Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(22): e2308851, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38112252

RESUMO

Vanadium oxides have aroused attention as cathode materials in aqueous zinc-ion batteries (AZIBs) due to their low cost and high safety. However, low ion diffusion and vanadium dissolution often lead to capacity decay and deteriorating stability during cycling. Herein, vanadium dioxides (VO2) nanobelts are coated with a single-atom cobalt dispersed N-doped carbon (Co-N-C) layer via a facile calcination strategy to form Co-N-C layer coated VO2 nanobelts (VO2@Co-N-C NBs) for cathodes in AZIBs. Various in-/ex situ characterizations demonstrate the interfaces between VO2 layers and Co-N-C layers can protect the VO2 NBs from collapsing, increase ion diffusion, and enhance the Zn2+ storage performance. Additional density functional theory (DFT) simulations demonstrate that Co─O─V bonds between VO2 and Co-N-C layers can enhance interfacial Zn2+ storage. Moreover, the VO2@Co-N-C NBs provided an ultrahigh capacity (418.7 mAh g-1 at 1 A g-1), outstanding long-term stability (over 8000 cycles at 20 A g-1), and superior rate performance.

2.
Small ; 19(52): e2304916, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37452436

RESUMO

Te-based materials with excellent electrical conductivity and ultra-high volume specific capacity have attracted much attention for the cost-efficient aqueous Zn batteries. However, the construction of functional structures with mild volume expansion and suppressed shuttle effects, enabling an expanded lifespan, is still a challenge for conversion-type materials. Herein, the carbon-coated zinc telluride nanowires (ZnTe@C NWs) are rationally designed as a high-performance cathode material for aqueous Zn batteries. The carbon-coated1D nanostructure could not only provide optimized transmission path for electrons and ions, but also help to maintain structure integrity upon volume variation and suppress intermediates dissolution, endowing the ZnTe@C NWs with improved cycling stability and reaction kinetics. Consequently, a reversible six-electron reaction mechanism of ZnTe@C NWs based on Te2- /Te4+ conversion with excellent output capacity (586 mAh g-1 at 0.1 A g-1 ) and lifespan (>250 mAh g-1 retained for 400 cycles at 1 A g-1 ) is eventually achieved.

3.
Mikrochim Acta ; 191(1): 37, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110783

RESUMO

Carbon-coated copper nanocrystals (CuNCs) with peroxidase-like activity were hydrothermally prepared by using copper acetate, citric acid (CA) and histidine (His) as the precursors. Various shaped CuNCs, including urchin-like, slab-like and spherical appearance were facilely prepared by addition of different amount of NaNO2 in the precursor solutions. When 3,3',5,5'-tetramethylbenzidine (TMB) was used as the substrate, the CuNCs with urchin-like appearance have greatest peroxidase-like activity and their Michaelis-Menten constant (Km) and the maximum rate constant (νmax) are respectively 8.8 and 1.2 times higher than that obtained from horseradish peroxidase (HRP). The production of reactive oxygen species (ROS) was confirmed by radical quenching and electron spin resonance (ESR) tests. Subsequent studies have found that the CuNCs catalyzed color reaction of TMB can be selectively quenched by the environmental pollutant 2,4-dinitrophenylhydrazine (2,4-DNPH). Thus a new colorimetric method for the determination of 2,4-DNPH with a linear range of 0.60-20 µM was developed and a limit of detection (LOD) as low as 0.166 µM was achieved. The results obtained not only reveal the tunability of the peroxidase-like activity of Cu-based nanomaterials, but also provide a new method for the sensitive determination of environmental contaminate.


Assuntos
Materiais Biomiméticos , Nanopartículas , Peroxidase/química , Cobre/química , Carbono/química , Colorimetria/métodos , Peróxido de Hidrogênio/química , Materiais Biomiméticos/química , Nanopartículas/química
4.
Environ Sci Technol ; 56(18): 13314-13326, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36041071

RESUMO

Fe0 is a promising electron donor for autotrophic denitrification in the simultaneous removal of nitrate and phosphorus in low C/N wastewater. However, P removal may inevitably inhibit bio-denitrification. It has not been well recognized and led to an overdose of iron materials. This study employed carbon-coated zerovalent iron (Fe0@C) to support autotrophic denitrification to mitigate the inhibition effects of P removal and enhance both N and P removal. The critical role of the carbon shell in Fe0@C was to block the direct contact between Fe0 and P and NO3--N, to maintain the Fe0 activity. Besides, P inhibited the chemical reduction of NO3--N by competing for Fe0 active sites. This indirectly boosted H2 generation and promoted bio-denitrification. P removal displayed negligible effects on microbial species but indirectly enhanced the nitrogen metabolic activities because of promoted H2 in Fe0@C-based autotrophic denitrification. Bio-denitrification, in turn, strengthened Fe-P co-precipitation by promoting the formation of ferric hydroxide as a secondary adsorbent for P removal. This study demonstrated an efficient method for simultaneous N and P removal in autotrophic denitrification and revealed the synergistic interactions among N and P removal processes.


Assuntos
Carbono , Desnitrificação , Processos Autotróficos , Reatores Biológicos , Ferro , Nitratos , Nitrogênio , Fósforo , Águas Residuárias
5.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35214469

RESUMO

Hollow carbon-coated In2O3 (C#In2O3) nanofibers were prepared using an efficiently combined approach of electrospinning, high-temperature calcination, and hydrothermal process. The polyaniline (PANI)/hollow C#In2O3 nanofiber composites were synthesized used hollow C#In2O3 nanofibers worked as a core through the in situ chemical oxidative polymerization. The morphology and crystalline structure of the PANI/hollow C#In2O3 nanofiber composite were identified using wide-angle X-ray diffraction and transmission electron microscopy. The gas-sensing performances of the fabricated PANI/hollow C#In2O3 nanofiber composite sensor were estimated at room temperature, and the response value of the composite sensor with an exposure of 1 ppm NH3 was 18.2, which was about 5.74 times larger than that of the pure PANI sensor. The PANI/hollow C#In2O3 nanofiber composite sensor was demonstrated to be highly sensitive to the detection of NH3 in the concentration range of 0.6~2.0 ppm, which is critical for kidney or hepatic disease detection from the human breath. This composite sensor also displayed superior repeatability and selectivity at room temperature with exposures of 1.0 and 2.0 ppm NH3. Because of the outstanding repeatability and selectivity to the detection of NH3 at 1.0 and 2.0 ppm confirmed in this investigation, the PANI/hollow C#In2O3 nanofiber composite sensor will be considered as a favorable gas-sensing material for kidney or hepatic disease detection from human breath.


Assuntos
Amônia , Nanofibras , Compostos de Anilina , Carbono , Humanos , Índio , Nanofibras/química , Temperatura
6.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897812

RESUMO

The high mortality rate caused by atherosclerosis makes it necessary to constantly search for new and better treatments. In previous reports, chemically modified carbon-coated iron nanoparticles (Fe@C NPs) have been demonstrated a high biocompatibility and promising anti-plaque properties. To further investigate these effects, the interaction of these nanoparticles with the adipose tissue of Wistar rats (in vivo) and human atherosclerotic plaques (ex vivo) was studied. For the in vivo study, cobalt-chromium (CoCr) alloy tubes, which are used for coronary stent manufacturing, were prepared with a coating of polylactic acid (PLA) which contained either modified or non-modified Fe@C NPs in a 5% by weight concentration. The tubes were implanted into an area of subcutaneous fat in Wistar rats, where changes in the histological structure and functional properties of the surrounding tissue were observed in the case of coatings modified with Fe@C NPs. For the ex vivo study, freshly explanted human atherosclerotic plaques were treated in the physiological solution with doses of modified Fe@C NPs, with mass equal to 5% or 25% relative to the plaques. This treatment resulted in the release of cholesterol-like compounds from the surface of the plaques into the solution, thus proving a pronounced destructive effect on the plaque structure. Chemically modified Fe@C NPs, when used as an anti-atherosclerosis agent, were able to activate the activity of macrophages, which could lead to the destruction of atherosclerotic plaques structures. These findings could prove the fabrication of next-generation vascular stents with built-in anti-atherosclerotic agents.


Assuntos
Aterosclerose , Nanopartículas , Placa Aterosclerótica , Tecido Adiposo/patologia , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Carbono/farmacologia , Carbono/uso terapêutico , Humanos , Ferro/uso terapêutico , Nanopartículas/química , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Ratos , Ratos Wistar
7.
J Environ Manage ; 322: 116084, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067669

RESUMO

The degradation of toluene from a gas stream by the heterogeneous Fenton process was evaluated over a carbon-coated monolith impregnated or not with iron as catalyst in a bubble column reactor (BCR). The carbon-coated monolith support (CM) was prepared by chemical vapor deposition and the catalyst (CM impregnated with iron - herein called CM-Fe) by adsorption. In the screening of processes (absorption, adsorption and reaction), it was shown that the heterogeneous Fenton process catalyzed by CM-Fe presents the best efficiency (toluene transfer (η) = 10 × 10-3 mol, for 300 mL of liquid solution and 0.69 g of catalyst). Finally, the stability of CM and CM-Fe was evaluated, wherein ten consecutive runs were carried out, the results showing a considerable deactivation of CM during the first five cycles. In contrast, the CM-Fe sample only slightly decreases its activity from the 1st to 2nd cycle (due to a small amount of iron leached from the monolith, 0.7%), remaining stable after that, which is important for applying this technology at the industrial level. This work showed for the first time that the treatment of gaseous effluents containing organic compounds by the Fenton process (which takes place in the liquid phase) using a carbon-coated monolith impregnated with iron is plausible, so the proof of concept was successfully accomplished.


Assuntos
Carbono , Ferro , Carbono/química , Catálise , Gases , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução , Tolueno/química
8.
Angew Chem Int Ed Engl ; 61(40): e202209629, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35909076

RESUMO

The design of efficient copper(Cu)-based catalysts is critical for CO2 electroreduction into multiple carbon products. However, most Cu-based catalysts are favorable for ethylene production while selective production of ethanol with high Faradaic efficiency and current density still remains a great challenge. Herein, we design a carbon-coated CuOx (CuOx @C) catalyst through one-pot pyrolysis of Cu-based metal-organic framework (MOF), which exhibits high selectivity for CO2 electroreduction to ethanol with Faradaic efficiency of 46 %. Impressively, the partial current density of ethanol reaches 166 mA cm-2 , which is higher than that of most reported catalysts. Operando Raman spectra indicate that the carbon coating can efficiently stabilize Cu+ species under CO2 electroreduction conditions, which promotes the C-C coupling step. Density functional theory (DFT) calculations reveal that the carbon layer can tune the key intermediate *HOCCH goes the hydrogenation pathway toward ethanol production.

9.
Mol Divers ; 25(1): 67-86, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31927717

RESUMO

Novel sulfonated carbon-coated magnetic nanoparticles (SCCMNPs; Fe3O4@C@OSO3H) were designed, synthesized, characterized, and applied as an efficient nanocatalyst for green synthesis of coumarin derivatives through Pechmann condensation. The Fe3O4@C@OSO3H was manufactured through a simple and inexpensive two-step procedure and characterized by FTIR, EDX, XRD, SEM, TEM, DLS, VSM, and TGA techniques. It was identified as an efficient heterogeneous catalyst in the Pechmann condensation of phenol derivatives and ß-ketoesters, leading to high-yield coumarin derivatives under solvent-free conditions. The Fe3O4@C@OSO3H removed after reaction finishing point by an external magnet, and it was reused fifteen times at the same conditions. Besides, theoretical studies were carried out using B3LYP/6-311++G(d,p) to more consideration of the reaction mechanism. The study of the frontier molecular orbitals, NBO atomic charges, molecular electrostatic potential of reactants, as well as Pechmann condensation mechanism was known very useful in suitable reactant choice. The reaction was performed through the electrophilic attack, dehydration, and trans-esterification, respectively.


Assuntos
Compostos Férricos/química , Nanopartículas de Magnetita/química , Carbono/química , Catálise , Cumarínicos/química , Ésteres/química , Química Verde/métodos , Solventes/química
10.
Molecules ; 26(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072046

RESUMO

To address the challenge of the huge volume expansion of silicon anode, carbon-coated silicon has been developed as an effective design strategy due to the improved conductivity and stable electrochemical interface. However, although carbon-coated silicon anodes exhibit improved cycling stability, the complex synthesis methods and uncontrollable structure adjustment still make the carbon-coated silicon anodes hard to popularize in practical application. Herein, we propose a facile method to fabricate sponge-like porous nano carbon-coated silicon (sCCSi) with a tunable pore structure. Through the strategy of adding water into precursor solution combined with a slow heating rate of pre-oxidation, a sponge-like porous structure can be formed. Furthermore, the porous structure can be controlled through stirring temperature and oscillation methods. Owing to the inherent material properties and the sponge-like porous structure, sCCSi shows high conductivity, high specific surface area, and stable chemical bonding. As a result, the sCCSi with normal and excessive silicon-to-carbon ratios all exhibit excellent cycling stability, with 70.6% and 70.2% capacity retentions after 300 cycles at 500 mA g-1, respectively. Furthermore, the enhanced buffering effect on pressure between silicon nanoparticles and carbon material due to the sponge-like porous structure in sCCSi is further revealed through mechanical simulation. Considering the facile synthesis method, flexible regulation of porous structure, and high cycling stability, the design of the sCCSi paves a way for the synthesis of high-stability carbon-coated silicon anodes.

11.
J Nanobiotechnology ; 17(1): 2, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616599

RESUMO

BACKGROUND: Previous studies have demonstrated that exposure to nickel nanoparticles (Nano-Ni) causes oxidative stress and severe, persistent lung inflammation, which are strongly associated with pulmonary toxicity. However, few studies have investigated whether surface modification of Nano-Ni could alter Nano-Ni-induced lung injury, inflammation, and fibrosis in vivo. Here, we propose that alteration of physicochemical properties of Nano-Ni through modification of Nano-Ni surface may change Nano-Ni-induced lung injury, inflammation, and fibrosis. METHODS: At first, dose-response and time-response studies were performed to observe lung inflammation and injury caused by Nano-Ni. In the dose-response studies, mice were intratracheally instilled with 0, 10, 20, 50, and 100 µg per mouse of Nano-Ni and sacrificed at day 3 post-exposure. In the time-response studies, mice were intratracheally instilled with 50 µg per mouse of Nano-Ni and sacrificed at days 1, 3, 7, 14, 28, and 42 post-instillation. At the end of the experiment, mice were bronchoalveolar lavaged (BAL) and the neutrophil count, CXCL1/KC level, LDH activity, and concentration of total protein in the BAL fluid (BALF) were determined. In the comparative studies, mice were intratracheally instilled with 50 µg per mouse of Nano-Ni or with the same molar concentration of Ni as Nano-Ni of either partially [O]-passivated Nano-Ni (Nano-Ni-P) or carbon-coated Nano-Ni (Nano-Ni-C). At day 3 post-exposure, BAL was performed and the above cellular and biochemical parameters in the BALF were analyzed. The MMP-2/9 protein levels and activities in the BALF and mouse lung tissues were also determined. Mouse lung tissues were also collected for H&E staining, and measurement of thiobarbituric acid reactive substances (TBARS) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the genomic DNA. At day 42 post-exposure, mouse right lung tissues were collected for H&E and Trichrome stainings, and left lung tissues were collected to determine the hydroxyproline content. RESULTS: Exposure of mice to Nano-Ni resulted in a dose-response increase in acute lung inflammation and injury reflected by increased neutrophil count, CXCL1/KC level, LDH activity, and concentration of total protein in the BALF. The time-response study showed that Nano-Ni-induced acute lung inflammation and injury appeared as early as day 1, peaked at day 3, and attenuated at day 7 post-instillation. Although the neutrophil count, CXCL1/KC level, LDH activity, and concentration of total protein in the BALF dramatically decreased over the time, their levels were still higher than those of the controls even at day 42 post-exposure. Based on the results of the dose- and time-response studies, we chose a dose of 50 µg per mouse of Nano-Ni, and day 3 post-exposure as short-term and day 42 post-exposure as long-term to compare the effects of Nano-Ni, Nano-Ni-P, and Nano-Ni-C on mouse lungs. At day 3 post-exposure, 50 µg per mouse of Nano-Ni caused acute lung inflammation and injury that were reflected by increased neutrophil count, CXCL1/KC level, LDH activity, concentration of total protein, and MMP-2/9 protein levels and activities in the BALF. Nano-Ni exposure also caused increased MMP-2/9 activities in the mouse lung tissues. Histologically, infiltration of large numbers of neutrophils and macrophages in the alveolar space and interstitial tissues was observed in mouse lungs exposed to Nano-Ni. Nano-Ni-P exposure caused similar acute lung inflammation and injury as Nano-Ni. However, exposure to Nano-Ni-C only caused mild acute lung inflammation and injury. At day 42 post-exposure, Nano-Ni caused extensive interstitial fibrosis and proliferation of interstitial cells with inflammatory cells infiltrating the alveolar septa and alveolar space. Lung fibrosis was also observed in Nano-Ni-P-exposed lungs, but to a much lesser degree. Only slight or no lung fibrosis was observed in Nano-Ni-C-exposed lungs. Nano-Ni and Nano-Ni-P, but not Nano-Ni-C, caused significantly elevated levels of TBARS in mouse lung tissues and 8-OHdG in mouse lung tissue genomic DNA, suggesting that Nano-Ni and Nano-Ni-P induce lipid peroxidation and oxidative DNA damage in mouse lung tissues, while Nano-Ni-C does not. CONCLUSION: Our results demonstrate that short-term Nano-Ni exposure causes acute lung inflammation and injury, while long-term Nano-Ni exposure causes chronic lung inflammation and fibrosis. Surface modification of Nano-Ni alleviates Nano-Ni-induced pulmonary effects; partially passivated Nano-Ni causes similar effects as Nano-Ni, but the chronic inflammation and fibrosis were at a much lesser degree. Carbon coating significantly alleviates Nano-Ni-induced acute and chronic lung inflammation and injury.


Assuntos
Lesão Pulmonar/induzido quimicamente , Nanopartículas Metálicas/toxicidade , Níquel/química , Animais , Líquido da Lavagem Broncoalveolar , Quimiocina CXCL1/metabolismo , Dano ao DNA , L-Lactato Desidrogenase/metabolismo , Masculino , Nanopartículas Metálicas/química , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Oxirredução , Estresse Oxidativo , Tamanho da Partícula , Pneumonia/induzido quimicamente , Propriedades de Superfície
12.
Drug Dev Ind Pharm ; 44(7): 1070-1077, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29394117

RESUMO

We present a novel approach of designing and fabricating a noninvasive drug delivery device which is capable of delivering the drug to the target site in a controlled manner. The device utilizes a reservoir which can be reused once the drug has completely diffused from it. This micro-reservoir based fabricated device has been successfully tested using niosomes of insulin drug filled in, which was then sealed with a magnetic membrane of 20 µm thick and was actuated by applying magnetic field. The deflection of the membrane on application of magnetic field results in the drug release from the reservoir. The discharge of the drug solution and the release rates was controlled by external magnetic field. The simulation of the membrane deflection using COMSOL software was carried out to optimize the concentration of the ferrous nanopowder in PDMS matrix. The characterization of the devices was implemented in-vitro on water and in-vivo on Wistar rats. It was also validated using high-performance liquid chromatography (HPLC) by observing characteristic peak of insulin. The blood samples showed the retention time of 2.79 min at λmax of 280 nm which further authenticated the effectiveness of the proposed work. This noninvasive fabricated device provides reusability, precise control and can enable the patient or a physician to actively administrate the drug when required.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Animais , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos/efeitos dos fármacos , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Magnetismo/métodos , Masculino , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Ratos , Ratos Wistar
13.
J Sep Sci ; 39(2): 256-63, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26519201

RESUMO

In this paper, carbon-coated Fe3 O4 nanoparticles were successfully synthesized and used as a magnetic solid-phase extraction absorbent for the preconcentration and extraction of organophosphorus pesticides in environmental water samples. The carbon-coated Fe3 O4 nanoparticles were characterized by transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The determination of organophosphorus pesticides in water samples with carbon-coated Fe3 O4 nanoparticles was investigated by high-performance liquid chromatography with a diode array detector. Furthermore, the response surface model based on the central composite design was applied to quantitatively investigate the effect of some important variables influencing the extraction efficiency, such as pH, treatment time, amount of nanoparticle sorbents, and amount of salt and to find the optimized conditions providing the highest extraction efficiency. Under optimized conditions, the calibration curve was linear in the range of 0.5-15.0 ng/mL with a regression coefficient of 0.9948, 0.9958, and 0.9931 for fenitrothion, diazinon, and ethion, respectively. The obtained results showed that this analytical method would be useful for the analysis of fenitrothion, diazinon, and ethion in tap water with high precision and accuracy.

14.
Int J Nanomedicine ; 19: 2359-2375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476276

RESUMO

Background: Molybdenum diselenide (MoSe2), as a nano near-infrared absorber, has been widely studied in the field of photothermal therapy of cancer. However, there is little research on its application in the treatment of human choriocarcinoma. Methods and Results: In this paper, a new type of carbon-coated MoSe2 (MEC) nanoparticles was prepared by a one-step hydrothermal method. The chemical characterization including SEM, TEM, EDS, XRD, FT-IR, TGA, Roman, and XPS showed that MEC was successfully synthesized. MEC exhibited a high photothermal conversion efficiency (50.97%) and extraordinary photothermal stability under laser irradiation. The cell experiment results showed that MEC had good biocompatibility on normal cells while significant photothermal effect on human choriocarcinoma (JEG-3) cells, achieving a good anticancer effect. The level of reactive oxygen species (ROS) in JEG-3 cells was significantly increased under the combination of MEC nanoparticles and near-infrared radiation. MEC nanoparticles could induce apoptosis of JEG-3 cells in combination with near-infrared radiation. Finally, transcriptomic analysis verified that MEC combined with laser radiation could inhibit DNA replication and induce apoptosis, thus improving its therapeutic effect on human choriocarcinoma. Conclusion: MEC nanoparticles exert an excellent photothermal effect and may become an important candidate drug for the treatment of human choriocarcinoma.


Assuntos
Nanopartículas , Fotoquimioterapia , Humanos , Fototerapia , Linhagem Celular Tumoral , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química
15.
ACS Appl Mater Interfaces ; 16(24): 31171-31180, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38845350

RESUMO

SnS-based carbon composites have garnered considerable concentration as prospective anode materials (AMs) for lithium-ion batteries (LIBs). Nevertheless, most SnS-based carbon composites underwent a two-phase or multistep preparation process and exhibited unsatisfactory LIB performance. In this investigation, we introduce a straightforward and efficient one-step arc-discharge technique for the production of dual-layer carbon-coated tin sulfide nanoparticles (SnS@C). The as-prepared composite is used as an AM for LIBs and delivers a high capacity of 1000.4 mAh g-1 at 1.0 A g-1 after 520 cycles. The SnS@C still maintains a capacity of 476 mAh g-1 after 390 cycles despite a higher current of 5.0 A g-1. The high specific capacity and long life are mainly attributed to a unique dual-carbon layers coating structure. The dual-carbon layers not only could effectively improve electrical conductivity and reduce charge-transfer resistance but also limit the alteration in bulk and self-aggregation of SnS nanoparticles. The SnS@C produced by the arc-discharge technique emerges as a promising applicant for AM in LIBs, and the arc-discharge technique provides an alternative way for synthesizing other transition metal sulfides supported on carbonaceous materials.

16.
J Colloid Interface Sci ; 658: 468-475, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38118193

RESUMO

Hydrogen energy is one of the most promising energy carriers to solve the increasingly severe energy crisis. Formic acid decomposition (FAD) solves the storage and transportation problems of hydrogen gas since hydrogen can be produced from aqueous formic acid under mild conditions. To efficiently convert formic acid to hydrogen gas, chemical and structural modification of Pd nanoparticles or supports have been carried out, especially introducing the strong metal support interaction (SMSI). Herein, we synthesized core-shell structured SiO2@SC compounds as the supports to introduce SMIS to Pd/PdO nanoparticles. The relationship between FAD activity and SMSI is investigated. The SMSI between Pd/PdO nanoparticles and SiO2/SC is adjusted by altering the thickness of the carbon layer. The X-ray photoelectron spectroscopy shows that owing to the strong electron-attracting ability SiO2 core contributes to leading the Pd0 active site in an electron-deficient state. The thickness of the carbon layer controls the ratio of Pd0/PdO, which enhances the anti-poisoning ability of the catalyst. Owing to the electron-deficient state of Pd0 and optimal ratio of Pd0/PdO, the hydrogen desorption rate of FAD on Pd is enhanced, and the turn over frequency of Pd/SiO2@SC-1:3 catalyst reaches 1138 h-1, which is ten times higher than that of the pristine Pd/SC catalyst. These results are believed to guide the design and development of highly active Pd-based catalysts for hydrogen generation via FAD.

17.
ACS Appl Mater Interfaces ; 15(27): 32352-32364, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37390329

RESUMO

Nowadays, sweet and drinkable water shortage is a global issue which has attracted widespread attention. Desalination of seawater as the greatest source of water on our planet using solar energy as the most abundant and green energy source for producing fresh water can help us address this issue. Interfacial solar desalination is a state-of-the-art, sustainable, green, and energy-efficient method that has been studied lately. One of the key parameters for researching this method with reasonable efficiency is a photothermal material. Herein, carbon-coated sand was synthesized using abundant, green, and low-cost materials (sand and sugar), and its performance as a photothermal material is investigated and reported. In this work, a three-dimensional (3D) system is introduced to develop the performance and efficiency of the system under real sun irradiation and natural circumstances. The salt rejection ability of the system is another important thing we should notice due to the high salinity of seawater that we want to desalinate. The superhydrophilic carbonized sand demonstrated a good evaporation rate of 1.53 kg/m2h and 82% efficiency under 1 sun irradiation and upright salt rejection ability, which exhibited its capability to be used in green solar-driven water vaporization technology for sweet water production. The effects of important parameters, including light intensity, wind speed, and environment temperature, on the evaporation rate using carbonized sand as a solar collector in a solar desalination system were studied in both laboratory and real systems.

18.
Sci Total Environ ; 856(Pt 2): 159186, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36202351

RESUMO

The reduction process of pollutants by nano zero-valent iron (nZVI) is limited by mass transfer and its effective utilization, and previous studies have ignored the electron loss caused by its oxidative passivation. The carbon-coated structure can effectively inhibit the oxidation of nZVI, but the effectiveness of carbon-coated nZVI (Fe0@C) as a reducing agent in soil remediation is unclear. Therefore, in this study, the Fe0@C/surfactant system was used to remove soil-adsorbed nitrobenzene (NB) to simultaneously enhance the mass transfer process and effective utilization of nZVI. The results showed that the use of surfactants effectively promoted the desorption of NB adsorbed by the soil, and the desorption process was affected by factors such as the type and concentration of surfactants, water-soil ratio, and soil organic matter (SOM) content. The enhanced desorption of NB by the surfactant in the soil system promoted the effective contact between the composite and NB, thereby enhancing the reduction of NB by the composite. In addition, Fe0@C exhibited excellent performance for the reduction of soil-adsorbed NB compared with the conventional nZVI, and this advantage was more obvious in the potting soil system. However, the composite will be gradually passivated due to the alkaline environment during the reduction process, and this phenomenon was especially obvious in the campus soil system. When the pH value decreased from 9 to 3, the proportion of aniline (AN) generated in the campus soil system increased from 19.37 % to 69.29 %. In addition, in potting soil systems with high SOM content, the adsorption of soil particles to the composite and the high dissolved organic matter (DOM) content resulting from the high SOM content also negatively affected the reduction process. The conclusions of this study demonstrate the great potential of the Fe0@C/surfactant system for in-situ contaminated site remediation applications.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes Químicos da Água , Ferro/química , Solo/química , Tensoativos/química , Carbono , Poluentes Químicos da Água/análise , Nitrobenzenos/química , Poluentes do Solo/química
19.
ACS Appl Mater Interfaces ; 14(6): 8297-8310, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35130700

RESUMO

Designing and fabricating high-performance microwave absorption materials with efficient electromagnetic absorption and corrosion resistance becomes a serious and urgent concern. Herein, novel corrosion-resistant graphene-based carbon-coated iron (Fe@C) magnetic composite foam is fabricated via self-assembly of iron phthalocyanine/Fe3O4 (FePc hybrid) on the graphene skeletons under solvothermal conditions and then annealing at high temperature. As a result, the rational construction of a hierarchical impedance gradient between graphene skeletons and Fe@C particles can facilitate the optimization in impedance matching and attenuation characteristic of the foam, realizing the efficient dissipation for incident electromagnetic waves. Additionally, the performance of electromagnetic absorption can be controllably regulated by optimizing annealing temperature and/or time. More importantly, the formation of a carbon-coated iron structure substantially improves the corrosion resistance of magnetic particles, endowing the composite foam with excellent stability and durability in microwave absorption performance.

20.
J Hazard Mater ; 431: 128581, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247741

RESUMO

The easy passivation defect of nano zero-valent iron (nZVI) greatly limits its application in site pollution remediation. Carbon coating can effectively inhibit the passivation of nZVI, but its effectiveness in the soil is still unknown. This study investigated the feasibility of carbon-coated nZVI (Fe0@C) as a persulfate (PS) activator to degrade anthracene (ANT) in soil. The results show that the Fe0@C/PS system can remove 51.6% of ANT in the soil after 0.5 h of reaction, and reach 76.4% after 12 h of reaction. Not only that, the Fe0@C/PS system shows a good removal effect on ANT within the initial pH range of 3-9. Free radical scavenging experiments show that superoxide radicals (O2•-) and singlet oxygen (1O2) are mainly responsible for the removal of ANT, while O2•- may be mainly used as a precursor for the generation of 1O2. The activation of PS by Fe0@C can generate a large number of free radicals, and soil components (such as ß-MnO2) can promote the conversion of O2•- to 1O2. Furthermore, the possible degradation pathway of ANT was also proposed. The findings are of great significance to fill up the knowledge gaps in the application of nZVI in soil remediation.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Antracenos , Carbono , Ferro , Compostos de Manganês , Óxidos , Solo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA