate long non-coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow-derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose-derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co-activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co-activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co-activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration.


Assuntos
Diferenciação Celular , Condrogênese , RNA Longo não Codificante , Fatores de Transcrição SOXD , Crânio , Fatores de Transcrição SOXD/metabolismo , Fatores de Transcrição SOXD/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Osteogênese/genética
4.
Small ; 20(12): e2304433, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948437

RESUMO

Age-related bone defects are a leading cause of disability and mortality in elderly individuals, and targeted therapy to delay the senescence of bone marrow-derived mesenchymal stem cells (MSCs) has emerged as a promising strategy to rejuvenate bone regeneration in aged scenarios. More specifically, activating the nicotinamide adenine dinucleotide (NAD+)-dependent sirtuin 1 (SIRT1) pathway is demonstrated to effectively counteract MSC senescence and thus promote osteogenesis. Herein, based on an inventively identified senescent MSC-specific surface marker Kremen1, a senescence-targeted and NAD+ dependent SIRT1 activated nanoplatform is fabricated with a dual delivery of resveratrol (RSV) (SIRT1 promoter) and nicotinamide riboside (NR, NAD+ precursor). This targeting nanoplatform exhibits a strong affinity for senescent MSCs through conjugation with anti-Kremen1 antibodies and enables specifically responsive release of NR and RSV in lysosomes via senescence-associated ß-galactosidase-stimulated enzymatic hydrolysis of the hydrophilic chain. Furthermore, this nanoplatform performs well in promoting aged bone formation both in vitro and in vivo by boosting NAD+, activating SIRT1, and delaying MSC senescence. For the first time, a novel senescent MSC-specific surface marker is identified and aged bone repair is rejuvenated by delaying senescence of MSCs using an active targeting platform. This discovery opens up new insights for nanotherapeutics aimed at age-related diseases.


Assuntos
NAD , Sirtuína 1 , Idoso , Humanos , Sirtuína 1/metabolismo , NAD/metabolismo , Senescência Celular , Osteogênese , Resveratrol/farmacologia , Regeneração Óssea
5.
Small ; : e2311033, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459643

RESUMO

The re-tear rate of rotator cuff tears (RCT) after surgical repair is high, especially in aged patients with chronic tears. Senescent tendon stem cells (s-TSCs) generally exist in aged and chronically torn rotator cuff tendons and are closely associated with impaired tendon-to-bone healing results. The present study found a positive feedback cross-talk between s-TSCs and macrophages. The conditioned medium (CM) from s-STCs can promote macrophage polarization mainly toward the M1 phenotype, whose CM reciprocally accelerated further s-TSC senescence. Additional healthy tendon stem-cells derived exosomes (h-TSC-Exos) can break this positive feedback cross-talk by skewing macrophage polarization from the M1 phenotype to the M2 phenotype, attenuating s-TSCs senescence. S-TSC senescence acceleration or attenuation effects induced by M1 or M2 macrophages are associated with the inhibition or activation of the bone morphogenetic protein 4 signaling pathway following RNA sequencing analysis. Using an aged-chronic rotator cuff tear rat model, it is found that h-TSC-Exos can shift the microenvironment in the tendon-to-bone interface from a pro-inflammatory to an anti-inflammatory type at the acute postoperative stage and improve the tendon-to-bone healing results, which are associated with the rejuvenated s-TSCs. Therefore, this study proposed a potential strategy to improve the healing of aged chronic RCT.

6.
Cytokine ; 173: 156436, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979214

RESUMO

Failure of bone healing after fracture often results in nonunion, but the underlying mechanism of nonunion pathogenesis is poorly understood. Herein, we provide evidence to clarify that the inflammatory microenvironment of atrophic nonunion (AN) mice suppresses the expression levels of DNA methyltransferases 2 (DNMT2) and 3A (DNMT3a), preventing the methylation of CpG islands on the promoters of C-terminal binding protein 1/2 (CtBP1/2) and resulting in their overexpression. Increased CtBP1/2 acts as transcriptional corepressors that, along with histone acetyltransferase p300 and Runt-related transcription factor 2 (Runx2), suppress the expression levels of six genes involved in bone healing: BGLAP (bone gamma-carboxyglutamate protein), ALPL (alkaline phosphatase), SPP1 (secreted phosphoprotein 1), COL1A1 (collagen 1a1), IBSP (integrin binding sialoprotein), and MMP13 (matrix metallopeptidase 13). We also observe a similar phenomenon in osteoblast cells treated with proinflammatory cytokines or treated with a DNMT inhibitor (5-azacytidine). Forced expression of DNMT2/3a or blockage of CtBP1/2 with their inhibitors can reverse the expression levels of BGLAP/ALPL/SPP1/COL1A1/IBSP/MMP13 in the presence of proinflammatory cytokines. Administration of CtBP1/2 inhibitors in fractured mice can prevent the incidence of AN. Thus, we demonstrate that the downregulation of bone healing genes dependent on proinflammatory cytokines/DNMT2/3a/CtBP1/2-p300-Runx2 axis signaling plays a critical role in the pathogenesis of AN. Disruption of this signaling may represent a new therapeutic strategy to prevent AN incidence after bone fracture.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Citocinas , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Consolidação da Fratura , Animais , Camundongos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Citocinas/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metiltransferases/metabolismo , Osteoblastos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Consolidação da Fratura/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo
7.
Calcif Tissue Int ; 115(2): 169-173, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38907093

RESUMO

Teriparatide is an anabolic drug sometimes administered to patients who have atypical femoral fracture (AFF). However, whether teriparatide has beneficial effects on bone healing remains uncertain. The present study aimed to analyze the association between teriparatide and bone healing in complete AFF. A total of 59 consecutive cases (58 patients) who underwent intramedullary nailing for complete AFF were categorized based on postoperative use of teriparatide into the non-teriparatide (non-TPTD, n = 34) and teriparatide groups (TPTD, n = 25). Time-to-bone union was evaluated and compared between the two groups. Additionally, multiple regression analysis was performed to evaluate factors affecting time-to-bone union. All participants were women, with a mean age of 77.6 years (range: 62-92). No significant difference in time-to-bone union was found between the non-TPTD and TPTD groups (5.5 months vs. 5.8 months, p = 0.359). Two patients in the non-TPTD group underwent reoperation (p = 0.503) due to failure caused by inadequate fixation, and both achieved bone healing after additional fixation with blocking screws. Multiple regression analysis revealed that the anterior gap of the fracture site postoperatively was a factor affecting time-to-bone union (p = 0.014). The beneficial effect of teriparatide on bone healing in complete AFF could not be confirmed. Additional randomized controlled trials are required. Nonetheless, appropriate techniques, including efforts to reduce the gap on the tensile side during the surgery, are important for reliable bone healing.


Assuntos
Conservadores da Densidade Óssea , Fraturas do Fêmur , Consolidação da Fratura , Teriparatida , Humanos , Teriparatida/uso terapêutico , Teriparatida/farmacologia , Feminino , Fraturas do Fêmur/tratamento farmacológico , Idoso , Consolidação da Fratura/efeitos dos fármacos , Idoso de 80 Anos ou mais , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/farmacologia , Pessoa de Meia-Idade , Fixação Intramedular de Fraturas/métodos , Resultado do Tratamento , Estudos Retrospectivos
8.
Calcif Tissue Int ; 114(6): 625-637, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643416

RESUMO

Loss of p21 leads to increased bone formation post-injury; however, the mechanism(s) by which this occurs remains undetermined. E2f1 is downstream of p21 and as a transcription factor can act directly on gene expression; yet it is unknown if E2f1 plays a role in the osteogenic effects observed when p21 is differentially regulated. In this study we aimed to investigate the interplay between p21 and E2f1 and determine if the pro-regenerative osteogenic effects observed with the loss of p21 are E2f1 dependent. To accomplish this, we employed knockout p21 and E2f1 mice and additionally generated a p21/E2f1 double knockout. These mice underwent burr-hole injuries to their proximal tibiae and healing was assessed over 7 days via microCT imaging. We found that p21 and E2f1 play distinct roles in bone regeneration where the loss of p21 increased trabecular bone formation and loss of E2f1 increased cortical bone formation, yet loss of E2f1 led to poorer bone repair overall. Furthermore, when E2f1 was absent, either individually or simultaneously with p21, there was a dramatic decrease of the number of osteoblasts, osteoclasts, and chondrocytes at the site of injury compared to p21-/- and C57BL/6 mice. Together, these results suggest that E2f1 regulates the cell populations required for bone repair and has a distinct role in bone formation/repair compared to p21-/-E2f1-/-. These results highlight the possibility of cell cycle and/or p21/E2f1 being potential druggable targets that could be leveraged in clinical therapies to improve bone healing in pathologies such as osteoporosis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Fator de Transcrição E2F1 , Osteogênese , Animais , Camundongos , Regeneração Óssea/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/metabolismo , Osteogênese/fisiologia
9.
Cell Biol Int ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591759

RESUMO

During the morphological changes occurring in osteoblast differentiation, Sonic hedgehog (Shh) plays a crucial role. While some progress has been made in understanding this process, the epigenetic mechanisms governing the expression of Hh signaling members in response to bone morphogenetic protein 7 (BMP7) signaling in osteoblasts remain poorly understood. To delve deeper into this issue, we treated pre-osteoblasts (pObs) with 100 ng/mL of BMP7 for up to 21 days. Initially, we validated the osteogenic phenotype by confirming elevated expression of well-defined gene biomarkers, including Runx2, Osterix, Alkaline Phosphatase (Alp), and bone sialoprotein (Bsp). Simultaneously, Hh signaling-related members Sonic (Shh), Indian (Ihh), and Desert (Dhh) Hedgehog (Hh) exhibited nuanced modulation over the 21 days in vitro period. Subsequently, we evaluated epigenetic markers, and our data revealed a notable change in the CpG methylation profile, considering the methylation/hydroxymethylation ratio. CpG methylation is a reversible process regulated by DNA methyltransferases and demethylases, including Ten-eleven translocation (Tets), which also exhibited changes during the acquisition of the osteogenic phenotype. Specifically, we measured the methylation pattern of Shh-related genes and demonstrated a positive Pearson correlation for GLI Family Zinc Finger 1 (Gli1) and Patched (Ptch1). This data underscores the significance of the epigenetic machinery in modulating the BMP7-induced osteogenic phenotype by influencing the activity of Shh-related genes. In conclusion, this study highlights the positive impact of epigenetic control on the expression of genes related to hedgehog signaling during the morphogenetic changes induced by BMP7 signaling in osteoblasts.

10.
Periodontol 2000 ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923566

RESUMO

The survival of an organism relies on its ability to repair the damage caused by trauma, toxic agents, and inflammation. This process involving cell proliferation and differentiation is driven by several growth factors and is critically dependent on the organization of the extracellular matrix. Since autologous platelet concentrates (APCs) are fibrin matrices in which cells, growth factors, and cytokines are trapped and delivered over time, they are able to influence that response at different levels. The present review thoroughly describes the molecular components present in one of these APCs, leukocyte- and platelet-rich fibrin (L-PRF), and summarizes the level of evidence regarding the influence of L-PRF on anti-inflammatory reactions, analgesia, hemostasis, antimicrobial capacity, and its biological mechanisms on bone/soft tissue regeneration.

11.
Bioorg Chem ; 150: 107493, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38870703

RESUMO

2. This research investigates the impact of the EGCG-CSH/n-HA/CMC composite material on bone defect repair, emphasizing its influence on macrophage polarization and osteogenic differentiation of BMSCs. Comprehensive evaluations of the composite's physical and chemical characteristics were performed. BMSC response to the material was tested in vitro for proliferation, migration, and osteogenic potential. An SD rat model was employed for in vivo assessments of bone repair efficacy. Both transcriptional and proteomic analyses were utilized to delineate the mechanisms influencing macrophage behavior and stem cell differentiation. The material maintained excellent structural integrity and significantly promoted BMSC functions critical to bone healing. In vivo results confirmed accelerated bone repair, and molecular analysis highlighted the role of macrophage M2 polarization, particularly through changes in the SIRPA gene and protein expression. EGCG-CSH/n-HA/CMC plays a significant role in enhancing bone repair, with implications for macrophage and BMSC function. Our findings suggest that targeting SIRPA may offer new therapeutic opportunities for bone regeneration.

12.
Clin Oral Implants Res ; 35(4): 407-418, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287504

RESUMO

OBJECTIVES: To study bone healing of two-wall bone defects after alveolar ridge preservation using mineralized dentin matrix. MATERIALS AND METHODS: After distal roots extraction of second and fourth premolars (P2, P4) on one lateral mandible in 12 beagles, two-wall bone defects (5 × 5 × 5 mm) were surgically created distally to the remaining mesial roots of P2 and P4. A total of 24 sites were randomly allocated to three groups (implant material- time of execution): mineralized dentin matrix (MDM)-3 m (MDM + collagen membrane; 3 months), MDM-6 m (MDM particles + collagen membrane; 6 months), and C-6 m (collagen membrane only; 6 months). Clinical, radiographic, digital, and histological examinations were performed 3 and 6 months after surgery. RESULTS: The bone healing in MDM groups were better compared to Control group (volume of bone regenerated in total: 25.12 mm3 vs. 13.30 mm3, p = .046; trabecular volume/total volume: 58.84% vs. 39.18%, p = .001; new bone formation rate: 44.13% vs. 31.88%, p = .047). Vertically, the radiological bone level of bone defect in MDM-6 m group was higher than that in C-6 m group (vertical height of bone defect: 1.55 mm vs. 2.74 mm, p = .018). Horizontally, no significant differences in buccolingual bone width were found between MDM and C groups at any time or at any level below the alveolar ridge. The percentages of remaining MDM were <1% in both MDM-3 m and MDM-6 m groups. CONCLUSIONS: MDM improved bone healing of two-wall bone defects and might be considered as a socket fill material used following tooth extraction.


Assuntos
Perda do Osso Alveolar , Aumento do Rebordo Alveolar , Cães , Animais , Alvéolo Dental/cirurgia , Alvéolo Dental/patologia , Processo Alveolar/cirurgia , Processo Alveolar/patologia , Colágeno , Extração Dentária , Dentina , Perda do Osso Alveolar/prevenção & controle , Perda do Osso Alveolar/cirurgia , Perda do Osso Alveolar/patologia
13.
Oral Dis ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764359

RESUMO

OBJECTIVE: Hypertension disrupts the bone integrity and its repair ability. This study explores the efficiency of a therapy based on the application of mesenchymal stem cells (MSCs) to repair bone defects of spontaneously hypertensive rats (SHR). METHODS: First, we evaluated SHR in terms of bone morphometry and differentiation of MSCs into osteoblasts. Then, the effects of the interactions between MSCs from normotensive rats (NTR-MSCs) cocultured with SHR (SHR-MSCs) on the osteoblast differentiation of both cell populations were evaluated. Also, bone formation into calvarial defects of SHR treated with NTR-MSCs was analyzed. RESULTS: Hypertension induced bone loss evidenced by reduced bone morphometric parameters of femurs of SHR compared with NTR as well as decreased osteoblast differentiation of SHR-MSCs compared with NTR-MSCs. NTR-MSCs partially restored the capacity of SHR-MSCs to differentiate into osteoblasts, while SHR-MSCs exhibited a slight negative effect on NTR-MSCs. An enhanced bone repair was observed in defects treated with NTR-MSCs compared with control, stressing this cell therapy efficacy even in bones damaged by hypertension. CONCLUSION: The use of MSCs derived from a heathy environment can be in the near future a smart approach to treat bone loss in the context of regenerative dentistry for oral rehabilitation of hypertensive patients.

14.
Oral Dis ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287672

RESUMO

Intraflagellar transport (IFT) proteins have been reported to regulate cell growth and differentiation as the essential functional component of primary cilia. The effects of IFT80 on early bone healing of extraction sockets have not been well studied. To investigate whether deletion of Ift80 in alveolar bone-derived mesenchymal stem cells (aBMSCs) affected socket bone healing, we generated a mouse model of specific knockout of Ift80 in Prx1 mesenchymal lineage cells (Prx1Cre ;IFT80f/f ). Our results demonstrated that deletion of IFT80 in Prx1 lineage cells decreased the trabecular bone volume, ALP-positive osteoblastic activity, TRAP-positive osteoclastic activity, and OSX-/COL I-/OCN-positive areas in tooth extraction sockets of Prx1Cre ; IFT80f/f mice compared with IFT80f/f littermates. Furthermore, aBMSCs from Prx1Cre ; IFT80f/f mice showed significantly decreased osteogenic markers and downregulated migration and proliferation capacity. Importantly, the overexpression of TAZ recovered significantly the expressions of osteogenic markers and migration capacity of aBMSCs. Lastly, the local administration of lentivirus for TAZ enhanced the expression of RUNX2 and OSX and promoted early bone healing of extraction sockets from Prx1Cre ; IFT80f/f mice. Thus, IFT80 promotes osteogenesis and early bone healing of tooth sockets through the activation of TAZ/RUNX2 pathway.

15.
BMC Musculoskelet Disord ; 25(1): 362, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714945

RESUMO

BACKGROUND: Open tibial fractures often include severe bone loss and soft tissue defects and requires complex reconstructive operations. However, the optimal treatment is unclear. METHODS: This retrospective study enrolled patients with Gustilo type III open tibial fractures from January 2018 to January 2021 to assess the clinical utility of Masquelet technique together with microsurgical technique as a combined strategy for the treatment of open tibial fractures. The demographics and clinical outcomes including bone union time, infection, nonunion and other complications were recorded for analysis. The bone recovery quality was evaluated by the AOFAS Ankle-Hindfoot Scale score and the Paley criteria. RESULTS: We enrolled 10 patients, the mean age of the patients and length of bone defects were 31.7 years (range, 23-45 years) and 7.5 cm (range, 4.5-10 cm) respectively. Bone union was achieved for all patients, with an average healing time of 12.2 months (range, 11-16 months). Seven patients exhibited a bone healing time of less than 12 months, whereas 3 patients exhibited a bone healing time exceeding 12 months. No significant correlation was found between the length of bone loss and healing time. In addition, no deep infection or nonunion was observed, although 2 patients experienced wound fat liquefaction with exudates and 1 patient presented with a bloated skin flap. The average AOFAS Ankle-Hindfoot Scale score was 80.5 (range, 74-85), and all patients were evaluated as good or exellent based on the Paley criteria. CONCLUSIONS: Our study indicated that the use of the Masquelet technique and the microsurgical technique as a combined strategy is safe and effective for the treatment of Gustilo type III open tibial fractures.


Assuntos
Consolidação da Fratura , Fraturas Expostas , Microcirurgia , Fraturas da Tíbia , Humanos , Fraturas da Tíbia/cirurgia , Fraturas da Tíbia/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fraturas Expostas/cirurgia , Adulto , Feminino , Microcirurgia/métodos , Adulto Jovem , Resultado do Tratamento , Fixação Interna de Fraturas/métodos , Procedimentos de Cirurgia Plástica/métodos , Transplante Ósseo/métodos
16.
Biomed Chromatogr ; 38(5): e5846, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412865

RESUMO

This study investigates the impact of exosomes on bone fracture healing in a rat tibial model, distinguishing between fast and slow healing processes. Bone healing and protein expression were assessed through X-ray examinations, hematoxylin and eosin staining, and immunohistochemical staining. Exosomes were isolated, characterized and subjected to liquid chromatography-mass spectrometry for protein analysis. Molecular differences were explored using differentially expressed protein analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment and protein-protein interaction networks. Differential bone healing patterns and protein expressions were observed between the control and model groups. Exosomes were successfully isolated and characterized, revealing 2004 identified proteins, including distinct expression profiles. Notably, ribosomal proteins, ferritin and beta-actin emerged as pivotal players in bone fracture healing. This study unveils dynamic changes in bone healing and underscores the role of exosomes in the process. Identified proteins and pathways offer valuable insights for developing innovative therapeutic strategies for bone healing.


Assuntos
Consolidação da Fratura , Tíbia , Fraturas da Tíbia , Proteômica , Tíbia/lesões , Tíbia/metabolismo , Animais , Ratos , Masculino , Ratos Sprague-Dawley , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/metabolismo , Exossomos/metabolismo , Proteoma/metabolismo , Mapas de Interação de Proteínas
17.
Artigo em Inglês | MEDLINE | ID: mdl-38666752

RESUMO

PURPOSE: To compare the clinical and radiological outcome of open-wedge high tibial osteotomy (OWHTO) with allogenous bone chips to a control group without bone void filler. The focus was on the rates and timelines of return to work (RTW) and return to sports (RTS), given the significance of these factors for the satisfaction of young and active patients. METHODS: One hundred and ninety-five cases of OWHTO (112 cases with allograft vs. 83 cases without graft) with a follow-up of 17 ± 4.8 months were included in this retrospective analysis. Various metrics were investigated, including time to return to full weight bearing, RTW and RTS rates and timelines, International Knee Documentation Committee (IKDC) Score, Cincinnati-Sportsmedicine and Orthopaedic Centre Score and Tegner Score. The time to bone union was determined on radiographs taken at 6, 16, 28 and 53 weeks. RESULTS: Patients returned to full weight bearing after 8.8 ± 4.8 weeks. RTW was possible for 92.8% after 13.7 ± 12.3 weeks. 96.2% returned to sports after 22.7 ± 8.3 weeks, but the number of disciplines and workouts per week diminished (p < 0.001, p = 0.006). A shift to low-impact and recreational sports was observed. Patients with allograft filling had earlier bone union (21 ± 12.3 vs. 31.9 ± 14.2 weeks, p < 0.001) and returned faster to full weight bearing (8.2 ± 4.5 vs. 9.8 ± 5 weeks, p = 0.013). There was no difference between groups in the IKDC Score (69 ± 17.2 vs. 69.9 ± 15.2, p = 0.834), Cincinnati-Sportsmedicine and Orthopaedic Centre Score (68 ± 18.3 vs. 69.4 ± 18.2, p = 0.698) and Tegner Score (3.8 ± 1.5 vs. 4 ± 1.5, p = 0.246). CONCLUSION: Allograft filling leads to faster bone union and return to full weight bearing but showed no significant advantage in terms of RTW/RTS, overall patient satisfaction and functional scores. The decision for or against filling the osteotomy gap, therefore, remains a case-by-case decision. LEVEL OF EVIDENCE: Level III, Retrospective cohort study.

18.
Odontology ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526627

RESUMO

The search for medications that can effectively reduce alveolar bone loss following tooth extraction is of great interest. This study aimed to observe the roles of 4-octyl itaconate (4-OI) in RANKL-induced osteoclastogenesis of bone marrow macrophages (BMMs) in vitro. Mandibular second molars were extracted to evaluate whether 4-OI could alleviate alveolar bone loss. 4-OI inhibited RANKL-induced osteoclastogenesis and promoted Nrf2 expression in bone marrow macrophages in vitro. Positive Nrf2 expressions were observed in inflammatory cells and osteoclasts in vivo. Treatment with 4-octyl itaconate increased Nrf2 expression, resulting in reduced inflammatory infiltration and osteoclastic activity after tooth extraction. Furthermore, increased expression of OCN and enhanced-alveolar bone healing of extraction socket were observed in the 4-OI group compared to the control group. Our results suggested that 4-OI could serve as a promising pharmacologic candidate for alveolar ridge preservation by alleviating alveolar bone loss following tooth extraction in rats.

19.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612562

RESUMO

Fracture healing is a complex series of events that requires a local inflammatory reaction to initiate the reparative process. This inflammatory reaction is important for stimulating the migration and proliferation of mesenchymal progenitor cells from the periosteum and surrounding tissues to form the cartilaginous and bony calluses. The proinflammatory cytokine interleukin (IL)-17 family has gained attention for its potential regenerative effects; however, the requirement of IL-17 signaling within mesenchymal progenitor cells for normal secondary fracture healing remains unknown. The conditional knockout of IL-17 receptor a (Il17ra) in mesenchymal progenitor cells was achieved by crossing Il17raF/F mice with Prx1-cre mice to generate Prx1-cre; Il17raF/F mice. At 3 months of age, mice underwent experimental unilateral mid-diaphyseal femoral fractures and healing was assessed by micro-computed tomography (µCT) and histomorphometric analyses. The effects of IL-17RA signaling on the osteogenic differentiation of fracture-activated periosteal cells was investigated in vitro. Examination of the intact skeleton revealed that the conditional knockout of Il17ra decreased the femoral cortical porosity but did not affect any femoral trabecular microarchitectural indices. After unilateral femoral fractures, Il17ra conditional knockout impacted the cartilage and bone composition of the fracture callus that was most evident early in the healing process (day 7 and 14 post-fracture). Furthermore, the in vitro treatment of fracture-activated periosteal cells with IL-17A inhibited osteogenesis. This study suggests that IL-17RA signaling within Prx1+ mesenchymal progenitor cells can influence the early stages of endochondral ossification during fracture healing.


Assuntos
Fraturas do Fêmur , Proteínas de Homeodomínio , Células-Tronco Mesenquimais , Receptores de Interleucina-17 , Animais , Camundongos , Consolidação da Fratura , Inflamação , Osteogênese , Microtomografia por Raio-X , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Proteínas de Homeodomínio/metabolismo
20.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791592

RESUMO

In certain situations, bones do not heal completely after fracturing. One of these situations is a critical-size bone defect where the bone cannot heal spontaneously. In such a case, complex fracture treatment over a long period of time is required, which carries a relevant risk of complications. The common methods used, such as autologous and allogeneic grafts, do not always lead to successful treatment results. Current approaches to increasing bone formation to bridge the gap include the application of stem cells on the fracture side. While most studies investigated the use of mesenchymal stromal cells, less evidence exists about induced pluripotent stem cells (iPSC). In this study, we investigated the potential of mouse iPSC-loaded scaffolds and decellularized scaffolds containing extracellular matrix from iPSCs for treating critical-size bone defects in a mouse model. In vitro differentiation followed by Alizarin Red staining and quantitative reverse transcription polymerase chain reaction confirmed the osteogenic differentiation potential of the iPSCs lines. Subsequently, an in vivo trial using a mouse model (n = 12) for critical-size bone defect was conducted, in which a PLGA/aCaP osteoconductive scaffold was transplanted into the bone defect for 9 weeks. Three groups (each n = 4) were defined as (1) osteoconductive scaffold only (control), (2) iPSC-derived extracellular matrix seeded on a scaffold and (3) iPSC seeded on a scaffold. Micro-CT and histological analysis show that iPSCs grafted onto an osteoconductive scaffold followed by induction of osteogenic differentiation resulted in significantly higher bone volume 9 weeks after implantation than an osteoconductive scaffold alone. Transplantation of iPSC-seeded PLGA/aCaP scaffolds may improve bone regeneration in critical-size bone defects in mice.


Assuntos
Regeneração Óssea , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Osteogênese , Alicerces Teciduais , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Alicerces Teciduais/química , Camundongos , Engenharia Tecidual/métodos , Masculino , Modelos Animais de Doenças , Matriz Extracelular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA