Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 344, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133273

RESUMO

Osteogenesis is tightly coupled with angiogenesis spatiotemporally. Previous studies have demonstrated that type H blood vessel formed by endothelial cells with high expression of CD31 and Emcn (CD31hi Emcnhi ECs) play a crucial role in bone regeneration. The mechanism of the molecular communication around CD31hi Emcnhi ECs and bone mesenchymal stem cells (BMSCs) in the osteogenic microenvironment is unclear. This study indicates that exosomes from bone mesenchymal stem cells with 7 days osteogenic differentiation (7D-BMSCs-exo) may promote CD31hi Emcnhi ECs angiogenesis, which was verified by tube formation assay, qRT-PCR, Western blot, immunofluorescence staining and µCT assays etc. in vitro and in vivo. Furthermore, by exosomal miRNA microarray and WGCNA assays, we identified downregulated miR-150-5p as the most relative hub gene coupling osteogenic differentiation and type H blood vessel angiogenesis. With bioinformatics assays, dual luciferase reporter experiments, qRT-PCR and Western blot assays, SOX2(SRY-Box Transcription Factor 2) was confirmed as a novel downstream target gene of miR-150-5p in exosomes, which might be a pivotal mechanism regulating CD31hi Emcnhi ECs formation. Additionally, JC-1 immunofluorescence staining, Western blot and seahorse assay results showed that the overexpression of SOX2 could shift metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis to enhance the CD31hi Emcnhi ECs formation. The PI3k/Akt signaling pathway might play a key role in this process. In summary, BMSCs in osteogenic differentiation might secrete exosomes with low miR-150-5p expression to induce type H blood vessel formation by mediating SOX2 overexpression in ECs. These findings might reveal a molecular mechanism of osteogenesis coupled with type H blood vessel angiogenesis in the osteogenic microenvironment and provide a new therapeutic target or cell-free remedy for osteogenesis impaired diseases.


Assuntos
Diferenciação Celular , Células Endoteliais , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Neovascularização Fisiológica , Osteogênese , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo , Osteogênese/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Diferenciação Celular/genética , Neovascularização Fisiológica/genética , Animais , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Camundongos , Humanos , Células Cultivadas , Transdução de Sinais , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Reprogramação Metabólica , Angiogênese
2.
Genomics ; 116(3): 110838, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537807

RESUMO

After epiphyseal fracture, the epiphyseal plate is prone to ischemia and hypoxia, leading to the formation of bone bridge and deformity. However, the exact mechanism controlling the bone bridge formation remains unclear. Notch/RBPJ signaling axis has been indicated to regulate angiogenesis and osteogenic differentiation. Our study aims to investigate the mechanism of bone bridge formation after epiphyseal plate injury, and to provide a theoretical basis for new therapeutic approaches to prevent the bone bridge formation. The expression of DLL4 and RBPJ was significantly up-regulated in HUVECs after ischemia and hypoxia treatment. Notch/RBPJ pathway positively regulated the osteogenic differentiation of BMSCs. HUVECs can induce osteogenic differentiation of BMSCs under ischemia and hypoxia. Notch/RBPJ pathway is involved in the regulation of the trans-epiphyseal bridge formation. Notch/RBPJ in HUVECs is associated with osteogenic differentiation of BMSCs and may participate in the regulation of the bone bridge formation across the epiphyseal plate.


Assuntos
Diferenciação Celular , Células Endoteliais da Veia Umbilical Humana , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Neovascularização Fisiológica , Osteogênese , Receptores Notch , Transdução de Sinais , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Hipóxia Celular , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Cultivadas , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Angiogênese
3.
Small ; 19(41): e2302326, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37317020

RESUMO

Osteonecrosis of the femoral head (ONFH) is recognized as a common refractory orthopedic disease that causes severe pain and poor quality of life in patients. Puerarin (Pue), a natural isoflavone glycoside, can promote osteogenesis and inhibit apoptosis of bone mesenchymal stem cells (BMSCs), demonstrating its great potential in the treatment of osteonecrosis. However, its low aqueous solubility, fast degradation in vivo, and inadequate bioavailability, limit its clinical application and therapeutic efficacy. Tetrahedral framework nucleic acids (tFNAs) are promising novel DNA nanomaterials in drug delivery. In this study, tFNAs as Pue carriers is used and synthesized a tFNA/Pue complex (TPC) that exhibited better stability, biocompatibility, and tissue utilization than free Pue. A dexamethasone (DEX)-treated BMSC model in vitro and a methylprednisolone (MPS)-induced ONFH model in vivo is also established, to explore the regulatory effects of TPC on osteogenesis and apoptosis of BMSCs. This findings showed that TPC can restore osteogenesis dysfunction and attenuated BMSC apoptosis induced by high-dose glucocorticoids (GCs) through the hedgehog and Akt/Bcl-2 pathways, contributing to the prevention of GC-induced ONFH in rats. Thus, TPC is a promising drug for the treatment of ONFH and other osteogenesis-related diseases.


Assuntos
Necrose da Cabeça do Fêmur , Isoflavonas , Ácidos Nucleicos , Humanos , Ratos , Animais , Cabeça do Fêmur , Ácidos Nucleicos/farmacologia , Qualidade de Vida , Necrose da Cabeça do Fêmur/tratamento farmacológico , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/prevenção & controle , Ratos Sprague-Dawley , Isoflavonas/efeitos adversos , Osteogênese
4.
Alcohol Alcohol ; 58(4): 375-384, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37092263

RESUMO

AIM: It is well known that alcohol can cause bone loss and that bone mineral density has an inverse relationship with bone marrow adipocyte (BMA). However, little is known about the mechanisms that link alcohol and bone loss, and existing studies lack data on BMA in alcohol-induced bone loss. Here, wild-type (WT) and tumor necrosis factor-alpha knockout (TNF-α KO) mice were used to examine the effects of alcohol on bone metabolism. METHODS: The effects of alcohol on bone metabolism were demonstrated in vivo by feeding WT and TNF-α KO mice with alcohol. The osteogenesis and adipogenesis of primary bone marrow stromal cells (BMSCs) derived from WT and TNF-α KO mice under alcohol intervention were compared in vitro. Tissue staining, cell staining, micro-CT, and quantitative RT-PCR were used to explore the potential mechanism. RESULTS: Alcohol induced trabecular bone loss, increased BMA, and promoted the mRNA expression of Adipoq, Fabp4, visfatin, Pparg, TNF-α, IL-1ß, and IL-6 in BMA in WT mice, but not in TNF-α KO mice. In addition, alcohol promoted BMSC adipogenesis and inhibited BMSC osteogenesis, while TNF-α knockout could restrain this situation. CONCLUSION: Our study demonstrated that alcohol may reduce bone mass by disrupting the balance of osteogenesis and adipogenesis in bone marrow, and TNF-α plays an important role in this process.


Assuntos
Etanol , Fator de Necrose Tumoral alfa , Animais , Camundongos , Fator de Necrose Tumoral alfa/genética , Etanol/toxicidade , Osteogênese , Camundongos Knockout
5.
J Nanobiotechnology ; 21(1): 481, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102643

RESUMO

BACKGROUND: Ultrasound-targeted microbubble destruction (UTMD) has emerged as a promising strategy for the targeted delivery of bone marrow mesenchymal stem cells (MSCs) to the ischemic myocardium. However, the limited migration capacity and poor survival of MSCs remains a major therapeutic barrier. The present study was performed to investigate the synergistic effect of UTMD with platelet-derived growth factor BB (PDGF-BB) on the homing of MSCs for acute myocardial infarction (AMI). METHODS: MSCs from male donor rats were treated with PDGF-BB, and a novel microbubble formulation was prepared using a thin-film hydration method. In vivo, MSCs with or without PDGF-BB pretreatment were transplanted by UTMD after inducing AMI in experimental rats. The therapeutic efficacy of PDGF-BB-primed MSCs on myocardial apoptosis, angiogenesis, cardiac function and scar repair was estimated. The effects and molecular mechanisms of PDGF-BB on MSC migration and survival were explored in vitro. RESULTS: The results showed that the biological effects of UTMD increased the local levels of stromal-derived factor-1 (SDF-1), which promoted the migration of transplanted MSCs to the ischemic region. Compared with UTMD alone, UTMD combined with PDGF-BB pretreatment significantly increased the cardiac homing of MSCs, which subsequently reduced myocardial apoptosis, promoted neovascularization and tissue repair, and increased cardiac function 30 days after MI. The vitro results demonstrated that PDGF-BB enhanced MSC migration and protected these cells from H2O2-induced apoptosis. Mechanistically, PDGF-BB pretreatment promoted MSC migration and inhibited H2O2-induced MSC apoptosis via activation of the phosphatidylinositol 3-kinase/serine-threonine kinase (PI3K/Akt) pathway. Furthermore, crosstalk between PDGF-BB and stromal-derived factor-1/chemokine receptor 4 (SDF-1/CXCR4) is involved in the PI3K/AKT signaling pathway. CONCLUSION: The present study demonstrated that UTMD combined with PDGF-BB treatment could enhance the homing ability of MSCs, thus alleviating AMI in rats. Therefore, UTMD combined with PDGF-BB pretreatment may offer exciting therapeutic opportunities for strengthening MSC therapy in ischemic diseases.


Assuntos
Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio , Ratos , Masculino , Animais , Transplante de Células-Tronco Mesenquimais/métodos , Becaplermina/farmacologia , Microbolhas , Peróxido de Hidrogênio , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Infarto do Miocárdio/terapia , Miocárdio
6.
Phytother Res ; 37(7): 2841-2853, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36799485

RESUMO

Peiminine is a major biologically active component of Fritillaria thunbergii Miq that exhibits good anticancer, antiinflammatory, and anti-osteoclast effects. However, its effects on osteoporosis (OP) remain unknown. This study aimed to explore whether Peiminine was able to regulate osteogenesis and adipogenesis in ovariectomized (OVX) rat. The effects on the differentiation of bone marrow stem cells (BMSCs), function of Wnt/ß-catenin pathway, ALP activity, calcium nodule deposition, as well as adipocyte formation in vitro by Peiminine at different concentrations, were detected. The curative effects of Peiminine on the ovariectomy-induced osteoporosis model by micro-CT and bone histomorphology assays were analyzed. The promotion of osteogenic differentiation and inhibition of adipogenic differentiation by Peiminine (5-40 µg/mL) was detected and the optimum concentration was 20 µg/mL. Mechanistically, Peiminine regulated the fate of BMSCs in vitro, and activated Wnt/ß-catenin signaling pathway by restraining phosphorylation of ß-catenin and promoting the nuclear translocation of ß-catenin. Moreover, Peiminine prevented ovariectomy-induced osteoporosis by alleviating trabecular bone loss and inhibiting adipose formation. Our data suggested that Peiminine could attenuate ovariectomy-induced osteoporosis by alleviating trabecular bone loss and inhibiting adipose formation. These encouraging discoveries could lay the foundation for Peiminine to be a promising preventive treatment strategy for skeletal diseases, such as osteoporosis.


Assuntos
Osteoporose , Via de Sinalização Wnt , Feminino , Ratos , Animais , Osteogênese , beta Catenina/metabolismo , Diferenciação Celular , Osteoporose/tratamento farmacológico , Células Cultivadas
7.
Biochem Biophys Res Commun ; 622: 149-156, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35863089

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) are an integral part of the acute myeloid leukemia (AML) bone marrow microenvironment and contribute to AML progression. In this study, we explored the communication between BMSCs and AML cells via exosomes. The AML cells co-cultured with BMSCs-Exos were found to have lower chemosensitivity exposed to cytarabine, suggesting that BMSCs-Exos could protect AML cells from cytarabine. Interestingly, miR-10a was elevated in BMSCs-Exos derived from AML (AML-BMSCs-Exos) compared with that from healthy donor. The expression levels of miR-10a in AML cells was significantly up-regulated after co-culture with BMSCs-Exos. Furthermore, the up-regulated miR-10a was an crucial factor contributing to the chemoresistance of leukemia cells. Down-regulation of miR-10a substantially increase chemosensitivity of AML cells treated with BMSCs-Exos. Chemosensitivity of AML cells was also decreased through down-regulating RPRD1A by miR-10a that ultimately lead to the stimulation of the Wnt/ß-catenin signaling pathway. Collectively, our findings demonstrated that AML-BMSCs could deliver miR-10a to AML cells via exosomes, which could target RPRD1A and activate Wnt/ß-catenin signaling pathway that subsequently decreased chemosensitivity of AML cells.


Assuntos
Exossomos , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , MicroRNAs , Células da Medula Óssea/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Citarabina/farmacologia , Exossomos/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Repressoras/metabolismo , Microambiente Tumoral
8.
Inflamm Res ; 71(7-8): 833-846, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35637388

RESUMO

BACKGROUND: Exosomes derived from bone mesenchymal stem cells (BMSCs) are potential candidates for inflammatory bowel disease (IBD) treatment. The present study investigated the therapeutic effect and potential mechanism of BMSCs-derived exosomes on pyroptosis in IBD. METHODS: We induced IBD in mice and cell models through dextran sulfate sodium (DSS) and LPS, respectively. The mRNA and protein expression levels were assessed by qRT-PCR, Western blotting, IF and IHC. The concentrations of IL-1ß, IL-18 and TNFα were assessed using ELISA. ROS levels were determined using DCFH-DA staining. Cell proliferation of mIECs was analysed using an MTT assay. In addition, a flow cytometry assay was performed to detect pyroptosis. Finally, the binding relationship between miR-539-5p and NLRP3 was verified by a dual luciferase reporter gene assay. RESULTS: Our results revealed that intraperitoneal injection of BMSCs-derived exosomes inhibited DSS-induced pyroptosis as well as IBD symptoms in mice. In addition, BMSCs-derived exosome treatment suppressed pyroptosis, ROS levels and the concentrations of proinflammatory cytokines (IL-1ß, IL-18 and TNFα) in LPS-treated mIECs in a miR-539-5p-dependent manner. Further research found that miR-539-5p suppressed NLRP3 expression in mIECs by directly targeting NLRP3. As expected, pyroptosis in LPS-treated mIECs was significantly reduced by NLRP3 knockdown. In addition, NLRP3 silencing restored the inhibitory effect of exosomes derived from BMSCs transfected with miR-539-5p inhibitor on pyroptosis in LPS-treated mIECs. CONCLUSION: The present study demonstrated that BMSCs-derived exosomal miR-539-5p suppresses pyroptosis through NLRP3/caspase-1 signalling to inhibit IBD progression.


Assuntos
Exossomos , Doenças Inflamatórias Intestinais , Células-Tronco Mesenquimais , MicroRNAs , Animais , Caspase 1/metabolismo , Doenças Inflamatórias Intestinais/terapia , Interleucina-18/genética , Interleucina-18/metabolismo , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
BMC Musculoskelet Disord ; 23(1): 344, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410202

RESUMO

BACKGROUND: The aim of this study was to investigate the role of Vaspin on the chondrogenic differentiation of bone mesenchymal stem cells (BMSCs), and its effect on chondrocyte survival and ECM secretion. We also assessed whether the Akt activation participates in these processes. METHODS: In vivo, immunohistochemistry was used to examine the positive rate of the protein expressions of Akt in Wistar rat articular cartilage and subchondral bone after Vaspin intraperitoneal injection for 14 days. In vitro, we isolated and expanded BMSCs from Wistar rats, and further cultured BMSCs as pellets in a chondrogenic-differentiation medium supplemented with different concentrations of Vaspin. After 21 days, the pellets were processed for cell counting kit assay. The mRNA level of Akt, SOX9 and COL2A1 in the pellets were investigated using quantitative Real-Time polymerase chain reaction, and the protein level of COMP was detected using western blot. RESULTS: During the chondrogenic differentiation of BMSCs, Vaspin promoted the chondrogenic differentiation of BMSCs and chondrocyte survival by activating the Akt pathway. These effects were significantly reduced by treatment with an Akt inhibitor. Moreover, Vaspin promoted chondrogenic differentiation of BMSCs by increasing the expression of markers in cartilage formation and extracellular matrix secretion. Furthermore, our study also found that Vaspin could increase Akt expression in cartilage cavities and subchondral bone in vivo. CONCLUSION: These findings demonstrate that Vaspin can promote the chondrogenic differentiation of BMSCs and chondrocyte survival via Akt activation. Our study provides new insights into the potential ability of Vaspin to ameliorate the chondrogenic differentiation of BMSCs and chondrocyte survival in OA.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Animais , Condrogênese/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
10.
Lasers Med Sci ; 37(9): 3509-3516, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36066778

RESUMO

Low-level laser therapy (LLLT) also known as photobiomodulation is a treatment to change cellular biological activity. The exact effects of LLLT remain unclear due to the different irradiation protocols. The purpose of this study was to investigate the effects of LLLT by three different irradiation methods on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BMSCs were inoculated in 24-well plates and then irradiated or not (control) with a laser using three different irradiation methods. The irradiation methods were spot irradiation, covering irradiation, and scanning irradiation according to different spot areas (0.07 cm2 or 1.96 cm2) and irradiation areas (0.35 cm2 or 1.96 cm2), respectively. The laser was applied three times at energy densities of 4 J/cm2. The cell proliferation by CCK-8. ALP activity assay, alizarin red, and quantitative real-time polymerase chain reaction (RT-PCR) were performed to assess osteogenic differentiation and mineralization. Increases in cell proliferation was obvious following irradiation, especially for covering irradiation. The ALP activity was significantly increased in irradiated groups compared with non-irradiated control. The level of mineralization was obviously improved following irradiation, particularly for covering irradiation. RT-PCR detected significantly higher expression of ALP, OPN, OCN, and RUNX-2 in the group covering than in the others, and control is the lowest. The presented results indicate that the biostimulative effects of LLLT on BMSCs was influenced by t he irradiation method, and the covering irradiation is more favorable method to promote the proliferation and osteogenic differentiation of BMSCs.


Assuntos
Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais , Osteogênese/genética , Osteogênese/efeitos da radiação , Células da Medula Óssea , Células-Tronco Mesenquimais/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas
11.
J Cell Physiol ; 236(6): 4273-4289, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33452710

RESUMO

While mesenchymal stem cells (MSCs) have been widely used to repair radiation-induced bone damage, the molecular mechanism underlying the effects of MSCs in the maintenance of bone homeostasis under radiation stress remains largely unknown. In this study, the role and mechanisms of R-spondin 1 (Rspo1)-leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) axis on the initiation of self-defense of bone mesenchymal stem cells (BMSCs) and maintenance of bone homeostasis under radiation stress were investigated. Interestingly, radiation increased levels of Rspo1 and LGR4 in BMSCs. siRNA knockdown of Rspo1 or LGR4 aggravated radiation-induced impairment of self-renewal ability and osteogenic differentiation potential of BMSCs. However, exogenous Rspo1 significantly attenuated radiation-induced depletion of BMSCs, and promoted the lineage shift towards osteoblasts. This alteration was associated with the reversal of mammalian target of rapamycin (mTOR) activation and autophagy decrement. Pharmacological and genetic blockade of autophagy attenuated the radio-protective effects of Rspo1, rendering BMSCs more vulnerable to radiation-induced injury. Then bone radiation injury was induced in C57BL6J mice to further determine the radio-protective effects of Rspo1. In mice, administration of Rspo1 recombinant protein alleviated radiation-induced bone loss. Our results uncover that Rspo1-LGR4-mTOR-autophagy axis are key mechanisms by which BMSCs initiate self-defense against radiation and maintain bone homeostasis. Targeting Rspo1-LGR4 may provide a novel strategy for the intervention of radiation-induced bone damage.


Assuntos
Autofagia , Doenças Ósseas/prevenção & controle , Células-Tronco Mesenquimais/enzimologia , Lesões por Radiação/prevenção & controle , Receptores Acoplados a Proteínas G/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Trombospondinas/metabolismo , Animais , Autofagia/efeitos da radiação , Doenças Ósseas/enzimologia , Doenças Ósseas/genética , Doenças Ósseas/patologia , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Células Cultivadas , Dano ao DNA , Modelos Animais de Doenças , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/efeitos da radiação , Camundongos Endogâmicos C57BL , Osteogênese , Lesões por Radiação/enzimologia , Lesões por Radiação/genética , Lesões por Radiação/patologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Trombospondinas/genética
12.
Hum Genomics ; 14(1): 43, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33234152

RESUMO

BACKGROUND: Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells that can differentiate into three lineages. They are suitable sources for cell-based therapy and regenerative medicine applications. This study aims to evaluate the hub genes and key pathways of differentially expressed genes (DEGs) related to osteogenesis by bioinformatics analysis in three different days. The DEGs were derived from the three different days compared with day 0. RESULTS: Gene expression profiles of GSE37558 were obtained from the Gene Expression Omnibus (GEO) database. A total of 4076 DEGs were acquired on days 8, 12, and 25. Gene ontology (GO) enrichment analysis showed that the non-canonical Wnt signaling pathway and lipopolysaccharide (LPS)-mediated signaling pathway were commonly upregulated DEGs for all 3 days. KEGG pathway analysis indicated that the PI3K-Akt and focal adhesion were also commonly upregulated DEGs for all 3 days. Ten hub genes were identified by CytoHubba on days 8, 12, and 25. Then, we focused on the association of these hub genes with the Wnt pathways that had been enriched from the protein-protein interaction (PPI) by the Cytoscape plugin MCODE. CONCLUSIONS: These findings suggested further insights into the roles of the PI3K/AKT and Wnt pathways and their association with osteogenesis. In addition, the stem cell microenvironment via growth factors, extracellular matrix (ECM), IGF1, IGF2, LPS, and Wnt most likely affect osteogenesis by PI3K/AKT.


Assuntos
Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Osteogênese/genética , Transdução de Sinais/genética , Células Cultivadas , Biologia Computacional/métodos , Ontologia Genética , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mapas de Interação de Proteínas/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Neurochem Res ; 46(9): 2387-2402, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34145502

RESUMO

To investigate the influence of tumor necrosis factor-stimulated gene-6 (TSG-6) secreted by bone mesenchymal stem cells (BMSCs) on blood brain barrier (BBB) after intracerebral hemorrhage (ICH) and its related mechanisms. BMSCs and astrocytes were isolated and induced by TNF-α and LPS respectively. The effect of TSG-6 secreted by BMSCs on the proliferation and apoptosis of astrocytes and inflammatory response were assessed by CCK8, flow cytometry, and ELISA respectively. Then we studied the effects of TSG-6 secreted by BMSCs through the paracrine mechanism on the integrity of BBB after ICH via NF-κB signaling pathway in vitro and in vivo. We successfully isolated BMSCs and astrocytes. After LPS treatment of astrocytes, IL-1ß, IL-6, and TNF-α showed an upward trend. TSG-6 secreted by TNF-α-activated BMSCs could antagonize the inflammatory response in activated astrocytes. Through the co-culture of astrocytes and BMSCs and the ICH animal model, we found that TSG-6 regulates activated astrocytes by inhibiting the NF-κB signaling pathway and ameliorates BBB damage. Furthermore, we found that TNF-α-activated BMSCs secreted exosomes containing TSG-6 and played an anti-inflammatory effect. TSG-6 secreted by BMSCs regulates activated astrocytes by inhibiting the NF-κB signaling pathway, thereby ameliorating BBB damage.


Assuntos
Astrócitos/metabolismo , Barreira Hematoencefálica/fisiologia , Moléculas de Adesão Celular/metabolismo , Hemorragia Cerebral/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Astrócitos/efeitos dos fármacos , Proliferação de Células/fisiologia , Citocinas/metabolismo , Exossomos/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , NF-kappa B/metabolismo , Ratos Sprague-Dawley
14.
Mol Cell Biochem ; 476(12): 4277-4285, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34406574

RESUMO

Understanding the function and regulatory mechanism of miR-140-3p on the osteogenic differentiation of bone mesenchymal stem cells (BMSCs). Alizarin Red staining, Alkaline phosphatase (ALP) staining, and ALP activity were used to detect the ability osteogenic differentiation. miR-140-3p or Spred2 overexpression into BMSCs using lentiviral vectors and the result were analyzed by Reverse transcription quantitative polymerase chain reaction (RT-qPCR). The relation between miR-140-3p and Spred2 was examined by luciferase reporter assay. CCK8 assay was used to detect the proliferation of BMSCs. RT-qPCR and Western blot analysis were both used to detect altered gene and protein in osteogenic differentiation of BMSCs, respectively. The BMSCs which were induced for 21 days were analyzed by Alizarin Red staining, (ALP) staining and ALP activity. RT-qPCR analysis showed that overexpressed miR-140-3p promotes osteogenic differentiation. Western blots results indicated that the overexpression of Spred2 suppressed miR-140-3p. Luciferase reporter assay indicated that Spred2 can integrate with miR-140-3p directly. Meanwhile, the protein level of ALP, OCN, and Runx2, the markers of chondrogenesis, was increased when miR-140-3p increased or Spred2 overexpressed in the osteoinductive medium applied to the BMSCs. Our study demonstrated the association between miR-140-3p and Spred2 in osteogenic differentiation of BMSCs for the first time. Furthermore, our detections also revealed that Spred2-induced autophagic signaling accelerates the progress of osteogenic differentiation ability of BMSCs.


Assuntos
Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Osteogênese , Proteínas Repressoras/metabolismo , Animais , Autofagia/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Ratos
15.
Artigo em Inglês | MEDLINE | ID: mdl-34296590

RESUMO

Disuse osteoporosis (DOP) is one of the major consequences of long space flights. DOP also occurs in patients with spinal cord injuries and prolonged bedridden states that can have a severe impact on human health. Bone marrow mesenchymal stem cells (BMSCs) are multipotent stromal cells that play an important role in bone homeostasis. Long non-coding RNAs (lncRNAs) are involved in regulating osteogenic differentiation of BMSCs, and their abnormal expression might lead to the formation of orthopedic diseases. However, the specific mechanism of DOP has not yet been elucidated. All sequencing data were obtained from Gene Expression Omnibus (GEO) datasets. The limma package of R was applied to identify DEmRNAs and DElncRNAs. Pearson correlation coefficients (PCC) between DElncRNADEmRNA expression levels were calculated. Functional annotation was performed for DEmRNAs coexpressed with DElncRNAs. In addition, the Cytohubba plug-in in Cytoscape was applied to determine the top 10 hub genes. Finally, connectivity map (CMap) analysis was used to identify potential therapeutic drugs for DOP. The gene expression data, GSE100930 and GSE17696, were retrieved from the GEO database. A total of 2,212 differentially expressed mRNAs (DEmRNAs) and 22 differentially expressed lncRNAs (DElncRNAs) were obtained. Gene ontology (GO) functional terms, Kyoto Encyclopedia of Genes, and Genomes (KEGG) pathway enrichment analysis reveal 30 significant GO terms and 13 significant pathways. A coding-non-coding gene co-expression (CNC) network was constructed to study the potential role of hub-DElncRNAs and their co-expressed DEmRNAs in DOP. The lncRNAs, GSNAS1, SNHG12, and EPB41LA4A-AS1, were significant in the CNC network and potential regulators of DOP development. Three bioactive compounds (scoulerine, kinetin riboside, dexanabinol) with potential therapeutic significance for DOP were obtained through the Connectivity Map (CMAP) analysis. Our study revealed a new mechanism for a lineage shift of bone marrow mesenchymal stem cells under microgravity, and linked the function of protein-coding mRNAs with ncRNAs, which may contribute to the development of new therapies for DOP.


Assuntos
Osteoporose , RNA Longo não Codificante , Biologia Computacional , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Osteogênese , Osteoporose/genética , RNA Longo não Codificante/genética
16.
Phytother Res ; 35(5): 2639-2650, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33421256

RESUMO

Decrepitude and apoptosis of bone mesenchymal stem cells (BMSCs) induced by reactive oxygen species (ROS) lead to inhibited osteogenic differentiation, causing decreased bone density and osteoporosis. Quercetin, a bioactive component of Solanum muricatum extracts, promotes the osteogenic differentiation of BMSCs and ameliorates the symptoms of osteoporosis in vivo. However, the detailed mechanism underlying this process remains unclear. The study aims to reveal the regulatory mechanism of quercetin in BMSCs. Mouse BMSCs (mBMSCs) were isolated from the bone marrow and characterized by flow cytometry. QRT-PCR and western blot assays were performed to evaluate the expression levels of related genes and proteins. Alkaline phosphatase (ALP) staining and Oil Red O staining of lipids were used to estimate the osteogenesis and adipogenesis levels of mBMSCs, respectively. Quercetin treatment (2 and 5 µM) induced significant upregulation of antioxidant enzymes, SOD1 and SOD2, in mBMSCs. Quercetin promoted osteogenic differentiation and inhibited adipogenic differentiation of mBMSCs. Quercetin treatment enhanced the phosphorylation of AMPK protein and upregulated the expression of SIRT1, thus activating the AMPK/SIRT1 signaling pathway in mBMSCs. Quercetin promoted osteogenic differentiation and antioxidant responses of mBMSCs by activating the AMPK/SIRT1 signaling pathway.

17.
Pharm Biol ; 59(1): 1245-1255, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34511043

RESUMO

CONTEXT: Icariin has attracted increasing attention because of its wide variety of pharmacological effects. OBJECTIVE: This study investigates whether icariin could promote fracture healing in young and old rats and its mechanisms. MATERIALS AND METHODS: A Wistar rat model for the tibia fracture in relatively young and old rats, respectively, was established. The rats were divided into four groups: model group, L-icariin (50 mg/kg icariin), M-icariin (100 mg/kg icariin) and H-icariin (200 mg/kg icariin), and intragastric administration of icariin was performed for 10 days or 20 days. In addition, isolated and cultured rat bone mesenchymal stem cells (rBMSCs) from young and old rats were cultured with 5% and 20% of icariin-containing serum, respectively, then cell viability and alkaline phosphatase (ALP) activity were measured. RESULTS: Icariin administration induced the expression of Runx2, Osterix, BMP-2, p-Smad5 and osteocalcin secretion (young rats: model: 2.50 ± 0.71; L-icariin: 10.10 ± 1.55; M-icariin: 24.95 ± 2.19; H-icariin: 36.80 ± 2.26; old rats: model: 1.55 ± 0.49; L-icariin:6.55 ± 0.50; M-icariin: 15.00 ± 0.85; H-icariin:20.50 ± 2.27) at the fracture site, and increased the levels of bone formation markers (OC, BAP, NTX-1 and CTX-1) in a dose-dependent manner. In vitro, icariin treatment promoted rBMSC viability, increased ALP activity and the expression of BMP-2/Smad5/Runx2 pathway proteins. DISCUSSION AND CONCLUSIONS: Icariin may accelerate fracture healing by activating the BMP-2/Smad5/Runx2 pathway in relatively young and old rats. The research on the mechanism of icariin to promote fracture healing can provide a theoretical basis for the clinical application and promotion of icariin.


Assuntos
Flavonoides/farmacologia , Consolidação da Fratura/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Fraturas da Tíbia/tratamento farmacológico , Fatores Etários , Fosfatase Alcalina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Flavonoides/administração & dosagem , Masculino , Células-Tronco Mesenquimais/citologia , Osteocalcina/metabolismo , Ratos , Ratos Wistar , Fraturas da Tíbia/metabolismo
18.
J Neuroinflammation ; 17(1): 46, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014002

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are suspected to exert neuroprotective effects in brain injury, in part through the secretion of extracellular vesicles like exosomes containing bioactive compounds. We now investigate the mechanism by which bone marrow MSCs (BMSCs)-derived exosomes harboring the small non-coding RNA miR-29b-3p protect against hypoxic-ischemic brain injury in rats. METHODS: We established a rat model of middle cerebral artery occlusion (MCAO) and primary cortical neuron or brain microvascular endothelial cell (BMEC) models of oxygen and glucose deprivation (OGD). Exosomes were isolated from the culture medium of BMSCs. We treated the MCAO rats with BMSC-derived exosomes in vivo, and likewise the OGD-treated neurons and BMECs in vitro. We then measured apoptosis- and angiogenesis-related features using TUNEL and CD31 immunohistochemical staining and in vitro Matrigel angiogenesis assays. RESULTS: The dual luciferase reporter gene assay showed that miR-29b-3p targeted the protein phosphatase and tensin homolog (PTEN). miR-29b-3p was downregulated and PTEN was upregulated in the brain of MCAO rats and in OGD-treated cultured neurons. MCAO rats and OGD-treated neurons showed promoted apoptosis and decreased angiogenesis, but overexpression of miR-29b-3p or silencing of PTEN could reverse these alterations. Furthermore, miR-29b-3p could negatively regulate PTEN and activate the Akt signaling pathway. BMSCs-derived exosomes also exerted protective effects against apoptosis of OGD neurons and cell apoptosis in the brain samples from MCAO rats, where we also observed promotion of angiogenesis. CONCLUSION: BMSC-derived exosomal miR-29b-3p ameliorates ischemic brain injury by promoting angiogenesis and suppressing neuronal apoptosis, a finding which may be of great significance in the treatment of hypoxic-ischemic brain injury.


Assuntos
Exossomos/transplante , Hipóxia-Isquemia Encefálica/prevenção & controle , Infarto da Artéria Cerebral Média/complicações , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Células Endoteliais/metabolismo , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
19.
Scand J Immunol ; 91(5): e12874, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32090353

RESUMO

The immune and skeletal systems share common mechanisms, and the crosstalk between the two has been termed osteoimmunology. Osteoimmunology mainly focuses on diseases between the immune and bone systems including bone loss diseases, and imbalances in osteoimmune regulation affect skeletal homeostasis between osteoclasts and osteoblasts. The immune mediator interleukin-20 (IL-20), a member of the IL-10 family, enhances inflammation, chemotaxis and angiogenesis in diseases related to bone loss. However, it is unclear how IL-20 regulates the balance between osteoclastogenesis and osteoblastogenesis; therefore, we explored the mechanisms by which IL-20 affects bone mesenchymal stem cells (BMSCs) in osteoclastogenesis in primary cells during differentiation, proliferation, apoptosis and signalling. We initially found that IL-20 differentially regulated preosteoclast proliferation and apoptosis; BMSC-conditioned medium (CM) significantly enhanced osteoclast formation and bone resorption, which was dose-dependently regulated by IL-20; IL-20 inhibited OPG expression and promoted M-CSF, RANKL and RANKL/OPG expression; and IL-20 differentially regulated the expression of osteoclast-specific gene and transcription factors through the OPG/RANKL/RANK axis and the NF-kB, MAPK and AKT pathways. Therefore, IL-20 differentially regulates BMSCs in osteoclastogenesis and exerts its function by activating the OPG/RANKL/RANK axis and the NF-κB, MAPK and AKT pathways, which make targeting IL-20 a promising direction for targeted regulation in diseases related to bone loss.


Assuntos
Interleucinas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteoprotegerina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais , Animais , Apoptose/genética , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Ratos
20.
Mol Cell Biochem ; 469(1-2): 53-64, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279149

RESUMO

It has been shown that the conditioned medium of bone mesenchymal stem cells (BMSC-CM) can inhibit apoptosis of neural cells exposed to 2,5-hexanedione (HD), but its protective mechanism remains unclear. To investigate the underlying mechanism, VSC4.1 cells were given HD and 5, 10 and 15% BMSC-CM (v/v) in the current experiment. Our data showed that BMSC-CM concentration-dependently attenuated HD-induced cell apoptosis. Moreover, BMSC-CM remarkably decreased the mitochondrial cytochrome c (Cyt C) release and the caspase-3 activity in HD-given VSC4.1 cells. Given a relatively high expression of NGF in BMSCs and BMSC-CM, we hypothesized that NGF might be an important mediator of the protection of BMSC-CM against apoptosis induced by HD. To verify our hypothesis, the VSC4.1 cells were administrated with NGF and anti-NGF antibody in addition to HD. As expected, NGF could perfectly mimic BMSC-CM's protective role and these beneficial effects were abolished by anti-NGF antibody intervention. To further explore its mechanism, inhibitors of TrkA and Akt were given to the VSC4.1 cells and NGF/Akt/Bad pathway turned out to be involved in anti-apoptotic role of BMSC-CM. Based on these findings, it was revealed that BMSC-CM beneficial role was mediated by NGF and relied on the Akt/Bad pathway.


Assuntos
Apoptose/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Hexanonas/toxicidade , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Animais , Caspase 3/metabolismo , Citocromos c/metabolismo , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator de Crescimento Neural/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Receptor trkA/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA