Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38904081

RESUMO

The locus coeruleus-norepinephrine system plays a key role in supporting brain health along the lifespan, notably through its modulatory effects on neuroinflammation. Using ultra-high field diffusion magnetic resonance imaging, we examined whether microstructural properties (neurite density index and orientation dispersion index) in the locus coeruleus were related to those in cortical and subcortical regions, and whether this was modulated by plasma glial fibrillary acidic protein levels, as a proxy of astrocyte reactivity. In our cohort of 60 healthy individuals (30 to 85 yr, 50% female), higher glial fibrillary acidic protein correlated with lower neurite density index in frontal cortical regions, the hippocampus, and the amygdala. Furthermore, under higher levels of glial fibrillary acidic protein (above ~ 150 pg/mL for cortical and ~ 145 pg/mL for subcortical regions), lower locus coeruleus orientation dispersion index was associated with lower orientation dispersion index in frontotemporal cortical regions and in subcortical regions. Interestingly, individuals with higher locus coeruleus orientation dispersion index exhibited higher orientation dispersion index in these (sub)cortical regions, despite having higher glial fibrillary acidic protein levels. Together, these results suggest that the interaction between locus coeruleus-norepinephrine cells and astrocytes can signal a detrimental or neuroprotective pathway for brain integrity and support the importance of maintaining locus coeruleus neuronal health in aging and in the prevention of age-related neurodegenerative diseases.


Assuntos
Astrócitos , Proteína Glial Fibrilar Ácida , Locus Cerúleo , Humanos , Feminino , Masculino , Locus Cerúleo/diagnóstico por imagem , Astrócitos/fisiologia , Idoso , Pessoa de Meia-Idade , Adulto , Idoso de 80 Anos ou mais , Proteína Glial Fibrilar Ácida/metabolismo , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Neuritos/fisiologia
2.
J Neurosci ; 43(50): 8637-8648, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37875377

RESUMO

The mechanisms subserving motor skill acquisition and learning in the intact human brain are not fully understood. Previous studies in animals have demonstrated a causal relationship between motor learning and structural rearrangements of synaptic connections, raising the question of whether neurite-specific changes are also observable in humans. Here, we use advanced diffusion magnetic resonance imaging (MRI), sensitive to dendritic and axonal processes, to investigate neuroplasticity in response to long-term motor learning. We recruited healthy male and female human participants (age range 19-29) who learned a challenging dynamic balancing task (DBT) over four consecutive weeks. Diffusion MRI signals were fitted using Neurite Orientation Dispersion and Density Imaging (NODDI), a theory-driven biophysical model of diffusion, yielding measures of tissue volume, neurite density and the organizational complexity of neurites. While NODDI indices were unchanged and reliable during the control period, neurite orientation dispersion increased significantly during the learning period mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor areas. Importantly, reorganization of cortical microstructure during the learning phase predicted concurrent behavioral changes, whereas there was no relationship between microstructural changes during the control phase and learning. Changes in neurite complexity were independent of alterations in tissue density, cortical thickness, and intracortical myelin. Our results are in line with the notion that structural modulation of neurites is a key mechanism supporting complex motor learning in humans.SIGNIFICANCE STATEMENT The structural correlates of motor learning in the human brain are not fully understood. Results from animal studies suggest that synaptic remodeling (e.g., reorganization of dendritic spines) in sensorimotor-related brain areas is a crucial mechanism for the formation of motor memory. Using state-of-the-art diffusion magnetic resonance imaging (MRI), we found a behaviorally relevant increase in the organizational complexity of neocortical microstructure, mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor regions, following training of a challenging dynamic balancing task (DBT). Follow-up analyses suggested structural modulation of synapses as a plausible mechanism driving this increase, while colocalized changes in cortical thickness, tissue density, and intracortical myelin could not be detected. These results advance our knowledge about the neurobiological basis of motor learning in humans.


Assuntos
Encéfalo , Substância Branca , Animais , Humanos , Masculino , Feminino , Lactente , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Neuritos/fisiologia , Aprendizagem
3.
Magn Reson Med ; 91(6): 2597-2611, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38241135

RESUMO

PURPOSE: Despite significant impact on the study of human brain, MRI lacks a theory of signal formation that integrates quantum interactions involving proton dipoles (a primary MRI signal source) with brain intricate cellular environment. The purpose of the present study is developing such a theory. METHODS: We introduce the Transient Hydrogen Bond (THB) model, where THB-mediated quantum dipole interactions between water and protons of hydrophilic heads of amphipathic biomolecules forming cells, cellular membranes and myelin sheath serve as a major source of MR signal relaxation. RESULTS: The THB theory predicts the existence of a hydrogen-bond-driven structural order of dipole-dipole connections within THBs as a primary factor for the anisotropy observed in MRI signal relaxation. We have also demonstrated that the conventional Lorentzian spectral density function decreases too fast at high frequencies to adequately capture the field dependence of brain MRI signal relaxation. To bridge this gap, we introduced a stretched spectral density function that surpasses the limitations of Lorentzian dispersion. In human brain, our findings reveal that at any time point only about 4% to 7% of water protons are engaged in quantum encounters within THBs. These ultra-short (2 to 3 ns), but frequent quantum spin exchanges lead to gradual recovery of magnetization toward thermodynamic equilibrium, that is, relaxation of MRI signal. CONCLUSION: By incorporating quantum proton interactions involved in brain imaging, the THB approach introduces new insights on the complex relationship between brain tissue cellular structure and MRI measurements, thus offering a promising new tool for better understanding of brain microstructure in health and disease.


Assuntos
Bainha de Mielina , Prótons , Humanos , Bainha de Mielina/química , Anisotropia , Ligação de Hidrogênio , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Campos Magnéticos , Água/química
4.
Cereb Cortex ; 33(5): 2143-2151, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35584792

RESUMO

Omega-3 intake has been positively associated with healthy brain aging, yet it remains unclear whether high omega-3 intake beginning early in life may optimize its protective effects against brain aging. We examined whether omega-3 intake is associated with brain microstructure over 2 decades later among dementia-free older adults. The 128 participants (62% women; age at magnetic resonance imaging: 76.6 ± 7.9) from the Rancho Bernardo Study of Healthy Aging completed at least 1 dietary assessment between 1984 and 1996 and underwent restriction spectrum imaging (RSI) 22.8 ± 3.1 years later. We evaluated associations between prior omega-3 intake and RSI metrics of gray and white matter (WM) microstructure. Higher prior omega-3 intake was associated with greater restricted diffusion in the superior cortico-striatal fasciculus. A correlation between higher prior omega-3 intake and greater cingulum restricted diffusion was stronger among participants >80 years old. Higher omega-3 intake correlated with greater restricted diffusion in the inferior longitudinal and inferior fronto-occipital fasciculus more strongly for apolipoprotein E (APOE) ε4 carriers than noncarriers. Associations were not modified by adjustment for dietary pattern, health, or lifestyle. High omega-3 intake in midlife may help to maintain WM integrity into older age, particularly in the latest decades of life and among APOE ε4 carriers.


Assuntos
Ácidos Graxos Ômega-3 , Substância Branca , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Imagem de Tensor de Difusão/métodos , Encéfalo , Apolipoproteínas E , Apolipoproteína E4
5.
Neuroimage ; 282: 120338, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598814

RESUMO

Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.


Assuntos
Encéfalo , Substância Branca , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Anisotropia
6.
Front Neuroendocrinol ; 67: 101031, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35998859

RESUMO

Worldwide over 150 million women use oral contraceptives (OCs), which are the most prescribed form of contraception in both the United States and in European countries. Sex hormones, such as estradiol and progesterone, are important endogenous hormones known for shaping the brain across the life span. Synthetic hormones, which are present in OCs, interfere with the natural hormonal balance by reducing the endogenous hormone levels. Little is known how this affects the brain, especially during the most vulnerable times of brain maturation. Here, we review studies that investigate differences in brain gray and white matter in women using OCs in comparison to naturally cycling women. We focus on two neuroimaging methods used to quantify structural gray and white matter changes, namely structural MRI and diffusion MRI. Finally, we discuss the potential of these imaging techniques to advance knowledge about the effects of OCs on the brain and wellbeing in women.


Assuntos
Anticoncepcionais Orais , Objetivos , Humanos , Feminino , Anticoncepcionais Orais/farmacologia , Progesterona/farmacologia , Estradiol , Encéfalo/diagnóstico por imagem
7.
Hum Brain Mapp ; 44(10): 3998-4010, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37162380

RESUMO

There has been growing attention on the effect of COVID-19 on white-matter microstructure, especially among those that self-isolated after being infected. There is also immense scientific interest and potential clinical utility to evaluate the sensitivity of single-shell diffusion magnetic resonance imaging (MRI) methods for detecting such effects. In this work, the performances of three single-shell-compatible diffusion MRI modeling methods are compared for detecting the effect of COVID-19, including diffusion-tensor imaging, diffusion-tensor decomposition of orthogonal moments and correlated diffusion imaging. Imaging was performed on self-isolated patients at the study initiation and 3-month follow-up, along with age- and sex-matched controls. We demonstrate through simulations and experimental data that correlated diffusion imaging is associated with far greater sensitivity, being the only one of the three single-shell methods to demonstrate COVID-19-related brain effects. Results suggest less restricted diffusion in the frontal lobe in COVID-19 patients, but also more restricted diffusion in the cerebellar white matter, in agreement with several existing studies highlighting the vulnerability of the cerebellum to COVID-19 infection. These results, taken together with the simulation results, suggest that a significant proportion of COVID-19 related white-matter microstructural pathology manifests as a change in tissue diffusivity. Interestingly, different b-values also confer different sensitivities to the effects. No significant difference was observed in patients at the 3-month follow-up, likely due to the limited size of the follow-up cohort. To summarize, correlated diffusion imaging is shown to be a viable single-shell diffusion analysis approach that allows us to uncover opposing patterns of diffusion changes in the frontal and cerebellar regions of COVID-19 patients, suggesting the two regions react differently to viral infection.


Assuntos
COVID-19 , Substância Branca , COVID-19/diagnóstico por imagem , COVID-19/patologia , Imagem de Tensor de Difusão , Estudos de Viabilidade , Substância Branca/diagnóstico por imagem , Substância Branca/ultraestrutura , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/ultraestrutura , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
8.
Neurobiol Learn Mem ; 205: 107813, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37625779

RESUMO

Memory processes have long been known to determine food choices (Rozin & Zellner, 1985) but recognition memory of food and its cognitive, homeostatic and neuroanatomical predictors are still largely understudied. 60 healthy, overweight, non-restrictive eating adults (20 females) took part in a food wanting and subsequent food recognition and lure discrimination task at four time points after a standardized breakfast shake. With advanced tractography of 3 T diffusion-weighted imaging data, we investigated the influence of the uncinate fasciculus' (UF) brain microstructure on the interplay of food wanting and memory processes. The analysis was preregistered in detail and conducted with Bayesian multilevel regression modeling. Target recognition (d') and lure discrimination (LDI) performance of food tended to be higher than of art images while single image food memory accuracy evidently dominated art memory. On this single item level, wanting enhanced recognition accuracy and caloric content enhanced food memory accuracy. The enhancement by reward anticipation was most pronounced during memory encoding. Subjective hunger level did not predict performance on the memory task. The microstructure of the UF did neither evidently affect memory performance outcomes nor moderate the wanting enhancement of the recognition accuracy. Interestingly, female participants outperformed males on the memory task, and individuals with stronger neuroticism showed poorer memory performance. We shed light on to date understudied processes in food decision-making: reward anticipation influenced recognition accuracy and food memory was enhanced by higher caloric content, both effects might shape food decisions. Our findings indicate that brain microstructure does not affect food decision processes in adult populations with overweight. We suggest extending investigation of this interplay to brain activity as well as to populations with eating behaviour disorders.


Assuntos
Memória , Sobrepeso , Masculino , Humanos , Adulto , Feminino , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Alimentos , Recompensa
9.
Neuroimage ; 225: 117529, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33147507

RESUMO

Validation and interpretation of diffusion magnetic resonance imaging (dMRI) requires detailed understanding of the actual microstructure restricting the diffusion of water molecules. In this study, we used serial block-face scanning electron microscopy (SBEM), a three-dimensional electron microscopy (3D-EM) technique, to image seven white and grey matter volumes in the rat brain. SBEM shows excellent contrast of cellular membranes, which are the major components restricting the diffusion of water in tissue. Additionally, we performed 3D structure tensor (3D-ST) analysis on the SBEM volumes and parameterised the resulting orientation distributions using Watson and angular central Gaussian (ACG) probability distributions as well as spherical harmonic (SH) decomposition. We analysed how these parameterisations described the underlying orientation distributions and compared their orientation and dispersion with corresponding parameters from two dMRI methods, neurite orientation dispersion and density imaging (NODDI) and constrained spherical deconvolution (CSD). Watson and ACG parameterisations and SH decomposition captured well the 3D-ST orientation distributions, but ACG and SH better represented the distributions due to its ability to model asymmetric dispersion. The dMRI parameters corresponded well with the 3D-ST parameters in the white matter volumes, but the correspondence was less evident in the more complex grey matter. SBEM imaging and 3D-ST analysis also revealed that the orientation distributions were often not axially symmetric, a property neatly captured by the ACG distribution. Overall, the ability of SBEM to image diffusion barriers in intricate detail, combined with 3D-ST analysis and parameterisation, provides a step forward toward interpreting and validating the dMRI signals in complex brain tissue microstructure.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/ultraestrutura , Imagem de Tensor de Difusão , Imageamento Tridimensional , Microscopia Eletrônica , Animais , Imagem de Difusão por Ressonância Magnética , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/ultraestrutura , Ratos , Substância Branca/diagnóstico por imagem , Substância Branca/ultraestrutura
10.
Neuroimage ; 237: 118112, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940145

RESUMO

The preterm brain has been analysed after birth by a large body of neuroimaging studies; however, few studies have focused on white matter alterations in preterm subjects beyond infancy, especially in individuals born at extremely low gestation age - before 28 completed weeks. Neuroimaging data of extremely preterm young adults are now available to investigate the long-term structural alterations of disrupted neurodevelopment. We examined white matter hierarchical organisation and microstructure in extremely preterm young adults. Specifically, we first identified the putative hubs and peripheral regions in 85 extremely preterm young adults and compared them with 53 socio-economically matched and full-term born peers. Moreover, we analysed Fractional Anisotropy (FA), Mean Diffusivity (MD), Neurite Density Index (NDI), and Orientation Dispersion Index (ODI) of white matter in hubs, peripheral regions, and over the whole brain. Our results suggest that the hierarchical organisation of the extremely preterm adult brain remains intact. However, there is evidence of significant alteration of white matter connectivity at both the macro- and microstructural level, with overall diminished connectivity, reduced FA and NDI, increased MD, and comparable ODI; suggesting that, although the spatial configuration of WM fibres is comparable, there are less WM fibres per voxel. These alterations are found throughout the brain and are more prevalent along the pathways between deep grey matter regions, frontal regions and cerebellum. This work provides evidence that white matter abnormalities associated with the premature exposure to the extrauterine environment not only are present at term equivalent age but persist into early adulthood.


Assuntos
Encéfalo/patologia , Imagem de Tensor de Difusão , Lactente Extremamente Prematuro , Rede Nervosa/patologia , Substância Branca/patologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Rede Nervosa/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
11.
Neuroimage ; 211: 116609, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32044439

RESUMO

23Na provides the second strongest MR-observable signal in biological tissue and exhibits bi-exponential T2∗ relaxation in micro-environments such as the brain. There is significant interest in developing 23Na biomarkers for neurological diseases that are associated with sodium channel dysfunction such as multiple sclerosis and epilepsy. We have previously reported methods for acquisition of multi-echo sodium MRI and continuous distribution modelling of sodium relaxation properties as surrogate markers of brain microstructure. This study aimed to compare 23Na T2∗ relaxation times to more established measures of tissue microstructure derived from advanced diffusion MRI at 7 â€‹T. Six healthy volunteers were scanned using a 3D multi-echo radial ultra-short TE sequence using a dual-tuned 1H/23Na birdcage coil, and a high-resolution multi-shell, high angular resolution diffusion imaging sequence using a 32-channel 1H receive coil. 23Na T2∗ relaxation parameters [mean T2∗ (T2∗mean) and fast relaxation fraction (T2∗ff)] were calculated from a voxel-wise continuous gamma distribution signal model. White matter (restricted anisotropic diffusion) and grey matter (restricted isotropic diffusion) density were calculated from multi-shell multi-tissue constrained spherical deconvolution. Sodium parameters were compared with white and grey matter diffusion properties. Sodium T2∗mean and T2∗ff showed little variation across a range of white matter axonal fibre and grey matter densities. We conclude that sodium T2∗ relaxation parameters are not greatly influenced by relative differences in intra- and extracellular partial volumes. We suggest that care be taken when interpreting sodium relaxation changes in terms of tissue microstructure in healthy tissue.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Modelos Teóricos , Neuroimagem/métodos , Sódio , Substância Branca/diagnóstico por imagem , Adulto , Imagem de Difusão por Ressonância Magnética/instrumentação , Feminino , Humanos , Masculino , Neuroimagem/instrumentação , Adulto Jovem
12.
Magn Reson Med ; 84(3): 1605-1623, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32141131

RESUMO

PURPOSE: To optimize diffusion-relaxation MRI with tensor-valued diffusion encoding for precise estimation of compartment-specific fractions, diffusivities, and T2 values within a two-compartment model of white matter, and to explore the approach in vivo. METHODS: Sampling protocols featuring different b-values (b), b-tensor shapes (bΔ ), and echo times (TE) were optimized using Cramér-Rao lower bounds (CRLB). Whole-brain data were acquired in children, adults, and elderly with white matter lesions. Compartment fractions, diffusivities, and T2 values were estimated in a model featuring two microstructural compartments represented by a "stick" and a "zeppelin." RESULTS: Precise parameter estimates were enabled by sampling protocols featuring seven or more "shells" with unique b/bΔ /TE-combinations. Acquisition times were approximately 15 minutes. In white matter of adults, the "stick" compartment had a fraction of approximately 0.5 and, compared with the "zeppelin" compartment, featured lower isotropic diffusivities (0.6 vs. 1.3 µm2 /ms) but higher T2 values (85 vs. 65 ms). Children featured lower "stick" fractions (0.4). White matter lesions exhibited high "zeppelin" isotropic diffusivities (1.7 µm2 /ms) and T2 values (150 ms). CONCLUSIONS: Diffusion-relaxation MRI with tensor-valued diffusion encoding expands the set of microstructure parameters that can be precisely estimated and therefore increases their specificity to biological quantities.


Assuntos
Substância Branca , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Criança , Imagem de Difusão por Ressonância Magnética , Humanos , Substância Branca/diagnóstico por imagem
13.
Magn Reson Med ; 83(6): 2356-2369, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31763726

RESUMO

PURPOSE: To develop a highly efficient magnetic field gradient coil for head imaging that achieves 200 mT/m and 500 T/m/s on each axis using a standard 1 MVA gradient driver in clinical whole-body 3.0T MR magnet. METHODS: A 42-cm inner diameter head-gradient used the available 89- to 91-cm warm bore space in a whole-body 3.0T magnet by increasing the radial separation between the primary and the shield coil windings to 18.6 cm. This required the removal of the standard whole-body gradient and radiofrequency coils. To achieve a coil efficiency ~4× that of whole-body gradients, a double-layer primary coil design with asymmetric x-y axes, and symmetric z-axis was used. The use of all-hollow conductor with direct fluid cooling of the gradient coil enabled ≥50 kW of total heat dissipation. RESULTS: This design achieved a coil efficiency of 0.32 mT/m/A, allowing 200 mT/m and 500 T/m/s for a 620 A/1500 V driver. The gradient coil yielded substantially reduced echo spacing, and minimum repetition time and echo time. In high b = 10,000 s/mm2 diffusion, echo time (TE) < 50 ms was achieved (>50% reduction compared with whole-body gradients). The gradient coil passed the American College of Radiology tests for gradient linearity and distortion, and met acoustic requirements for nonsignificant risk operation. CONCLUSIONS: Ultra-high gradient coil performance was achieved for head imaging without substantial increases in gradient driver power in a whole-body 3.0T magnet after removing the standard gradient coil. As such, any clinical whole-body 3.0T MR system could be upgraded with 3-4× improvement in gradient performance for brain imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Acústica , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Cabeça/diagnóstico por imagem , Humanos , Campos Magnéticos
14.
Neuroradiology ; 61(6): 685-694, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30918990

RESUMO

PURPOSE: To investigate the diffusion kurtosis imaging (DKI) in early minimal hepatic encephalopathy (MHE) diagnosis and evaluate the correlations between changes in DKI metrics and cognitive performance. METHODS: We enrolled 116 cirrhosis patients, divided into non-HE (n = 61) and MHE (n = 55), and 46 normal controls (NCs). All patients underwent cognitive testing before magnetic resonance imaging. DKI metrics were calculated through whole-brain voxel-based analysis (VBA) and differences between the groups were assessed. Pearson correlation between the DKI metrics and cognitive performance was analysed. The receiver operating characteristic (ROC) curve was used to analyse the diagnostic efficiency of DKI metrics for MHE. RESULTS: MHE patients had significantly altered DKI metrics in a wide range of regions; lower fractional anisotropy (FA) and higher mean diffusivity (MD) are mainly located in the corpus callosum, left temporal white matter (WM), and right medial frontal WM. Furthermore, significantly altered kurtosis metrics included lower mean kurtosis (MK) in the corpus callosum and left thalamus, lower radial kurtosis (RK) in the corpus callosum, and lower axial kurtosis (AK) in the right anterior thalamic radiation. Alterations in axial diffusivity (AD), radial diffusivity (RD), and MD were closely correlated with cognitive scores. The ROC curves indicated AD in the forceps minor had the highest predictive performance for MHE in the cirrhosis patients (area under curve = 0.801, sensitivity = 77.05%, specificity = 74.55%). CONCLUSIONS: Altered DKI metrics indicate brain microstructure abnormalities in MHE patients, some of which may be used as neuroimaging markers for early MHE diagnosis.


Assuntos
Disfunção Cognitiva/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Encefalopatia Hepática/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Anisotropia , Biomarcadores/sangue , Estudos de Casos e Controles , Disfunção Cognitiva/patologia , Feminino , Encefalopatia Hepática/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade , Substância Branca/patologia
15.
Neuroimage ; 179: 275-287, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29933040

RESUMO

This study aims to statistically describe histologically stained white matter brain sections to subsequently inform and validate diffusion MRI techniques. For the first time, we characterise volume fraction distributions of three of the main structures in deep subcortical white matter (axons, astrocytes, and myelinated axons) in a representative cohort of an ageing population for which well-characterized neuropathology data is available. We analysed a set of samples from 90 subjects of the Cognitive Function and Ageing Study (CFAS), stratified into three groups of 30 subjects each, in relation to the presence of age-associated deep subcortical lesions. This provides volume fraction distributions in different scenarios relevant to brain diffusion MRI in dementia. We also assess statistically significant differences found between these groups. In agreement with previous literature, our results indicate that white matter lesions are related with a decrease in the myelinated axons fraction and an increase in astrocytic fraction, while no statistically significant changes occur in axonal mean fraction. In addition, we introduced a framework to quantify volume fraction distributions from 2D immunohistochemistry images, which is validated against in silico simulations. Since a trade-off between precision and resolution emerged, we also performed an assessment of the optimal scale for computing such distributions.


Assuntos
Astrócitos/citologia , Axônios/ultraestrutura , Encéfalo/citologia , Bainha de Mielina/ultraestrutura , Substância Branca/citologia , Idoso de 80 Anos ou mais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino
16.
Neuroimage ; 176: 11-21, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660512

RESUMO

Fiber ball imaging (FBI) provides a means of calculating the fiber orientation density function (fODF) in white matter from diffusion MRI (dMRI) data obtained over a spherical shell with a b-value of about 4000 s/mm2 or higher. By supplementing this FBI-derived fODF with dMRI data acquired for two lower b-value shells, it is shown that several microstructural parameters may be estimated, including the axonal water fraction (AWF) and the intrinsic intra-axonal diffusivity. This fiber ball white matter (FBWM) modeling method is demonstrated for dMRI data acquired from healthy volunteers, and the results are compared with those of the white matter tract integrity (WMTI) method. Both the AWF and the intra-axonal diffusivity obtained with FBWM are found to be significantly larger than for WMTI, with the FBWM values for the intra-axonal diffusivity being more consistent with recent results obtained using isotropic diffusion weighting. An important practical advantage of FBWM is that the only nonlinear fitting required is the minimization of a cost function with just a single free parameter, which facilitates the implementation of efficient and robust numerical routines.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Substância Branca/anatomia & histologia , Axônios , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Processamento de Imagem Assistida por Computador , Modelos Neurológicos
17.
Magn Reson Med ; 80(5): 2155-2172, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29573009

RESUMO

PURPOSE: The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. THEORY AND METHODS: Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. RESULTS: Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. CONCLUSION: Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Algoritmos , Química Encefálica/fisiologia , Simulação por Computador , Feminino , Humanos , Masculino , Bainha de Mielina/química , Imagens de Fantasmas , Água/química
18.
Neuroimage ; 182: 283-293, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28495635

RESUMO

Prior models used to clarify which aspects of tissue microstructure mostly affect intracellular diffusion and corresponding diffusion-weighted magnetic resonance (DW-MR) signal have focused on relatively simple geometrical descriptions of the cellular microenvironment (spheres, randomly oriented cylinders, etc…), neglecting finer morphological details which may have an important role. Some types of neurons present high density of spines; and astrocytes and macroglial cells processes present leaflets, which may all impact the diffusion process. Here, we use Monte-Carlo simulations of many particles diffusing in cylindrical compartments with secondary structures mimicking spines and leaflets of neuronal and glial cell fibers, to investigate to what extent the diffusion-weighted signal of intracellular molecules is sensitive to spines/leaflets density and length. In order to study the specificity of DW-MR signal to these kinds of secondary structures, beading-like geometry is simulated as "control" deviation from smooth cylinder too. Results suggest that: a) the estimated intracellular tortuosity increases as spines/leaflets density or length (beading amplitude) increase; b) the tortuosity limit is reached for diffusion time td>200 ms for metabolites and td>70 ms for water molecules, suggesting that the effects of these finer morphological details are negligible at td longer than these threshold values; c) fiber diameter is overestimated, while intracellular diffusivity is underestimated, when simple geometrical models based on hollow smooth cylinders are used; d) apparent surface-to-volume, S/V, ratio estimated by linear fit of high frequency OG data appears to be an excellent estimation of the actual S/V ratio, even in the presence of secondary structures, and it increases as spines and leaflets density or length increase (while decreasing as beadings amplitude increases). Comparison between numerical simulations and multimodal metabolites DW-MRS experiments in vivo in mouse brain shows that these fine structures may affect the DW-MRS signal and the derived diffusion metrics consistently with their expected density and geometrical features. This work suggests that finer structures of cell morphology have non-negligible effects on intracellular molecules' diffusion that may be measured by using multimodal DW-MRS approaches, stimulating future developments and applications.


Assuntos
Simulação por Computador , Espinhas Dendríticas/ultraestrutura , Imagem de Difusão por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Modelos Teóricos , Fibras Nervosas/ultraestrutura
19.
NMR Biomed ; 30(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28643354

RESUMO

A large number of mathematical models have been proposed to describe the measured signal in diffusion-weighted (DW) magnetic resonance imaging (MRI). However, model comparison to date focuses only on specific subclasses, e.g. compartment models or signal models, and little or no information is available in the literature on how performance varies among the different types of models. To address this deficiency, we organized the 'White Matter Modeling Challenge' during the International Symposium on Biomedical Imaging (ISBI) 2015 conference. This competition aimed to compare a range of different kinds of models in their ability to explain a large range of measurable in vivo DW human brain data. Specifically, we assessed the ability of models to predict the DW signal accurately for new diffusion gradients and b values. We did not evaluate the accuracy of estimated model parameters, as a ground truth is hard to obtain. We used the Connectome scanner at the Massachusetts General Hospital, using gradient strengths of up to 300 mT/m and a broad set of diffusion times. We focused on assessing the DW signal prediction in two regions: the genu in the corpus callosum, where the fibres are relatively straight and parallel, and the fornix, where the configuration of fibres is more complex. The challenge participants had access to three-quarters of the dataset and their models were ranked on their ability to predict the remaining unseen quarter of the data. The challenge provided a unique opportunity for a quantitative comparison of diverse methods from multiple groups worldwide. The comparison of the challenge entries reveals interesting trends that could potentially influence the next generation of diffusion-based quantitative MRI techniques. The first is that signal models do not necessarily outperform tissue models; in fact, of those tested, tissue models rank highest on average. The second is that assuming a non-Gaussian (rather than purely Gaussian) noise model provides little improvement in prediction of unseen data, although it is possible that this may still have a beneficial effect on estimated parameter values. The third is that preprocessing the training data, here by omitting signal outliers, and using signal-predicting strategies, such as bootstrapping or cross-validation, could benefit the model fitting. The analysis in this study provides a benchmark for other models and the data remain available to build up a more complete comparison in the future.


Assuntos
Encéfalo/fisiologia , Conectoma , Imagem de Difusão por Ressonância Magnética/métodos , Modelos Neurológicos , Corpo Caloso/fisiologia , Fórnice/fisiologia , Humanos
20.
Neuroimage ; 118: 468-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26091854

RESUMO

This paper compares a range of compartment models for diffusion MRI data on in vivo human acquisitions from a standard 60mT/m system (Philips 3T Achieva) and a unique 300mT/m system (Siemens Connectom). The key aim is to determine whether both systems support broadly the same models or whether the Connectom higher gradient system supports significantly more complex models. A single volunteer underwent 8h of acquisition on each system to provide uniquely wide and dense sampling of the available space of pulsed-gradient spin-echo (PGSE) measurements. We select a set of promising models from the wide set of possible three-compartment models for in vivo white matter (WM) that previous work and preliminary experiments suggest as strong candidates, but extend them to fit for compartmental T2 and diffusivity. We focus on the corpus callosum where the WM fibre architecture is simplest and compare their ability to explain the measured data, using Akaike's information criterion (AIC), and to predict unseen data, using cross-validation. We also compare the stability of parameter estimates in the presence of i) noise, using bootstrapping, and ii) spatial variation, using visual assessment and comparison with anatomical knowledge. Broadly similar models emerge from the AIC and cross-validation experiments in both data sets. Specifically, a three-compartment model consisting of either a Bingham distribution of sticks or a Cylinder for the intracellular compartment, an anisotropic diffusion tensor (DT) model for the extracellular compartment, as well as an isotropic CSF compartment, performs consistently well. However, various other models also perform well and no single model emerges as clear winner. The WM data (with virtually no CSF contamination) do not support compartmental T2 but partially support compartmental diffusivity. Evaluation of parameter stability favours simpler models than those identified by AIC or cross-validation. They suggest that the level of complexity in models underpinning currently popular microstructure imaging techniques such as NODDI, CHARMED, or ActiveAx, where the number of free parameters is about 4 or 5 rather than 10 or 11, may reflect the level of complexity achievable for a useful technique on current systems, although the 300mT/m data may support more complex models.


Assuntos
Corpo Caloso/citologia , Processamento de Imagem Assistida por Computador/métodos , Modelos Neurológicos , Substância Branca/citologia , Imagem de Difusão por Ressonância Magnética , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA