Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(4): 992-1008.e21, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32710817

RESUMO

Cellular heterogeneity confounds in situ assays of transcription factor (TF) binding. Single-cell RNA sequencing (scRNA-seq) deconvolves cell types from gene expression, but no technology links cell identity to TF binding sites (TFBS) in those cell types. We present self-reporting transposons (SRTs) and use them in single-cell calling cards (scCC), a novel assay for simultaneously measuring gene expression and mapping TFBS in single cells. The genomic locations of SRTs are recovered from mRNA, and SRTs deposited by exogenous, TF-transposase fusions can be used to map TFBS. We then present scCC, which map SRTs from scRNA-seq libraries, simultaneously identifying cell types and TFBS in those same cells. We benchmark multiple TFs with this technique. Next, we use scCC to discover BRD4-mediated cell-state transitions in K562 cells. Finally, we map BRD4 binding sites in the mouse cortex at single-cell resolution, establishing a new method for studying TF biology in situ.


Assuntos
Elementos de DNA Transponíveis/genética , Análise de Célula Única/métodos , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Imunoprecipitação da Cromatina , Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Camundongos , Ligação Proteica , Análise de Sequência de RNA , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/genética
2.
Mol Cell ; 83(16): 2896-2910.e4, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37442129

RESUMO

The BET family protein BRD4, which forms the CDK9-containing BRD4-PTEFb complex, is considered to be a master regulator of RNA polymerase II (Pol II) pause release. Because its tandem bromodomains interact with acetylated histone lysine residues, it has long been thought that BRD4 requires these bromodomains for its recruitment to chromatin and transcriptional regulatory function. Here, using rapid depletion and genetic complementation with domain deletion mutants, we demonstrate that BRD4 bromodomains are dispensable for Pol II pause release. A minimal, bromodomain-less C-terminal BRD4 fragment containing the PTEFb-interacting C-terminal motif (CTM) is instead both necessary and sufficient to mediate Pol II pause release in the absence of full-length BRD4. Although BRD4-PTEFb can associate with chromatin through acetyl recognition, our results indicate that a distinct, active BRD4-PTEFb population functions to regulate transcription independently of bromodomain-mediated chromatin association. These findings may enable more effective pharmaceutical modulation of BRD4-PTEFb activity.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Regulação da Expressão Gênica , Cromatina/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(36): e2306414120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37643213

RESUMO

Targeted inhibitors of bromodomain and extraterminal (BET)-bromodomains and phosphatidylinositol-3-kinase (PI3K) signaling demonstrate potent but self-limited antilymphoma activity as single agents in the context of cellular Myelocytomatosis (cMYC) oncogene-dysregulation. However, combined PI3K and BET inhibition imparts synergistic anticancer activity with the potential for more sustained disease responses due to the mutual antagonism of compensatory epigenetic and signaling networks. Here, we describe the mechanistic and therapeutic validation of rationally designed dual PI3K/BET bromodomain inhibitors, built by linkage of established PI3K and BET inhibitor pharmacophores. The lead candidate demonstrates high selectivity, nanomolar range cellular potency, and compelling in vivo efficacy, including curative responses in the aggressive Eµ-Myc lymphoma model. These studies further support the therapeutic strategy of combined PI3K and BET inhibition and provide a potential step-change in approach to orthogonal MYC antagonism using optimized chimeric small-molecule technology.


Assuntos
Linfoma , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinase , Agressão , Epigenômica , Linfoma/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase
4.
J Biol Chem ; 300(4): 107146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460939

RESUMO

The polybromo, brahma-related gene 1-associated factors (PBAF) chromatin remodeling complex subunit polybromo-1 (PBRM1) contains six bromodomains that recognize and bind acetylated lysine residues on histone tails and other nuclear proteins. PBRM1 bromodomains thus provide a link between epigenetic posttranslational modifications and PBAF modulation of chromatin accessibility and transcription. As a putative tumor suppressor in several cancers, PBRM1 protein expression is often abrogated by truncations and deletions. However, ∼33% of PBRM1 mutations in cancer are missense and cluster within its bromodomains. Such mutations may generate full-length PBRM1 variant proteins with undetermined structural and functional characteristics. Here, we employed computational, biophysical, and cellular assays to interrogate the effects of PBRM1 bromodomain missense variants on bromodomain stability and function. Since mutations in the fourth bromodomain of PBRM1 (PBRM1-BD4) comprise nearly 20% of all cancer-associated PBRM1 missense mutations, we focused our analysis on PBRM1-BD4 missense protein variants. Selecting 16 potentially deleterious PBRM1-BD4 missense protein variants for further study based on high residue mutational frequency and/or conservation, we show that cancer-associated PBRM1-BD4 missense variants exhibit varied bromodomain stability and ability to bind acetylated histones. Our results demonstrate the effectiveness of identifying the unique impacts of individual PBRM1-BD4 missense variants on protein structure and function, based on affected residue location within the bromodomain. This knowledge provides a foundation for drawing correlations between specific cancer-associated PBRM1 missense variants and distinct alterations in PBRM1 function, informing future cancer personalized medicine approaches.


Assuntos
Proteínas de Ligação a DNA , Mutação de Sentido Incorreto , Neoplasias , Domínios Proteicos , Fatores de Transcrição , Humanos , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Ligantes , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Modelos Moleculares , Estrutura Terciária de Proteína
5.
Proc Natl Acad Sci U S A ; 119(22): e2122506119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35622893

RESUMO

BRDT, BRD2, BRD3, and BRD4 comprise the bromodomain and extraterminal (BET) subfamily which contain two similar tandem bromodomains (BD1 and BD2). Selective BD1 inhibition phenocopies effects of tandem BET BD inhibition both in cancer models and, as we and others have reported of BRDT, in the testes. To find novel BET BD1 binders, we screened >4.5 billion molecules from our DNA-encoded chemical libraries with BRDT-BD1 or BRDT-BD2 proteins in parallel. A compound series enriched only by BRDT-BD1 was resynthesized off-DNA, uncovering a potent chiral compound, CDD-724, with >2,000-fold selectivity for inhibiting BRDT-BD1 over BRDT-BD2. CDD-724 stereoisomers exhibited remarkable differences in inhibiting BRDT-BD1, with the R-enantiomer (CDD-787) being 50-fold more potent than the S-enantiomer (CDD-786). From structure­activity relationship studies, we produced CDD-956, which maintained picomolar BET BD1 binding potency and high selectivity over BET BD2 proteins and had improved stability in human liver microsomes over CDD-787. BROMOscan profiling confirmed the excellent pan-BET BD1 affinity and selectivity of CDD-787 and CDD-956 on BD1 versus BD2 and all other BD-containing proteins. A cocrystal structure of BRDT-BD1 bound with CDD-956 was determined at 1.82 Å and revealed BRDT-BD1­specific contacts with the αZ and αC helices that explain the high affinity and selectivity for BET BD1 versus BD2. CDD-787 and CDD-956 maintain cellular BD1-selectivity in NanoBRET assays and show potent antileukemic activity in acute myeloid leukemia cell lines. These BET BD1-specific and highly potent compounds are structurally unique and provide insight into the importance of chirality to achieve BET specificity.


Assuntos
Anti-Inflamatórios não Esteroides , Antineoplásicos , Anticoncepcionais Masculinos , Descoberta de Drogas , Proteínas Nucleares , Bibliotecas de Moléculas Pequenas , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Anticoncepcionais Masculinos/química , Anticoncepcionais Masculinos/isolamento & purificação , Anticoncepcionais Masculinos/farmacologia , DNA/genética , Humanos , Masculino , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Domínios Proteicos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
6.
Bioorg Med Chem ; 112: 117884, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39226716

RESUMO

Small molecule inhibitors targeting the bromodomain and extra-terminal domain (BET) family proteins have emerged as a promising class of anti-cancer drugs. Nevertheless, the clinical advancement of these agents has been significantly hampered by challenges related to their potency, oral bioavailability, or toxicity. In this study, virtual screening approaches were employed to discover novel inhibitors of the bromodomain-containing protein 4 (BRD4) by analyzing their comparable chemical structural features to established BRD4 inhibitors. Several of these compounds exhibited inhibitory effects on BRD4 activity ranging from 60 % to 70 % at 100 µM concentrations, while one compound also exhibited an 84 % inhibition of Sirtuin 2 (SIRT2) activity. Furthermore, a subset of structurally diverse compounds from the BRD4 inhibitors was selected to investigate their anti-cancer properties in both 2D and 3D cell cultures. These compounds exhibited varying effects on cell numbers depending on the specific cell line, and some of them induced cell cycle arrest in the G0/G1 phase in breast cancer (MDA-MB-231) cells. Moreover, all the compounds studied reduced the sizes of spheroids, and the most potent compound exhibited a 90 % decrease in growth at a concentration of 10 µM in T47D cells. These compounds hold potential as epigenetic regulators for future studies.


Assuntos
Antineoplásicos , Neoplasias da Mama , Fatores de Transcrição , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Domínios Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Flavonoides/química , Flavonoides/farmacologia
7.
Biochem J ; 480(15): 1183-1197, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37401534

RESUMO

The development and optimisation of a photoaffinity labelling (PAL) displacement assay is presented, where a highly efficient PAL probe was used to report on the relative binding affinities of compounds to specific binding sites in multiple recombinant protein domains in tandem. The N- and C-terminal bromodomains of BRD4 were used as example target proteins. A test set of 264 compounds annotated with activity against the bromodomain and extra-terminal domain (BET) family in ChEMBL were used to benchmark the assay. The pIC50 values obtained from the assay correlated well with orthogonal TR-FRET data, highlighting the potential of this highly accessible PAL biochemical screening platform.

8.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637650

RESUMO

Bromodomain testis (BRDT), a member of the bromodomain and extraterminal (BET) subfamily that includes the cancer targets BRD2, BRD3, and BRD4, is a validated contraceptive target. All BET subfamily members have two tandem bromodomains (BD1 and BD2). Knockout mice lacking BRDT-BD1 or both bromodomains are infertile. Treatment of mice with JQ1, a BET BD1/BD2 nonselective inhibitor with the highest affinity for BRD4, disrupts spermatogenesis and reduces sperm number and motility. To assess the contribution of each BRDT bromodomain, we screened our collection of DNA-encoded chemical libraries for BRDT-BD1 and BRDT-BD2 binders. High-enrichment hits were identified and resynthesized off-DNA and examined for their ability to compete with JQ1 in BRDT and BRD4 bromodomain AlphaScreen assays. These studies identified CDD-1102 as a selective BRDT-BD2 inhibitor with low nanomolar potency and >1,000-fold selectivity over BRDT-BD1. Structure-activity relationship studies of CDD-1102 produced a series of additional BRDT-BD2/BRD4-BD2 selective inhibitors, including CDD-1302, a truncated analog of CDD-1102 with similar activity, and CDD-1349, an analog with sixfold selectivity for BRDT-BD2 versus BRD4-BD2. BROMOscan bromodomain profiling confirmed the great affinity and selectivity of CDD-1102 and CDD-1302 on all BET BD2 versus BD1 with the highest affinity for BRDT-BD2. Cocrystals of BRDT-BD2 with CDD-1102 and CDD-1302 were determined at 2.27 and 1.90 Å resolution, respectively, and revealed BRDT-BD2 specific contacts that explain the high affinity and selectivity of these compounds. These BD2-specific compounds and their binding to BRDT-BD2 are unique compared with recent reports and enable further evaluation of their nonhormonal contraceptive potential in vitro and in vivo.


Assuntos
Azepinas/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Anticoncepcionais Masculinos/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Animais , Azepinas/química , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Clonagem Molecular , Anticoncepcionais Masculinos/química , Cristalografia por Raios X , Descoberta de Drogas , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Masculino , Camundongos , Simulação de Acoplamento Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Relação Quantitativa Estrutura-Atividade , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Testículo/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/química
9.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468647

RESUMO

Bromodomains (BDs) are small protein modules that interact with acetylated marks in histones. These posttranslational modifications are pivotal to regulate gene expression, making BDs promising targets to treat several diseases. While the general structure of BDs is well known, their dynamical features and their interplay with other macromolecules are poorly understood, hampering the rational design of potent and selective inhibitors. Here, we combine extensive molecular dynamics simulations, Markov state modeling, and available structural data to reveal a transiently formed state that is conserved across all BD families. It involves the breaking of two backbone hydrogen bonds that anchor the ZA-loop with the αA helix, opening a cryptic pocket that partially occludes the one associated to histone binding. By analyzing more than 1,900 experimental structures, we unveil just two adopting the hidden state, explaining why it has been previously unnoticed and providing direct structural evidence for its existence. Our results suggest that this state is an allosteric regulatory switch for BDs, potentially related to a recently unveiled BD-DNA-binding mode.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Correpressoras/química , Proteínas de Ligação a DNA/química , Histona Acetiltransferases/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Fatores Genéricos de Transcrição/química , Fatores de Transcrição/química , Proteína 28 com Motivo Tripartido/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cadeias de Markov , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo
10.
Chem Pharm Bull (Tokyo) ; 72(7): 630-637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945939

RESUMO

Alzheimer's disease (AD) is the leading cause of senile dementia, and the rapid increase in the frequency of AD cases has been attributed to population aging. However, current drugs have difficulty adequately suppressing symptoms and there is still a medical need for symptomatic agents. On the other hand, it has recently become clear that epigenetic dysfunctions are deeply involved in the development of cognitive impairments. Therefore, epigenetics-related proteins have attracted much attention as drug targets for AD. Early-developed epigenetic inhibitors were inappropriate for AD treatment because of their limited potential for oral administration, blood-brain barrier penetration, high target selectivity, and sufficient dose-limiting toxicity which are essential properties for small molecule drugs targeting chronic neurodegenerative diseases such as AD. In recent years, drug discovery studies have been actively performed to overcome such problems and several novel inhibitors targeting the epigenetics-related proteins are of interest as promising AD therapeutic agents. Here, we review the small molecule inhibitors of histone deacetylase (HDAC), lysine-specific demethylase 1 (LSD1) or bromodomains and extra-terminal domain (BET) protein, that enable memory function improvement in AD model mice.


Assuntos
Doença de Alzheimer , Epigênese Genética , Inibidores de Histona Desacetilases , Histona Desmetilases , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Animais , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histona Desacetilases/metabolismo
11.
J Pept Sci ; 29(4): e3462, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36416071

RESUMO

Lysine acetylation is a posttranslational protein modification mediating protein-protein interactions by recruitment of bromodomains. Investigations of bromodomains have focused so far on the sequence context of the modification site and acyl-modifications installed at lysine side chains. In contrast, there is only little information about the impact of the lysine residue that carries the modification on bromodomain binding. Here, we report a synthesis strategy for L-acetyl-homolysine from L-2-aminosuberic acid by the Lossen rearrangement. Peptide probes containing acetylated homolysine, lysine, and ornithine were generated and used for probing the binding preferences of four bromodomains from three different families. Tested bromodomains showed distinct binding patterns, and one of them bound acetylated homolysine with similar efficiency as the native substrate containing acetyl-lysine. Deacetylation assays with a bacterial sirtuin showed a strong preference for acetylated lysine, despite a broad specificity for N-acyl modifications.


Assuntos
Lisina , Peptídeos , Humanos , Lisina/química , Acetilação , Peptídeos/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional
12.
Bioorg Chem ; 139: 106677, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352721

RESUMO

Here we report a detailed structure-activity relationship (SAR) study related to [1,2,4]triazolo[4,3-a]quinoxaline-based compounds targeting the reader module of bromodomain containing-protein 9 (BRD9). 3D structure-based pharmacophore models, previously introduced by us, were here employed to evaluate a second generation of compounds, exploring different substitution patterns on the heterocyclic core. Starting from the promising data obtained from our previously identified [1,2,4]triazolo[4,3-a]quinoxaline-based compounds 1-4, the combination of in silico studies, chemical synthesis, biophysical and in vitro assays led to the identification of a new set of derivatives, selected for thoroughly exploring the chemical space of the bromodomain binding site. In more details, the investigation of different linkers at C-4 position highlighted the amine spacer as mandatory for the binding with the protein counterpart and the crucial role of the alkyl substituents at C-1 for increasing the selectivity toward BRD9. Additionally, the importance of a hydrogen bond donor group, critical to anchor the ZA region and required for the interaction with Ile53 residue, was inferred from the analysis of our collected results. Herein we also propose an optimization and an update of our previously reported "pharm-druglike2" 3D structure-based pharmacophore model, introducing it as "pharm-druglike2.1". Compounds 24-26, 32, 34 and 36 were identified as new valuable BRD9 binders featuring IC50 values in the low micromolar range. Among them, 24 and 36 displayed an excellent selectivity towards BRD9 and a good antiproliferative effect on a panel of leukemia models, especially toward CCRF-CEM cell line, with no cytotoxicity on healthy cells. Notably, the interaction of 24 and 36 with the bromodomain and PHD finger-containing protein 1 (BRPF1) also emerged, disclosing them as new and unexplored dual inhibitors for these two proteins highly involved in leukemia. These findings highlight the potential for the identification of new attractive dual epidrugs as well as a promising starting point for the development of chemical degraders endowed with anticancer activities.


Assuntos
Leucemia , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Quinoxalinas/farmacologia , Quinoxalinas/química , Relação Estrutura-Atividade , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
13.
J Comput Chem ; 43(32): 2121-2130, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36190786

RESUMO

Novel agents to treat invasive fungal infections are urgently needed because the small number of established targets in pathogenic fungi makes the existing drug repertoire particularly vulnerable to the emergence of resistant strains. Recently, we reported that Candida albicans Bdf1, a bromodomain and extra-terminal domain (BET) bromodomain with paired acetyl-lysine (AcK) binding sites (BD1 and BD2) is essential for fungal cell growth and that an imidazopyridine (1) binds to BD2 with selectivity versus both BD1 and human BET bromodomains. Bromodomain binding pockets contain a conserved array of structural waters. Molecular dynamics simulations now reveal that one water molecule is less tightly bound to BD2 than to BD1, explaining the site selectivity of 1. This insight is useful in the performance of ligand docking studies to guide design of more effective Bdf1 inhibitors, as illustrated by the design of 10 new imidazopyridine BD2 ligands 1a-j, for which experimental binding and site selectivity data are presented.


Assuntos
Candida albicans , Fatores de Transcrição , Humanos , Candida albicans/metabolismo , Ligantes , Fatores de Transcrição/metabolismo , Sítios de Ligação
14.
Bioorg Chem ; 118: 105480, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823196

RESUMO

A well-structured in silico workflow is here reported for disclosing structure-based pharmacophore models against bromodomain-containing protein 9 (BRD9), accelerating virtual screening campaigns and facilitating the identification of novel binders. Specifically, starting from 23 known ligands co-crystallized with BRD9, three-dimensional pharmacophore models, namely placed in a reference protein structure, were developed. Specifically, we here introduce a fragment-related pharmacophore model, useful for the identification of new promising small chemical probes targeting the protein region responsible of the acetyllysine recognition, and two further pharmacophore models useful for the selection of compounds featuring drug-like properties. A pharmacophore-driven virtual screening campaign was then performed to facilitate the selection of new selective BRD9 ligands, starting from a large library of commercially available molecules. The identification of a promising BRD9 binder (7) prompted us to re-iterate this computational workflow on a second focused in-house built library of synthesizable compounds and, eventually, three further novel BRD9 binders were disclosed (8-10). Moreover, all these compounds were tested among a panel comprising other nine bromodomains, showing a high selectivity for BRD9. Preclinical bioscreens for potential anticancer activity highlighted compound 7 as that showing the most promising biological effects, proving the reliability of this in silico pipeline and confirming the applicability of the here introduced structure-based three-dimensional (3D) pharmacophore models as straightforward tools for the selection of new BRD9 ligands.


Assuntos
Descoberta de Drogas , Quinoxalinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
15.
Toxicol Appl Pharmacol ; 423: 115568, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965371

RESUMO

N-methyl pyrrolidone (NMP) is an FDA approved molecule used as an excipient in pharmaceutical industry. Besides having a central role in formulation of drugs, the most important function of any excipient is to guarantee the safety of the medicine during and after its administration. Several studies have shown that exposure to NMP and especially in rats produce a gonadotoxic effect leading to infertility. However, the mechanisms underlying the effect of NMP on male reproduction are unknown. The aim of this study was to assess the reproductive toxicity of NMP in male rats and to elucidate the underlying mechanism. Male Sprague Dawley rats were injected intraperitoneally, twice/ week, at a dose of 108 mg/ 100 g of body weight with NMP. Analysis of reproductive parameters revealed testicular atrophy in NMP treated animals compared to control animals. Germ cell composition within the seminiferous tubules was disturbed and manifested in an increase in number of cells with fragmented DNA. A subsequent decrease in number of spermatocytes and spermatids was observed. Alpha screen assay shows that NMP acts at the concentrations we applied in vivo as a low affinity inhibitor for BRDT (testis specific bromodomain protein). BRDT inhibition is mirrored by a significant decrease in the expression of early stage spermatocyte markers (lmna, aurkc and ccna1), during which BRDT expression predominates. A significant decrease in testosterone levels was also observed. Since NMP interferes with spermatogenesis on various levels, its use in humans must be carefully monitored.


Assuntos
Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/metabolismo , Pirrolidinonas/toxicidade , Espermatogênese/efeitos dos fármacos , Teratogênicos/toxicidade , Animais , Relação Dose-Resposta a Droga , Hormônio Foliculoestimulante/sangue , Masculino , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Espermatogênese/fisiologia , Testosterona/sangue
16.
Chemistry ; 27(71): 17880-17888, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34328642

RESUMO

We present a one-step Ugi reaction protocol for the expedient synthesis of photoaffinity probes for live-cell MS-based proteomics. The reaction couples an amine affinity function with commonly used photoreactive groups, and a variety of handle functionalities. Using this technology, a series of pan-BET (BET: bromodomain and extra-terminal domain) selective bromodomain photoaffinity probes were obtained by parallel synthesis. Studies on the effects of photoreactive group, linker length and irradiation wavelength on photocrosslinking efficiency provide valuable insights into photoaffinity probe design. Optimal probes were progressed to MS-based proteomics to capture the BET family of proteins from live cells and reveal their potential on- and off-target profiles.


Assuntos
Proteômica
17.
Angew Chem Int Ed Engl ; 60(40): 21875-21883, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34388301

RESUMO

Lipoxygenase (LOX) activity provides oxidative lipid metabolites, which are involved in inflammatory disorders and tumorigenesis. Activity-based probes to detect the activity of LOX enzymes in their cellular context provide opportunities to explore LOX biology and LOX inhibition. Here, we developed Labelox B as a potent covalent LOX inhibitor for one-step activity-based labeling of proteins with LOX activity. Labelox B was used to establish an ELISA-based assay for affinity capture and antibody-based detection of specific LOX isoenzymes. Moreover, Labelox B enabled efficient activity-based labeling of endogenous LOXs in living cells. LOX proved to localize in the nucleus, which was rationalized by identification of a functional bromodomain-like consensus motif in 15-LOX-1. This indicates that 15-LOX-1 is not only involved in oxidative lipid metabolism, but also in chromatin binding, which suggests a potential role in chromatin modifications.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Humanos , Conformação Molecular
18.
Angew Chem Int Ed Engl ; 60(3): 1220-1226, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-32975004

RESUMO

Bromodomain and extra-terminal (BET) family proteins, BRD2-4 and T, are important drug targets; however, the biological functions of each bromodomain remain ill-defined. Chemical probes that selectively inhibit a single BET bromodomain are lacking, although pan inhibitors of the first (D1), and second (D2), bromodomain are known. Here, we develop selective BET D1 inhibitors with preferred binding to BRD4 D1. In competitive inhibition assays, we show that our lead compound is 9-33 fold selective for BRD4 D1 over the other BET bromodomains. X-ray crystallography supports a role for the selectivity based on reorganization of a non-conserved lysine and displacement of an additional structured water in the BRD4 D1 binding site relative to our prior lead. Whereas pan-D1 inhibitors displace BRD4 from MYC enhancers, BRD4 D1 inhibition in MM.1S cells is insufficient for stopping Myc expression and may lead to its upregulation. Future analysis of BRD4 D1 gene regulation may shed light on differential BET bromodomain functions.


Assuntos
Proteínas/metabolismo , Água/química , Humanos , Fatores de Transcrição/química
19.
Proteins ; 88(3): 414-430, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31587361

RESUMO

Bromodomains (BrDs), a conserved structural module in chromatin-associated proteins, are well known for recognizing ε-N-acetyl lysine residues on histones. One of the most relevant BrDs is BRD4, a tandem BrD containing protein (BrD1 and BrD2) that plays a critical role in numerous diseases including cancer. Growing evidence shows that the two BrDs of BRD4 have different biological functions; hence selective ligands that can be used to study their functions are of great interest. Here, as a follow-up of our previous work, we first provide a detailed characterization study of the in silico rational design of Olinone as part of a series of five tetrahydropyrido indole-based compounds as BRD4 BrD1 inhibitors. Additionally, we investigated the molecular basis for Olinone's selective recognition by BrD1 over BrD2. Molecular dynamics simulations, free energy calculations, and conformational analyses of the apo-BRD4-BrD1|2 and BRD4-BrD1|2/Olinone complexes showed that Olinone's selectivity is facilitated by five key residues: Leu92 in BrD1|385 in BrD2 of ZA loop, Asn140|433, Asp144|His437 and Asp145|Glu438 of BC loop, and Ile146|Val49 of helix C. Furthermore, the difference in hydrogen bonds number and in mobility of the ZA and BC loops of the acetyl-lysine binding site between BRD4 BrD1/Olinone and BrD2/Olinone complexes also contribute to the difference in Olinone's binding affinity and selectivity toward BrD1 over BrD2. Altogether, our computer-aided molecular design techniques can effectively guide the development of small-molecule BRD4 BrD1 inhibitors, explain their selectivity origin, and further open doors to the design of new therapeutically improved derivatives.


Assuntos
Apoproteínas/antagonistas & inibidores , Proteínas de Ciclo Celular/antagonistas & inibidores , Histona Acetiltransferases/antagonistas & inibidores , Indóis/química , Fatores de Transcrição/antagonistas & inibidores , Apoproteínas/química , Apoproteínas/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Humanos , Ligação de Hidrogênio , Indóis/metabolismo , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Termodinâmica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
20.
Bioorg Med Chem Lett ; 30(6): 126958, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019712

RESUMO

While many contraception options are available for women, birth control methods for men are limited to condoms and vasectomy. Past research into male contraceptives has focused on hormonal options but the associated side effects have thus far precluded this method from reaching the market. Non-hormonal male contraceptives and vas occlusion have also been explored, but to date no method has progressed past clinical testing. Recent interest in epigenetic research has unveiled a new potential non-hormonal male contraceptive target: the testis-specific bromodomain BRDT. Potent inhibitors for bromodomain-containing proteins are described in the literature, but a BRDT-specific compound has yet to be designed, prepared and tested. The high similarity between bromodomain proteins of the BET family makes development of selective and specific inhibitors both difficult and necessary. Selective inhibition of BRDT by a small molecule is an exciting new target in the search for a new non-hormonal male contraceptive.


Assuntos
Anticoncepção/métodos , Anticoncepcionais Masculinos/química , Proteínas Nucleares/antagonistas & inibidores , Compostos Orgânicos/química , Proteínas/antagonistas & inibidores , Anticoncepcionais Masculinos/farmacologia , Desenho de Fármacos , Humanos , Masculino , Modelos Moleculares , Conformação Molecular , Compostos Orgânicos/metabolismo , Compostos Orgânicos/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA