Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.503
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-18, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856105

RESUMO

Rice is an important food crop throughout the world. Rice bran, the outer layer of rice grain, is a by-product generated during the rice milling process. Rice bran oil (RBO) is extracted from rice bran and has also become increasingly popular. RBO is considered to be one of the healthiest cooking oils due to its balanced proportion of fatty acids, as well as high content of γ-oryzanol together with phytosterols, vitamin E, wax ester, trace and macro elements, carotenoids, and phenolics. The existence of these compounds provides RBO with various functions, including hypotensive and hypolipidemic functions, antioxidant, anticancer, and immunomodulatory functions, antidiabetic function, anti-inflammatory and anti-allergenic functions, hepatoprotective activity function, and in preventing neurological diseases. Recently, research on the nutrients in RBO focused on the detection of nutrients, functions, and processing methods. However, the processing and utilization of rice bran remain sufficiently ineffective, and the processing steps will also affect the nutrients in RBO to different degrees. Therefore, this review focuses on the contents and nutritional functions of different nutrients in RBO and the possible effects of processing methods on nutrients.

2.
J Nanobiotechnology ; 22(1): 114, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493106

RESUMO

BACKGROUND: Rice bran a by-product of the rice milling process is currently underutilized. Recent studies have shown that plant-derived nanoparticles (pdNPs) can be mass-produced at a low cost and exhibit biological and therapeutic activities. Rice bran contains various anti-cancer compounds, including γ-oryzanol and γ-tocotrienol, and rice bran-derived nanoparticles (rbNPs) can be employed as novel therapeutic agents for cancer treatment. RESULTS: Koshihikari rice bran was suspended in water, and the suspension was centrifuged and filtered through a 0.45-µm-pore size syringe filter. The filtrate was ultracentrifuged, and the precipitates were suspended to obtain rbNPs. The rbNPs were negatively charged exosome-like nanoparticles with an average diameter of approximately 130 nm. The rbNPs exhibited cytotoxic activities against cancer cells but not against normal cells. The cytotoxic activity of rbNPs to murine colon adenocarcinoma colon26 cells was significantly greater than DOXIL® or other pdNPs. The rbNPs induced cell cycle arrest and apoptosis, and reduced the expression of proliferative proteins, including ß-catenin and cyclin D1. Intraperitoneal injections of rbNPs into mice bearing peritoneal dissemination of colon26 cells significantly suppressed tumor growth with no significant adverse effects. CONCLUSION: These results indicated that rbNPs are promising nanoparticles, hold significant potential for anti-cancer applications, and are expected to play a vital role in cancer treatment.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Oryza , Animais , Camundongos , Neoplasias do Colo/tratamento farmacológico , Antioxidantes/farmacologia , Antineoplásicos/farmacologia
3.
Biosci Biotechnol Biochem ; 88(2): 189-195, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37880998

RESUMO

Rice is a staple food in the Asian region and one of the world's major energy sources. Testosterone is a steroid hormone that maintains physical, sexual, and cognitive ability, and its decline causes health problems like late-onset hypogonadism. Evaluation of various grain extracts showed rice bran to stimulate testosterone secretion from Leydig model cells. α-Tocotrienol was found as a bioactive compound in rice bran, and mechanistic analysis showed the stimulation of steroid hormone synthesis through enhanced gene expression of steroidogenic acute regulatory protein as well as inducing mitochondrial localization of the protein. Preliminary study showed an increasing trend in serum testosterone levels in mice by oral intake of α-tocotrienol. These results suggest that α-tocotrienol intake may be effective in preventing symptoms caused by low testosterone levels.


Assuntos
Células Intersticiais do Testículo , Oryza , Tocotrienóis , Masculino , Camundongos , Animais , Células Intersticiais do Testículo/metabolismo , Oryza/genética , Oryza/metabolismo , Testosterona , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Esteroides/metabolismo , Expressão Gênica
4.
Int J Food Sci Nutr ; 75(5): 518-526, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38910266

RESUMO

Functionally distinct dietary fibre sources may be combined in reformulated foods to restore a natural spectrum of health attributes. Effects of wheat bran (WB), psyllium husk, guar gum and Raftilose™ combinations on hydrated faecal mass (HFM), were determined. A valid rat model was fed diets supplemented with 10% WB, 10% WB with 1-6% psyllium in 1% steps, and 10% WB/5% psyllium with 1-7% guar gum or 1-6% Raftilose in 1% steps. Fully hydrated faecal pellets gave HFM values in the human range, increasing by 2.4 ± 0.29 g per gram of WB ingested, and by 15.6 ± 1.52 g per g of psyllium. Equations for incremental changes in HFM predicted intakes of fibre combinations required for adequate daily HFM, and it is shown how expressing relative effects of foods on HFM as functional equivalents would allow quantitative personalised management of HFM for reduced constipation and colorectal cancer in humans.


Assuntos
Fibras na Dieta , Fezes , Galactanos , Mananas , Gomas Vegetais , Psyllium , Fibras na Dieta/farmacologia , Animais , Fezes/química , Humanos , Mananas/farmacologia , Gomas Vegetais/farmacologia , Galactanos/farmacologia , Ratos , Psyllium/farmacologia , Masculino , Ratos Sprague-Dawley , Constipação Intestinal/dietoterapia , Modelos Animais
5.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474201

RESUMO

In recent years, the potent influence of tocotrienol (T3) on diminishing blood glucose and lipid concentrations in both Mus musculus (rats) and Homo sapiens (humans) has been established. However, the comprehensive exploration of tocotrienol's hypolipidemic impact and the corresponding mechanisms in aquatic species remains inadequate. In this study, we established a zebrafish model of a type 2 diabetes mellitus (T2DM) model through high-fat diet administration to zebrafish. In the T2DM zebrafish, the thickness of ocular vascular walls significantly increased compared to the control group, which was mitigated after treatment with T3. Additionally, our findings demonstrate the regulatory effect of T3 on lipid metabolism, leading to the reduced synthesis and storage of adipose tissue in zebrafish. We validated the expression patterns of genes relevant to these processes using RT-qPCR. In the T2DM model, there was an almost two-fold upregulation in pparγ and cyp7a1 mRNA levels, coupled with a significant downregulation in cpt1a mRNA (p < 0.01) compared to the control group. The ELISA revealed that the protein expression levels of Pparγ and Rxrα exhibited a two-fold elevation in the T2DM group relative to the control. In the T3-treated group, Pparγ and Rxrα protein expression levels consistently exhibited a two-fold decrease compared to the model group. Lipid metabolomics showed that T3 could affect the metabolic pathways of zebrafish lipid regulation, including lipid synthesis and decomposition. We provided experimental evidence that T3 could mitigate lipid accumulation in our zebrafish T2DM model. Elucidating the lipid-lowering effects of T3 could help to minimize the detrimental impacts of overfeeding in aquaculture.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Tocotrienóis , Humanos , Camundongos , Ratos , Animais , Tocotrienóis/metabolismo , Peixe-Zebra/metabolismo , Dieta Hiperlipídica , Hiperlipidemias/metabolismo , Óleo de Farelo de Arroz , Diabetes Mellitus Tipo 2/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo
6.
Molecules ; 29(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542829

RESUMO

This study was undertaken to investigate the effects of hydrothermal treatments under mild acid and alkaline conditions on polyphenol release and recovery from wheat bran (WB). After an initial screening of various food-grade substances, strong evidence was raised regarding the potency of citric acid and sodium carbonate to provide WB extracts exceptionally enriched in polyphenols. Thus, these two catalysts were tested under various time and temperature combinations, and the processes were described by linear models based on severity factor. The most effective treatments were those performed with 10% of either citric acid or sodium carbonate, at a constant temperature of 90 °C for 24 h, providing yields in total polyphenols of 23.76 and 23.60 mg g-1 dry mass of ferulic acid equivalents, respectively. Liquid chromatography-mass spectrometry analyses revealed that, while the sodium carbonate treatment afforded extracts enriched in ferulic acid, treatments with citric acid gave extracts enriched in a ferulate pentose ester. The extracts produced from those treatments also exhibited diversified antioxidant characteristics, a fact ascribed to the different polyphenolic composition. To the best of the authors' knowledge, this is the first report demonstrating the effective release of ferulic acid and a ferulate pentose ester from WB, using benign acid and alkali catalysts, such as citric acid and sodium carbonate.


Assuntos
Antioxidantes , Carbonatos , Ácidos Cumáricos , Polifenóis , Antioxidantes/química , Polifenóis/análise , Fibras na Dieta/análise , Pentoses , Ésteres , Ácido Cítrico
7.
Molecules ; 29(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893457

RESUMO

The fibers from four wheat varieties (FT, XW 26, XW 45, and KW 1701) were selected and chemically modified with NaOH, epichlorohydrin, and dimethylamine to improve the adsorption capacity for anionic dye. The structure of the fibers with or without modification was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectrometry. The modified products were studied from the aspects of adsorption capacities, adsorption kinetics, and thermodynamics to provide a reference for the utilization of wheat bran. By SEM, more porous and irregular structures were found on the modified fibers. The XRD results showed that the crystals from the original fibers were destroyed in the modification process. The changes in fibers' infrared spectra before and after modification suggested that quaternary ammonium salts were probably formed in the modification process. The maximum adsorption capacity of wheat bran fibers for Congo red within 120 min was 20 mg/g for the unmodified fiber (XW 26) and 93.46 mg/g for the modified one (XW 45). The adsorption kinetics of Congo red by modified wheat bran fiber was in accord with the pseudo-second-order kinetic model at 40 °C, 50 °C, and 60 °C, indicating that the adsorption process might be mainly dominated by chemisorption. The adsorption was more consistent with the Langmuir isothermal adsorption model, implying that this process was monolayer adsorption. The thermodynamic parameters suggested that the adsorption occurred spontaneously, and the temperature increase was favorable to the adsorption. As mentioned above, this study proved that the wheat bran fiber could possess good adsorption capacities for anion dye after chemical modification.


Assuntos
Corantes , Fibras na Dieta , Termodinâmica , Adsorção , Fibras na Dieta/análise , Corantes/química , Cinética , Triticum/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Vermelho Congo/química
8.
Prep Biochem Biotechnol ; 54(6): 819-829, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38152875

RESUMO

The study aims to statistically optimize the phytase production by Penicillium oxalicum PBG30 in solid-state fermentation using wheat bran as substrate. Variables viz. pH, incubation days, MgSO4, and Tween-80 were the significant parameters identified through the Plackett-Burman design (PBD) that majorly influenced the phytase production. Further, central composite design (CCD) method of response surface methodology (RSM) defined the optimum values for these factors i.e., pH 7.0, 5 days of incubation, 0.75% of MgSO4, and 3.5% of Tween-80 that leads to maximum phytase production of 475.42 U/g DMR. Phytase production was also sustainable in flasks and trays of different sizes with phytase levels ranging from 394.95 to 475.42 U/g DMR. Enhancement in phytase production is 5.6-fold as compared to unoptimized conditions. The in-vitro dephytinization of feed showed an amelioration in the nutritive value by releasing inorganic phosphate and other nutrients in a time-dependent manner. The highest amount of inorganic phosphate (33.986 mg/g feed), reducing sugar (134.4 mg/g feed), and soluble protein (115.52 mg/g feed) was achieved at 37 °C with 200 U of phytase in 0.5 g feed for 48 h. This study reports the economical and large-scale production of phytase with applicability in enhancing feed nutrition.


Assuntos
6-Fitase , Fermentação , Penicillium , 6-Fitase/metabolismo , 6-Fitase/biossíntese , Penicillium/metabolismo , Penicillium/enzimologia , Concentração de Íons de Hidrogênio , Ração Animal/análise , Fibras na Dieta/metabolismo , Aditivos Alimentares/metabolismo
9.
Prep Biochem Biotechnol ; 54(6): 796-808, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38141162

RESUMO

Bacillus sp. PM06, previously isolated from sugarcane waste pressmud, could produce dual enzymes α-amylase and cellulase. The isolate's crude enzymes were purified homogeneously using ammonium sulfate precipitation followed by High Quaternary amine anion exchange chromatography. Purified enzymes revealed the molecular weights of α-amylase and cellulase as 55 and 52 kDa, with a purification fold of 15.4 and 11.5, respectively. The specific activity of purified α-amylase and cellulase were 740.7 and 555.6 U/mg, respectively. It demonstrated a wide range of activity from pH 5.0 to 8.5, with an optimum pH of 5.5 and 6.4 for α-amylase and cellulase. The optimum temperature was 50 °C for α-amylase and 60 °C for cellulase. The kinetic parameters of purified α-amylase were 741.5 ± 3.75 µmol/min/mg, 1.154 ± 0.1 mM, and 589 ± 3.5/(s mM), using starch as a substrate. Whereas cellulase showed 556.3 ± 1.3 µmol/min/mg, 1.78 ± 0.1 mM, and 270.9 ± 3.8/(s mM) of Vmax, Km, Kcat/Km, respectively, using carboxymethyl cellulose (CMC) as substrate. Among the various substrates tested, α-amylase had a higher specificity for amylose and CMC for cellulase. Different inhibitors and activators were also examined. Ca2+ Mg2+, Co2+, and Mn2+ boosted α-amylase and cellulase activities. Cu2+ and Ni2+ both inhibited the enzyme activities. Enzymatic saccharification of wheat bran yielded 253.61 ± 1.7 and 147.5 ± 1.0 mg/g of reducing sugar within 12 and 24 h of incubation when treated with purified α-amylase and cellulase. A more significant amount of 397.7 ± 1.9 mg/g reducing sugars was released from wheat bran due to the synergetic effect of two enzymes. According to scanning electron micrograph analysis, wheat bran was effectively broken down by both enzymes.


Assuntos
Bacillus , Celulase , alfa-Amilases , alfa-Amilases/isolamento & purificação , alfa-Amilases/química , alfa-Amilases/metabolismo , Celulase/isolamento & purificação , Celulase/química , Celulase/metabolismo , Bacillus/enzimologia , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Estabilidade Enzimática , Especificidade por Substrato , Peso Molecular , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Amido/metabolismo , Amido/química
10.
Int J Cosmet Sci ; 46(2): 162-174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37840342

RESUMO

OBJECTIVE: Rice (Oryza sativa) bran waxes, the by-products of rice bran oil manufacturing, are widely used as inactive components in several preparations. Nevertheless, the function of rice bran waxes against skin ageing has never been reported. This study aimed to investigate thermal property and fatty acid profile of rice bran waxes, including rice bran soft (RBS) and hard (RBH) waxes, and the activities against skin ageing in cultured skin cells. METHODS: Thermal property and fatty acid profile of rice bran waxes were analysed by differential scanning calorimetry and gas chromatography-mass spectrometry, respectively. The cytotoxicity assay of waxes was performed in B16F10 melanoma cells, human skin fibroblasts and co-culture cells of HaCaT cells and human skin fibroblasts. The non-cytotoxic concentrations of waxes were evaluated for their activities against skin ageing, including melanogenesis assay, antioxidant activity, collagen content analysis, matrix metalloproteinase-1 and matrix metalloproteinase-2 inhibitory assay and anti-inflammatory activity. RESULTS: Thermal property indicated the endotherm peaks with melting temperatures at 40.89 ± 0.27°C and 69.64 ± 0.34°C for RBS and RBH, respectively. The main fatty acids in RBS were oleic (31.68 ± 0.75%) and linoleic acids (27.19 ± 0.40%), whereas those in RBH were palmitic (36.24 ± 1.08%) and stearic acids (35.21 ± 4.51%). The cytotoxicity assay in single cells and co-culture cells showed the non-cytotoxicity of RBS (0.0001-1 mg/mL) and RBH (0.0001-0.1 mg/mL). The anti-skin ageing activities of 1 mg/mL RBS and 0.1 mg/mL RBH included the melanogenesis inhibition by suppression of tyrosinase and tyrosinase-related protein-2 enzymes, the antioxidant activity by cellular protection against cell damage and cell death, the collagen stimulation, the matrix metalloproteinase-1 and matrix metalloproteinase-2 suppression and the anti-inflammation. CONCLUSIONS: The study results suggest that RBS and RBH can potentially be applied as the functional ingredients in formulations against skin ageing as well as provide the superior benefit on skin moisturization.


OBJECTIF: Les cires de son de riz (Oryza sativa) et les sous­produits de la fabrication de l'huile de son de riz sont largement utilisées comme composants inactifs dans plusieurs préparations. Néanmoins, l'effet des cires de son de riz contre le vieillissement de la peau n'a jamais été rapporté. Cette étude visait à étudier les propriétés thermiques et le profil d'acides gras des cires de son de riz, y compris les cires dures et douces de son de riz, et les activités contre le vieillissement de la peau dans les cellules cutanées en culture. MÉTHODES: La propriété thermique et le profil d'acides gras des cires de son de riz ont été analysés par calorimétrie différentielle à balayage et chromatographie en phase gazeuse couplée spectrométrie de masse, respectivement. Le dosage de la cytotoxicité des cires a été réalisé sur des cellules de mélanome B16F10, des fibroblastes de peau humaine, et des cellules de co­culture de cellules HaCaT et des fibroblastes de peau humaine. Les concentrations non cytotoxiques des cires ont été évaluées pour leurs activités contre le vieillissement de la peau, y compris l'analyse de la mélanogenèse, l'activité antioxydante, l'analyse de la teneur en collagène, le test de l'inhibiteur de la métalloprotéinase matricielle­1 et de la métalloprotéinase matricielle­2 et l'activité anti­inflammatoire. RÉSULTATS: La propriété thermique indiquait des pics endothermes avec des températures de fusion à 40,89 ± 0,27 °C et 69,64 ± 0,34 °C pour les cires dures et douces de son de riz, respectivement. Les principaux acides gras des cires douces de son de riz étaient des acides oléiques (31,68 ± 0,75 %) et des acides linoléiques (27,19 ± 0,40 %), tandis que ceux des cires dures de son de riz étaient des acides palmitiques (36,24 ± 1,08 %) et des acides stéariques (35,21 ± 4,51 %). Le dosage de la cytotoxicité dans les cellules individuelles et les cellules de co­culture a montré la non­cytotoxicité des cires douces de son de riz (0,0001 à 1 mg/ml) et des cires dures de son de riz (0,0001 à 0,1 mg/ml). Les activités antivieillissement de la peau de 1 mg/ml de cire douce de son de riz et de 0,1 mg/ml de cire dure de son de riz comprenaient l'inhibition de la mélanogenèse par suppression des enzymes de la tyrosinase et de la protéine liée à la tyrosinase 2, l'activité antioxydante par protection cellulaire contre les dommages et la mort cellulaires, la stimulation du collagène, la suppression de la métalloprotéinase matricielle­1 et la métalloprotéinase matricielle­2 et l'activité anti­inflammatoire. CONCLUSIONS: Les résultats de l'étude indiquent que les cires dures et douces de son de riz peuvent potentiellement être appliquées comme ingrédients fonctionnels dans des formulations contre le vieillissement de la peau et fournir un bénéfice supérieur en termes d'hydratation de la peau.


Assuntos
Oryza , Envelhecimento da Pele , Humanos , Ceras/química , Metaloproteinase 2 da Matriz , Antioxidantes/farmacologia , Oryza/química , Metaloproteinase 1 da Matriz , Ácidos Graxos , Colágeno
11.
J Sci Food Agric ; 104(5): 2692-2703, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37994153

RESUMO

BACKGROUND: As a complex chronic metabolic disease, obesity not only affects the quality of human life but also increases the risk of various other diseases. Therefore, it is important to investigate the molecular mechanisms and therapeutic effects of dietary interventions that counteract obesity. RESULTS: In this study, we extracted soluble (SDF) and insoluble dietary fiber (IDF) from quinoa bran using an enzymatic method and further investigated their effects on lipid metabolism and blood lipid levels in obese rats. Quinoa bran dietary fiber showed significantly reduced body weight, blood glucose level, total cholesterol, triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol levels compared to those in the model group of obese rats. Aspartate aminotransferase and alanine aminotransferase levels were significantly lower in the IDF group, demonstrating that IDF improved liver injury more significantly than SDF, which was consistent with the analysis of liver tissue sections. IDF supplementation significantly improved the oxidation resistance of obese rats by decreasing malondialdehyde and increasing superoxide dismutase and glutathione peroxidase levels compared to the high-fat diet group levels. Transcriptome analysis showed that IDF caused hepatic changes in genes (Ehhadh, PPARα, FADS, CPT1, CPT2, SCD-1, Acadm, and CYP7A1) related to fatty acid degradation, and this result coincided with that of the gene expression validation result. CONCLUSION: Overall, our research offers crucial data for the logical development of dietary fiber from quinoa bran with nutritional purposes. © 2023 Society of Chemical Industry.


Assuntos
Chenopodium quinoa , Ratos , Humanos , Animais , Chenopodium quinoa/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Transcriptoma , Obesidade/genética , Obesidade/metabolismo , Fígado/metabolismo , Fibras na Dieta/análise , Dieta Hiperlipídica/efeitos adversos , Colesterol/metabolismo
12.
J Sci Food Agric ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924091

RESUMO

BACKGROUND: Wheat bran (WB) is a byproduct of refined wheat flour production with poor edible taste and low economic value. Herein, the WB was micronized via airflow superfine pulverization (ASP), and the effects of the ASP conditions on its particle size, nutritive compositions, whiteness, hydration characteristics, moisture distribution, microstructure, cation exchange capacity, volatile flavor components, and other characteristics were investigated. RESULTS: Reducing the rotational speed of the ASP screw and increasing the number of pulverizations significantly decreased the median particle size Dx(50) of WB to a minimum of 12.97 ± 0.19 µm (P < 0.05), increased the soluble dietary fiber content from 55.05 ± 2.94 to 106.86 ± 1.60 mg g-1, and improved the whiteness and water solubility index. In addition, the water holding capacity and oil holding capacity were significantly reduced (P < 0.05), while the cation exchange and swelling capacities first increased and then decreased. Up to about 70% of water in WB exists as bound water. As the Dx(50) of WB decreased, the content of bound and immobile water increased, while the free water decreased from 14.37 ± 1.21% to 7.59 ± 1.03%. Furthermore, WB was micronized and the particles became smaller and more evenly distributed. Using gas chromatography-ion mobility spectrometry, a total of 37 volatile compounds in micronized WB (including 10 aldehydes, 9 esters, 7 alcohols, and several acids, furans, ethers, aldehydes, esters, and alcohols) were identified as the main volatile compounds of WB. CONCLUSION: Collectively, ASP improved the physicochemical properties of WB. This study provides theoretical references for the use of ASP to improve the utilization and edibility of WB. © 2024 Society of Chemical Industry.

13.
J Sci Food Agric ; 104(6): 3246-3255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38081762

RESUMO

BACKGROUND: The aim of this research was to evaluate the possibility of lipid concomitant γ-oryzanol reducing oil absorbency of fried foods and the underlying mechanism. Therefore, the influence of γ-oryzanol on moisture and oil content, and distribution and micromorphology of French fries and the viscosity, fatty acid composition and total polar compounds content of rice bran oil (RBO) after frying were studied. RESULTS: Our results showed that the incorporation of low concentration of γ-oryzanol [low addition group (LAG)] (5.754 g/kg) decreased the oil absorbency and porous structure of French fries during frying. Additionally, LAG incorporation inhibited the degradation of linoleic acid, decreased the growth rate of saturated fatty acids, total polar compounds and viscosity of frying oil. CONCLUSIONS: Consequently, it was recommended to incorporate a small amount of γ-oryzanol in frying oil because it could inhibit oil absorption behavior of French fries. © 2023 Society of Chemical Industry.


Assuntos
Culinária , Fenilpropionatos , Culinária/métodos , Ácidos Graxos , Óleo de Farelo de Arroz
14.
J Sci Food Agric ; 104(4): 1920-1927, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37884466

RESUMO

BACKGROUND: Butter has been widely used in bakery products and it contains high level of saturated fats. However, excessive consumption of saturated fats would increase the risk of chronic disease. This study was to fabricate water-in-oil (W/O) type bigels as butter replacers to improve the quality attributes of breads. RESULTS: A stable water-in-oil (W/O) type bigel system was fabricated based on mixed oleogelators (rice bran wax and glycerol monostearate) and sodium alginate hydrogel. The ratios of oleogel to hydrogel could significantly affect the stability, microstructure and rheological properties of bigels. All of the bigels exhibited solid-like properties, with increased oleogel fractions, and the network structure of bigel became more compact and orderly with smaller sodium alginate gel particles. Meanwhile, the viscoelastic modulus and firmness of bigel increased, contributing to a higher stability. The bigel dough exhibited lower gel strength and relatively higher extensibility compared to the butter dough. Regardless of oleogel fractions, all the bigel produced bread with a higher specific volume and softer texture than the butter bread. When the oleogel fractions was less than 80%, increasing the oleogel fractions was more beneficial for improving the specific volume, softness and fluffy structure of bread. CONCLUSION: W/O type bigel as butter replacers showed great potential in improving the appearance, structure and textural properties of bread. © 2023 Society of Chemical Industry.


Assuntos
Pão , Manteiga , Hidrogéis/química , Alginatos , Água , Compostos Orgânicos
15.
J Sci Food Agric ; 104(10): 6196-6207, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38459922

RESUMO

BACKGROUND: Millet bran (MB), a byproduct of millet production, is rich in functional components but it is underutilized. In recent years, researchers have shown that fermentation can improve the biological activity of cereals and their byproducts. This study used Bacillus natto to ferment millet bran to improve its added value and broaden the application of MB. The bioactive component content, physicochemical properties, and functional activity of millet bran extract (MBE) from fermented millet bran were determined. RESULTS: After fermentation, the soluble dietary fiber (SDF) content increased by 92.0%, the ß-glucan content by 164.4%, the polypeptide content by 111.4%, the polyphenol content by 32.5%, the flavone content by 16.4%, and the total amino acid content by 95.4%. Scanning electron microscopy revealed that the microscopic morphology of MBE changed from complete and dense blocks to loosely porous shapes after fermentation. After fermentation, the solubility, water-holding capacity, and viscosity significantly increased and the particle size decreased. Moreover, the glucose adsorption capacity (2.1 mmol g-1), glucose dialysis retardation index (75.3%), and α-glucosidase inhibitory (71.4%, mixed reversible inhibition) activity of the fermented MBE (FMBE) were greater than those of the unfermented MBE (0.99 mmol g-1, 32.1%, and 35.1%, respectively). The FMBE presented better cholesterol and sodium cholate (SC) adsorption properties and the adsorption was considered inhomogeneous surface adsorption. CONCLUSION: Fermentation increased the bioactive component content and improved the physicochemical properties of MBE, thereby improving its hypoglycemic and hypolipidemic properties. This study not only resolves the problem of millet bran waste but also encourages the development of higher value-added application methods for millet bran. © 2024 Society of Chemical Industry.


Assuntos
Fibras na Dieta , Fermentação , Milhetes , Extratos Vegetais , Fibras na Dieta/metabolismo , Fibras na Dieta/análise , Milhetes/química , Milhetes/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Bacillus subtilis/metabolismo , beta-Glucanas/metabolismo , beta-Glucanas/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Polifenóis/química , Polifenóis/metabolismo , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química
16.
J Sci Food Agric ; 104(9): 4977-4988, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38567804

RESUMO

BACKGROUND: As the major protein (approximately 36%) in rice bran, globulin exhibits excellent foaming and emulsifying properties, endowing its useful application as a foaming and emulsifying agent in the food industry. However, the low water solubility restricts its commercial potential in industrial applications. The present study aimed to improve this protein's processing and functional properties. RESULTS: A novel covalent complex was fabricated by a combination of the Maillard reaction and alkaline oxidation using rice bran globulin (RBG), chitooligosaccharide (C), quercetin (Que) and resveratrol (Res). The Maillard reaction improved the solubility, emulsifying and foaming properties of RBG. The resultant glycosylated protein was covalently bonded with quercetin and resveratrol to form a (RBG-C)-Que-Res complex. (RBG-C)-Que-Res exhibited higher thermal stability and antioxidant ability than the native protein, binary globulin-chitooligosaccharide or ternary globulin-chitooligosaccharide-polyphenol (only containing quercetin or resveratrol) conjugates. (RBG-C)-Que-Res exerted better cytoprotection against the generation of malondialdehyde and reactive oxygen species in HepG2 cells, which was associated with increased activities of antioxidative enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) through upregulated genes SOD1, CAT, GPX1 (i.e. gene for glutathione peroxidase-1), GCLM (i.e. gene for glutamate cysteine ligase modifier subunit), SLC1A11 (i.e. gene for solute carrier family 7, member 11) and SRXN1 (i.e. gene for sulfiredoxin-1). The anti-apoptotic effect of (RBG-C)-Que-Res was confirmed by the downregulation of caspase-3 and p53 and the upregulation of B-cell lymphoma-2 gene expression. CONCLUSION: The present study highlights the potential of (RBG-C)-Que-Res conjugates as functional ingredients in healthy foods. © 2024 Society of Chemical Industry.


Assuntos
Antioxidantes , Quitosana , Oligossacarídeos , Oryza , Quercetina , Resveratrol , Humanos , Quercetina/química , Quercetina/análogos & derivados , Oryza/química , Oligossacarídeos/química , Resveratrol/química , Resveratrol/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Células Hep G2 , Quitina/química , Quitina/análogos & derivados , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reação de Maillard , Catalase/metabolismo , Catalase/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética
17.
Compr Rev Food Sci Food Saf ; 23(3): e13366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775125

RESUMO

Wheat bran (WB) is a well-known and valuable source of dietary fiber. Arabinoxylan (AX) is the primary hemicellulose in WB and can be isolated and used as a functional component in various food products. Typically, AX is extracted from the whole WB using different processes after mechanical treatments. However, WB is composed of different layers, namely, the aleurone layer, pericarp, testa, and hyaline layer. The distribution, structure, and extractability of AX vary within these layers. Modern fractionation technologies, such as debranning and electrostatic separation, can separate the different layers of WB, making it possible to extract AX from each layer separately. Therefore, AX in WB shows potential for broader applications if it can be extracted from the different layers separately. In this review, the distribution and chemical structures of AX in WB layers are first discussed followed by extraction, physicochemical properties, and health benefits of isolated AX from WB. Additionally, the utilization of AX isolated from WB in foods, including cereal foods, packaging film, and the delivery of food ingredients, is reviewed. Future perspectives on challenges and opportunities in the research field of AX isolated from WB are highlighted.


Assuntos
Fibras na Dieta , Xilanos , Xilanos/química , Fibras na Dieta/análise
18.
Br Poult Sci ; 65(4): 465-477, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994755

RESUMO

1. A stimbiotic (STB) is any feed additive that stimulates caeca fibre fermentation, although the additive itself contributes little to the caeca short-chain fatty acid (SCFA) production. A 42 d experiment investigated the interactive effects of STB and wheat bran (WB) in broiler chickens receiving maize or wheat-based diets.2. The treatments were arranged in a 2 × 2 × 2 factorial (eight replicates each), the dietary factors being diet (maize-SBM or wheat-SBM), STB (with or without) and WB (0 or 50 g/kg). Jejunal tissue, gizzard, jejunal and ileal digesta and caecal contents were collected on d 18 and 42.3. Gizzard pH tended to decrease with STB (p = 0.06) supplementation and was lower in birds fed wheat- compared to maize-based diets on d 18 (p < 0.05). Birds receiving diets with WB had higher jejunum pH on d 18 (p < 0.05).4. Total short-chain fatty acids (SCFA) in the caeca on d 18 and isobutyrate on d 42 were higher (p < 0.05) for maize compared with wheat-based diets. However, on d 42, acetate, butyrate and total SCFA were higher (p < 0.05) for wheat-based compared with maize-based diets.5. On d 18, STB and WB inclusion increased villi height (VH; p < 0.05) and VH to crypt depth ratio (VH/CD), respectively (p < 0.05). On d 42, VH (p < 0.05) and VH/CD were higher in wheat-based diets (p < 0.05). The VH/CD ratio was lower with STB supplementation (p < 0.05). Marker-corrected pentose oligosaccharides (Pent)4 and (Pent)5 concentrations in the ileal digesta were reduced (p < 0.05) with STB supplementation. In addition, STB decreased (Pent)3 concentration in maize-, but not wheat-based diets (p < 0.05).6. In conclusion, both WB and STB influenced gastrointestinal pH and jejunum histomorphology of broilers without increasing oligosaccharide concentration in the ileum and SCFA in the caeca.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Ceco , Galinhas , Dieta , Fibras na Dieta , Ácidos Graxos Voláteis , Jejuno , Oligossacarídeos , Triticum , Zea mays , Animais , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Ração Animal/análise , Ácidos Graxos Voláteis/metabolismo , Zea mays/química , Triticum/química , Dieta/veterinária , Jejuno/anatomia & histologia , Fibras na Dieta/metabolismo , Fibras na Dieta/análise , Fibras na Dieta/administração & dosagem , Oligossacarídeos/administração & dosagem , Suplementos Nutricionais/análise , Masculino , Distribuição Aleatória
19.
Artigo em Inglês | MEDLINE | ID: mdl-39037063

RESUMO

Rice bran oil is a type of rice oil made by leaching or pressing during rice processing and has a high absorption rate after consumption. When oxidative rancidity occurs, it may cause oxidative stress (OS) and affect intestinal function. Meanwhile, the toxic effects of oxidised rice bran oil have been less well studied in pigs. Therefore, the IPEC-J2 cells model was chosen to explore the regulatory mechanisms of oxidised rice bran oil on OS and apoptosis. Oxidised rice bran oil extract treatment (OR) significantly decreased the viability of IPEC-J2 cells. The results showed that OR significantly elevated apoptosis and reactive oxygen species levels and promoted the expression of pro-apoptotic gene Caspase-3 messenger RNA levels. The activation of Nrf2 signalling pathway by OR decreased the cellular antioxidant capacity. This was further evidenced by the expression of kelch-like ECH-associated protein 1, heme oxygenase 1, NADH: quinone oxidoreductase 1, superoxide dismutase 2 and heat shock 70 kDa protein genes and proteins were all downregulated. In conclusion, our results suggested that oxidised rice bran oil induced damage in IPEC-J2 cells through the Nrf2 signalling pathway.

20.
J Food Sci Technol ; 61(3): 516-527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327868

RESUMO

De-oiled rice bran is a good source of high-quality protein; however, the current practice of desolventization at high temperature (110-120 °C) denatures the protein, making its extraction difficult and uneconomical. The present study aims to investigate the effect of low temperature desolventization of de-oiled rice bran (LTDRB) on extraction, yield, and purity of protein and its comparison with protein obtained from high temperature desolventized de-oiled rice bran (HTDRB). The optimal conditions for preparation of protein from LTDRB were: extraction pH 11.00, extraction duration 52 min, and extraction temperature 58 °C resulting in an extraction efficiency, yield, and purity of 54.0, 7.23, and 78.70%, respectively. The LTDRB showed a positive impact on the color, solubility, foaming capacity and stability of protein whereas the absorption and emulsification properties were better for HTDRB protein. Significant decrease in enthalpy (ΔH) for denaturation was observed for LTDRB protein as compared to HTDRB protein. Scanning electron microscopy analysis revealed that HTDRB protein was more compact than LTDRB protein. LTDRB protein had smaller particle size distribution than HTDRB. Study suggested that low temperature desolventization can result in higher protein extraction with better physico-chemical, structural, and functional properties of protein obtained from DRB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA