RESUMO
The question of the heritability of behavior has been of long fascination to scientists and the broader public. It is now widely accepted that most behavioral variation has a genetic component, although the degree of genetic influence differs widely across behaviors. Starting with Mendel's remarkable discovery of "inheritance factors," it has become increasingly clear that specific genetic variants that influence behavior can be identified. This goal is not without its challenges: Unlike pea morphology, most natural behavioral variation has a complex genetic architecture. However, we can now apply powerful genome-wide approaches to connect variation in DNA to variation in behavior as well as analyses of behaviorally related variation in brain gene expression, which together have provided insights into both the genetic mechanisms underlying behavior and the dynamic relationship between genes and behavior, respectively, in a wide range of species and for a diversity of behaviors. Here, we focus on two systems to illustrate both of these approaches: the genetic basis of burrowing in deer mice and transcriptomic analyses of division of labor in honey bees. Finally, we discuss the troubled relationship between the field of behavioral genetics and eugenics, which reminds us that we must be cautious about how we discuss and contextualize the connections between genes and behavior, especially in humans.
Assuntos
Abelhas , Genética Comportamental , Pisum sativum , Animais , Abelhas/genética , Genômica , Hereditariedade , Humanos , Padrões de Herança , Camundongos , Pisum sativum/genéticaRESUMO
The soft tick Ornithodoros turicata Duges (Acari: Argasidae) is a potential vector of African swine fever virus (ASFV). We evaluated the efficacy of two methods to collect soft ticks rapidly and efficiently from gopher tortoise (Gopherus polyphemus) burrows, which are ubiquitous throughout large regions of the southeastern United States and their burrows are a known microhabitat of O. turicata. Burrow vacuuming was an effective and efficient tick collection method; no tick was captured employing CO2 trapping. Using an occupancy modelling framework, we estimated that the probability of detecting ticks from an infested burrow each time a sample was taken with this method was 58% and increased with the average relative humidity. With the occupancy model, we estimated that 70% of the burrows in the study area were infested with O. turicata. Manual sifting of the burrow material yielded more ticks (6.6 individuals/sample) than using a set of three sieves (2.9 individuals/sample), yet the probability of detecting the species was not different between the two methods (Pval = 0.7). These methods can inform the development of ASF vector surveillance and outbreak response plans in areas of high risk for ASFV introduction in the region.
RESUMO
Through a process called "bioturbation," burrowing macrofauna have altered the seafloor habitat and modified global carbon cycling since the Cambrian. However, the impact of macrofauna on the community structure of microorganisms is poorly understood. Here, we show that microbial communities across bioturbated, but geochemically and sedimentologically divergent, continental margin sites are highly similar but differ clearly from those in nonbioturbated surface and underlying subsurface sediments. Solid- and solute-phase geochemical analyses combined with modeled bioturbation activities reveal that dissolved O2 introduction by burrow ventilation is the major driver of archaeal community structure. By contrast, solid-phase reworking, which regulates the distribution of fresh, algal organic matter, is the main control of bacterial community structure. In nonbioturbated surface sediments and in subsurface sediments, bacterial and archaeal communities are more divergent between locations and appear mainly driven by site-specific differences in organic carbon sources.
Assuntos
Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Carbono/metabolismo , Nitrogênio/metabolismo , Oxigênio/metabolismo , Filogenia , Água do Mar/química , Água do Mar/microbiologiaRESUMO
A paradigm that combines cloud computing and the Internet of Things (IoT) allows for more impressive services to be provided to users while addressing storage and computational resource issues in the IoT environments. This cloud-based IoT environment has been used in various industries, including public services, for quite some time, and has been researched in academia. However, various security issues can arise during the communication between IoT devices and cloud servers, because communication between devices occurs in open channels. Moreover, issues such as theft of a user's IoT device or extraction of key parameters from the user's device in a remote location can arise. Researchers interested in these issues have proposed lightweight mutual authentication key agreement protocols that are safe and suitable for IoT environments. Recently, a lightweight authentication scheme between IoT devices and cloud servers has been presented. However, we found out their scheme had various security vulnerabilities, vulnerable to insider, impersonation, verification table leakage, and privileged insider attacks, and did not provide users with untraceability. To address these flaws, we propose a provably secure lightweight authentication scheme. The proposed scheme uses the user's biometric information and the cloud server's secret key to prevent the exposure of key parameters. Additionally, it ensures low computational costs for providing users with real-time and fast services using only exclusive OR operations and hash functions in the IoT environments. To analyze the safety of the proposed scheme, we use informal security analysis, Burrows-Abadi-Needham (BAN) logic and a Real-or-Random (RoR) model. The analysis results confirm that our scheme is secure against insider attacks, impersonation attacks, stolen verifier attacks, and so on; furthermore, it provides additional security elements. Simultaneously, it has been verified to possess enhanced communication costs, and total bit size has been shortened to 3776 bits, which is improved by almost 6% compared to Wu et al.'s scheme. Therefore, we demonstrate that the proposed scheme is suitable for cloud-based IoT environments.
RESUMO
Earthworms are considered to be excellent bioindicators of soil pollution. In recent years, there has been increasing interest in examining the effects of soil pollution on earthworm-associated microbiomes, with a particular focus on the gut microbiomes. However, relatively little effort has been invested in comprehensively investigating other microbiomes associated with earthworms and their responses to soil pollution. To fill this gap, we systematically studied the effects of Cd, pyrene, and combined pollution on the bacterial community in different vermicompartments, i.e., burrow wall, gut, and cast, in both epigeic Eisenia fetida and anecic Metaphire guillelmi, using a 2D-terraria incubator and high-throughput sequencing techniques. The results showed that bacterial alpha diversity followed the order of burrow wall > cast > gut, and this did not vary with soil pollution or earthworm ecotypes. Moreover, the dominant phyla in the vermicompartments were similar across different pollution treatments. Principal coordinate analysis (PCoA) revealed that the bacterial communities in different vermicompartments and ecotypes of earthworm were separated from each other, whereas they were grouped together in polluted treatments and unpolluted conditions. These results imply that even in polluted soil, vermicompartment and earthworm ecotypes remain the most significant factors affecting earthworm-associated microbiomes. However, the impacts of soil pollution on the bacterial composition in each vermicompartment were still evident. A comprehensive analysis revealed that the gut bacterial communities are more sensitive to soil contamination than casts and burrow wall in different ecotypes. Additionally, linear discriminant analysis of effect size (LefSe) identified several bacteria in Gemmatimonadota, the Firmicutes phylum in the burrow walls, and Patescibacteria (phyla) in the gut as potential biomarkers for pyrene contamination in soil. This research provides a comprehensive understanding of the effects of soil pollution on earthworm-associated microbiomes, thereby enhancing our understanding of earthworm ecotoxicology and soil pollution management.
Assuntos
Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/microbiologia , Oligoquetos/fisiologia , Cádmio/toxicidade , Bactérias/genética , Poluição Ambiental , Solo , Poluentes do Solo/análise , Pirenos/farmacologiaRESUMO
The origin of the limbless caecilians remains a lasting question in vertebrate evolution. Molecular phylogenies and morphology support that caecilians are the sister taxon of batrachians (frogs and salamanders), from which they diverged no later than the early Permian. Although recent efforts have discovered new, early members of the batrachian lineage, the record of pre-Cretaceous caecilians is limited to a single species, Eocaecilia micropodia The position of Eocaecilia within tetrapod phylogeny is controversial, as it already acquired the specialized morphology that characterizes modern caecilians by the Jurassic. Here, we report on a small amphibian from the Upper Triassic of Colorado, United States, with a mélange of caecilian synapomorphies and general lissamphibian plesiomorphies. We evaluated its relationships by designing an inclusive phylogenetic analysis that broadly incorporates definitive members of the modern lissamphibian orders and a diversity of extinct temnospondyl amphibians, including stereospondyls. Our results place the taxon confidently within lissamphibians but demonstrate that the diversity of Permian and Triassic stereospondyls also falls within this group. This hypothesis of caecilian origins closes a substantial morphologic and temporal gap and explains the appeal of morphology-based polyphyly hypotheses for the origins of Lissamphibia while reconciling molecular support for the group's monophyly. Stem caecilian morphology reveals a previously unrecognized stepwise acquisition of typical caecilian cranial apomorphies during the Triassic. A major implication is that many Paleozoic total group lissamphibians (i.e., higher temnospondyls, including the stereospondyl subclade) fall within crown Lissamphibia, which must have originated before 315 million years ago.
Assuntos
Anfíbios/fisiologia , Evolução Biológica , Fósseis , Anfíbios/classificação , Animais , Anuros , Teorema de Bayes , Biodiversidade , Colorado , Ecologia , Ecossistema , Evolução Molecular , Imageamento Tridimensional , Arcada Osseodentária/anatomia & histologia , Método de Monte Carlo , Paleontologia , Filogenia , Crânio/anatomia & histologia , Tomografia Computadorizada por Raios X , UrodelosRESUMO
Plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzoniae) are endemic fossorial vertebrates in the Qinghai-Tibetan Plateau alpine meadow ecosystem. Their different burrowing activities together transform soil structure and then significantly change the landscape of meadow ecosystem. However, how their burrowing activities impact greenhouse gas (GHG) emissions and the pattern of GHG emissions between different types of tunnel burrowing still remain obscure. In this study, we conducted in situ measurements quantitatively investigating the impacts of the different burrowing activities of zokors and pikas on three main GHG CO2, CH4, and N2O from an alpine meadow ecosystem in southeastern Qinghai-Tibetan Plateau. Our results showed that zokor hummocks and pika burrows were sources of CO2 and N2O and sinks of CH4. Zokors burrowing increased N2O in the atmosphere, decreased CO2, and enhanced CH4 absorbing, while pikas burrowing increased N2O in the atmosphere and enhanced CH4 absorbing. Considering the controversial role of fossorial vertebrates in Qinghai-Tibetan Plateau, this study also shed lights on effective management of animal activities with the aim of stabilizing or increasing ecosystem carbon sequestration.
Assuntos
Ecossistema , Gases de Efeito Estufa , Animais , Pradaria , Solo , TibetRESUMO
The lack of knowledge regarding the ecology of Coccidioides spp. makes both modeling the potential for disease outbreaks and predicting the distribution of the organism in the environment challenging. No single ecological parameter explains the biogeography of the pathogen. Previous investigations suggest an association with desert mammals, but these results should be confirmed with modern molecular techniques. Therefore, we used molecular tools to analyze soils associated with animal activity (i.e., burrows) to better define the ecology and biogeography of Coccidioides spp. in Arizona. Soils were collected from locations predicted to have favorable habitat outside of the established endemic regions to better understand the ecological niche of the organism in this state. Our central hypothesis is that soils taken from within animal burrows will have a higher abundance of Coccidioides spp. when compared to soils not directly associated with animal burrows. Our results show that there is a positive relationship with Coccidioides spp. and animal burrows. The organism was detected in two locations in northern Arizona at sites not known previously to harbor the fungus. Moreover, this fungus is able to grow on keratinized tissues (i.e., horse hair). These results provide additional evidence that there is a relationship between Coccidioides spp. and desert animals, which sheds new light on Coccidioides' ecological niche. These results also provide evidence that the geographic range of the organism may be larger than previously thought, and the concept of endemicity should be reevaluated for Coccidioides.
Assuntos
Coccidioides/fisiologia , Microbiologia do Solo , Animais , Ecologia , Ecossistema , Reação em Cadeia da PolimeraseRESUMO
The European eel (Anguilla anguilla) is a fascinating species, exhibiting a complex life cycle. The species is, however, listed as critically endangered on the IUCN Red List due to an amalgam of factors, including habitat loss. This study investigated the burrowing behaviour and substrate preference of glass, elver and yellow stages of A. anguilla. Preference was determined by introducing eels in aquaria with different substrates and evaluating the chosen substrate for burrowing. In addition, burrowing was recorded using a camera in all substrate types and analysed for kinematics. The experiments showed that all of these life stages sought refuge in the sediments with particle sizes ranging from sand to coarse gravel. Starting from a resting position, they shook their head horizontally in combination with rapid body undulations until half of their body was within the substrate. High-speed X-ray videography revealed that once partly in the sediment, eels used only horizontal head sweeps to penetrate further, without the use of their tail. Of the substrates tested, burrowing performance was highest in fine gravel (diameter 1-2 mm; lower burrowing duration, less body movements and/or lower frequency of movements), and all eels readily selected this substrate for burrowing. However, glass eels and elvers were able to use coarse gravel (diameter >8 mm) because their smaller size allowed manoeuvring through the spaces between the grains. Further, burrowing performance increased with body size: glass eels required more body undulations compared to yellow eels. Interestingly, the urge to hide within the sediment was highest for glass eels and elvers. Documentation of substrate preference and burrowing behaviour of A. anguilla provides new information about their potential habitat use. Considering that habitat alterations and deteriorations are partly responsible for the decline of the eel, this information can contribute to the development of more effective conservation measures.
Assuntos
Anguilla/crescimento & desenvolvimento , Comportamento Animal/fisiologia , Ecossistema , Fatores Etários , AnimaisRESUMO
BACKGROUND: Wombats are large, nocturnal herbivores that build burrows in a variety of habitats, including grassland communities, and can come into conflict with people. Counting the number of active burrows provides information on the local distribution and abundance of wombats and could prove to be an important management tool to monitor population numbers over time. We compared traditional ground surveys and a new method employing drones, to determine if drones could be used to effectively identify and monitor bare-nosed wombat burrows. RESULTS: We surveyed burrows using both methods in eight 5-ha transects in grassland, that was interspersed with patches of tussock grassland. Ground surveys were conducted by systematically walking transects and searching for burrows. Drone surveys involved programming flights over transects to capture multiple images, from which an orthomosaic image of each transect was produced. These were subsequently viewed using ArcMap to detect burrows. A total of 204 individual burrows were recorded by drone and/or ground survey methods. In grassland, the methods were equally effective in terms of the numbers of burrows detected in transects. In the smaller areas of tussock grassland, ground surveys detected significantly more burrows, because burrow openings were obscured in orthomosaic images by overhanging grasses. There was agreement between the methods as to whether burrows were potentially active or inactive for most burrows in both vegetation communities. However, image interpretation tended to classify grassland burrows as potentially active. Overall time taken to conduct surveys was similar for both methods, but ground surveys utilised three observers and more time in the field. CONCLUSIONS: Drones provide an effective means to survey bare-nosed wombat burrows that are visible from the air, particularly in areas not accessible to observers and vehicles. Furthermore, drones provide alternative options for monitoring burrows at the landscape level, and for monitoring wombat populations based on observable changes in burrow appearance over time.
Assuntos
Ecossistema , PoaceaeRESUMO
Bioturbation and bioirrigation induced by burrowing macrofauna are recognized as important processes in aquatic sediment since macrofaunal activities lead to the alteration of sediment characteristics. However, there is a lack of information on how macrofauna influence microbial abundance and extracellular enzyme activity in mangrove sediment. In this study, the environmental parameters, extracellular enzyme activities, and microbial abundance were determined and their relationships were explored. Sediment samples were taken from the surface (S) and lower layer (L) without burrow, as well as crab burrow wall (W) and bottom of crab burrow (B) located at the Mai Po Nature Reserve, Hong Kong. The results showed that the burrowing crabs could enhance the activities of oxidase and hydrolases. The highest activities of phenol oxidase and acid phosphatase were generally observed in B sediment, while the highest activity of N-acetyl-glucosaminidase was found in W sediment. The enzymatic stoichiometry indicated that the crab-affected sediment had similar microbial nitrogen (N) and phosphorous (P) availability relative to carbon (C), lower than S but higher than L sediment. Furthermore, it was found that the highest abundance of both bacteria and fungi was shown in S sediment, and B sediment presented the lowest abundance. Moreover, the concentrations of phosphorus and soluble phenolics in crab-affected sediment were almost higher than the non-affected sediment. The alterations of phenolics, C/P and N/P ratios as well as undetermined environmental factors by the activities of crabs might be the main reasons for the changes of enzyme activity and microbial abundance. Finally, due to the important role of phenol oxidase and hydrolases in sediment organic matter (SOM) decomposition, it is necessary to take macrofaunal activities into consideration when estimating the C budget in mangrove ecosystem in the future.
Assuntos
Braquiúros/fisiologia , Microbiologia Ambiental , Enzimas/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Fosfatase Ácida/análise , Animais , Carbono , Ecossistema , Monitoramento Ambiental , Ensaios Enzimáticos , Hong Kong , Hidrolases/análise , Nitrogênio , Oxirredutases/análise , Fenóis , Fósforo , Áreas AlagadasRESUMO
The understanding of Neanderthal societies, both with regard to their funerary behaviors and their subsistence activities, is hotly debated. Old excavations and a lack of taphonomic context are often factors that limit our ability to address these questions. To better appreciate the exact nature of what is potentially the oldest burial in Western Europe, Regourdou (Montignac-sur-Vézère, Dordogne), and to better understand the taphonomy of this site excavated more than 50 years ago, we report in this contribution a study of the most abundant animals throughout its stratigraphy: the European rabbit (Oryctolagus cuniculus). In addition to questions surrounding the potential bioturbation of the site's stratigraphy, analysis of the Regourdou rabbits could provide new information on Neandertal subsistence behavior. The mortality profile, skeletal-part representation, breakage patterns, surface modification, and comparison with modern reference collections supports the hypothesis that the Regourdou rabbit remains were primarily accumulated due to natural (attritional) mortality. Radiocarbon dates performed directly on the rabbit remains give ages ranging within the second half of Marine Isotope Stage 3, notably younger than the regional Mousterian period. We posit that rabbits dug their burrows within Regourdou's sedimentological filling, likely inhabiting the site after it was filled. The impact of rabbit activity now brings into question both the reliability of the archaeostratigraphy of the site and the paleoenvironmental reconstructions previously proposed for it, and suggests rabbits may have played a role in the distribution of the Neandertal skeletal remains.
Assuntos
Sepultamento , Fósseis , Homem de Neandertal , Animais , Europa (Continente) , Coelhos , Datação Radiométrica , Reprodutibilidade dos Testes , Fatores de TempoRESUMO
Despite common use, the efficacy of artificial breeding sites (e.g., nest boxes, bat houses, artificial burrows) as tools for monitoring and managing animals depends on the demography of target populations and availability of natural sites. Yet, the conditions enabling artificial breeding sites to be useful or informative have yet to be articulated. We use a stochastic simulation model to determine situations where artificial breeding sites are either useful or disadvantageous for monitoring and managing animals. Artificial breeding sites are a convenient tool for monitoring animals and therefore occupancy of artificial breeding sites is often used as an index of population levels. However, systematic changes in availability of sites that are not monitored might induce trends in occupancy of monitored sites, a situation rarely considered by monitoring programs. We therefore examine how systematic changes in unmonitored sites could bias inference from trends in the occupancy of monitored sites. Our model also allows us to examine effects on population levels if artificial breeding sites either increase or decrease population vital rates (survival and fecundity). We demonstrate that trends in occupancy of monitored sites are misleading if the number of unmonitored sites changes over time. Further, breeding site fidelity can cause an initial lag in occupancy of newly installed sites that could be misinterpreted as an increasing population, even when the population has been continuously declining. Importantly, provisioning of artificial breeding sites only benefits populations if breeding sites are limiting or if artificial sites increase vital rates. There are many situations where installation of artificial breeding sites, and their use in monitoring, can have unintended consequences. Managers should therefore not assume that provision of artificial breeding sites will necessarily benefit populations. Further, trends in occupancy of artificial breeding sites should be interpreted in light of potential changes in the availability of unmonitored sites and the potential of lags in occupancy owing to site fidelity.
Assuntos
Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Comportamento de Nidação , Reprodução , Animais , Ecossistema , Densidade Demográfica , Dinâmica PopulacionalRESUMO
Mating partners need to recognize, assess each other, and exchange information through behavioral events that occur before, during, and after mating. Sexual signals, as well as life history traits, are influenced by selective pressures and environmental factors that can vary across distant geographical areas. Allocosa senex is a sand-dwelling wolf spider which constructs burrows along the sandy coasts of Argentina, Brazil, and Uruguay. Females are the mobile sex that searches for males and initiates courtship. They prefer males which construct longer burrows, and males prefer virgin females in good body condition. The objective of this study was to compare sexual behavior patterns, as well as body characteristics and burrow dimensions, between two geographically distant locations of A. senex, one in Uruguay (Uruguayan location) and the other from central Argentina (Argentinean location). We found differences in the number of male abdominal vibrations, male and female touches during mating, and number of erections of male leg spines, which all were higher in matings of Argentinean pairs. On the other hand, male body mass and female body condition were higher in Uruguayan individuals. The wide distribution of A. senex could be determining variations in the biotic and abiotic features that affect the species, generating differences in the strength of selective forces acting on individuals from the two studied locations.
Assuntos
Comportamento Sexual Animal/fisiologia , Aranhas/fisiologia , Animais , Argentina , Tamanho Corporal , Feminino , Masculino , Comportamento de Nidação , Aranhas/anatomia & histologia , UruguaiRESUMO
The Alpheus brevicristatus De Haan, 1844 is one of the commonest shrimp species inhabiting the tidal flats in Japan. This species is sometimes accompanied by the facultative symbiotic goby, Acentrogobius spp. Here, we investigated the burrow morphology of A. brevicristatus in a tidal flat of Uranouchi Inlet, Kochi Prefecture, Japan. We also reviewed existing literature on alpheid burrow morphology using the resin casting technique, to determine how burrows vary in the presence and absence of gobies. Nine burrows were casted in situ using polyester resin. All burrows were long, but shallow in structure, with several funnel-shaped openings and short cul-de-sac branches. This species appears to use several burrow openings to access the sediment surface for feeding with high efficiency. Gobies were not associated with all burrows cast; however, 1-3 individuals of the small alpheid shrimp Athanas japonicus Kubo, 1936 were entombed in seven of the casts. A review of 12 studies on the burrow morphology of 16 Alpheus species based on resin casting techniques showed wide variation in burrow characteristics, such as burrow depth, length, and number of openings. Our findings suggest that burrow structure is influenced by species-specific characteristics and sediment type. The possibility that the presence of the symbiotic goby affects the burrow morphology of Alpheus shrimp is discussed.
Assuntos
Decápodes/fisiologia , Animais , Comportamento Animal , Ecossistema , Especificidade da EspécieRESUMO
The bivalve Tellimya fujitaniana ( Yokoyama, 1927 ) (Galeommatoidea, Heterodonta) was described based on a fossil shell. Until now, the biology of living animals has not been reported. In this study, we found T. fujitaniana in a commensal relationship with the heart urchin Echinocardium cordatum (Pennant, 1777) (Spatangoida, Echinoidea) on the intertidal mud flats of the Seto Inland Sea, Japan. We investigated the morphology, host associations, and reproductive biology of this bivalve species. The elongate-ovate shell is covered by a reddish-brown ferruginous deposit. The mantle is exposed anteriorly to form a temporal siphon, while posteriorly one pair of short tentacles is exposed. Small individuals (shell length, SL, ≤ 2.1 mm) were attached to the host's body surface; middle-sized individuals (SL 3.0-3.2 mm) were attached to or stayed close to larger T. fujitanianathat were living freely in the host burrow. Nearly all the large individuals (SL ≥ 4.8 mm) lived freely in the host burrow, behind the urchin. This suggests that the host utilization pattern of T. fujitanianachanges with development. Specimens with SL ≥ 4.8 mm had mature gonads, mostly occupied by ova, and some individuals were brooding eggs or veliger larvae in the gills. This species was previously assigned to Fronsella. However, the morphology and ecology of this bivalve are very similar to those of Tellimya ferruginosa (the type species of the genus Tellimya) in the northeastern Atlantic Ocean. Thus, we have reassigned this species to genus Tellimya. We also confirmed that T. fujitaniana and T. ferruginosa can be genetically distinguished using the mitochondrial COI gene.
Assuntos
Bivalves/fisiologia , Ouriços-do-Mar/fisiologia , Simbiose/fisiologia , Distribuição Animal , Exoesqueleto/anatomia & histologia , Exoesqueleto/fisiologia , Animais , Bivalves/anatomia & histologia , Bivalves/classificação , Oceano Pacífico , ReproduçãoRESUMO
The bivalve superfamily Galeommatoidea is characterized by its symbiotic associations with other marine invertebrates. However, for many galeommatoideans, the host species remains unknown. Platomysia (Galeommatoidea) is a monotypic genus including a single species P. rugata, which is distinguished from other galeommatoideans in having distinct and evenly spaced commarginal ribs on its shell surface. This species was described based on a single right valve shell collected in Nanao Bay, Japan Sea, by Habe in 1951 and has been known only from Japanese waters. However, the biology of living animals has never been reported. We found that this species lives in the burrows of the sipunculan worm Sipunculus nudus in mud flats in the Seto Inland Sea, Japan. We investigated its host association and described its shell morphology and anatomy. In addition, we performed a phylogenetic analysis using two nuclear (18S and 28S ribosomal RNA) genes to determine its phylogenetic position in Galeommatoidea. The result suggests that this species belongs to the clade of commensal bivalves together with Pseudopythina, Byssobornia, and Pergrinamor. Platomysia rugata and other two groups of sipunculan-associated galeommatoideans were not monophyletic, suggesting that association with sipunculans occurred at least three times in the galeommatoid evolution.
Assuntos
Bivalves/genética , Bivalves/fisiologia , Filogenia , Poliquetos/fisiologia , Simbiose/fisiologia , AnimaisRESUMO
The objective of this study was to compare the different ventilatory strategies that help in coping with hypoxic-hypercapnia environment among two species: use acclimated rats and plateau pikas (Ochotona curzoniae) that live in Tibetan plateaus, and have been well adjusted to high altitude. Arterial blood samples taken at 4100 m of elevation in acclimatized rats and adapted pikas revealed inter-species differences with lower hemoglobin and hematocrit and higher blood pH in pikas. A linear and significant increase in minute ventilation was observed in pikas, which help them to cope with hypoxic-hypercapnia. Pikas also displayed a high inspiratory drive and an invariant respiratory timing regardless of the conditions. Biochemical analysis revealed that N-methyl-D-aspartate receptor (NMDA) receptor gene and nNOS gene are highly conserved between rats and pikas, however pikas have higher expression of NMDA receptors and nNOS compared to rats at the brainstem level. Taken together, these results suggest that pikas have developed a specific ventilatory pattern supported by a modification of the NMDA/NO ventilatory central pathways to survive in extreme conditions imposed on the Tibetan plateaus. These physiological adaptive strategies help in maintaining a better blood oxygenation despite high CO2 concentration in burrows at high altitude.
Assuntos
Adaptação Fisiológica , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Lagomorpha/fisiologia , Ratos Wistar/fisiologia , Respiração , Animais , Gasometria , Hipercapnia/sangue , Hipóxia/sangue , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Pletismografia , RNA Mensageiro/genética , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
Subterranean rodents face unique thermoregulatory challenges. Evaporative water loss (EWL) is a crucial mechanism for maintaining heat balance in endotherms subjected to heat stress but also leads to potential dehydration. EWL depends on gradients of temperature and humidity between the surface of the individual and the surrounding environment. Underground burrows generally provide a stable water vapor saturated atmosphere which may impede evaporative heat loss (EHL). This will mainly occur when ambient temperature exceeds the upper limit of individual's thermoneutral zone, or when body temperature rises as result of digging activities. Here we evaluate the effect of ambient temperature on EWL and energy metabolism in the subterranean rodent Ctenomys talarum (tuco-tucos), which inhabits sealed burrows, but makes an extensive use of the aboveground environment. We observed that EWL is increased when ambient temperature rises above thermoneutrality; below this point, evaporation remains stable. Though EWL contributes to total heat loss by increasing â¼1.3 times at 35°C, dry thermal conductance is raised four times. In tuco-tucos' burrows both non-evaporative and, to some extent, evaporative and behavioral mechanisms are essential for body temperature regulation, preventing overheating at high ambient temperatures in a water vapor-saturated atmosphere.