Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 177(6): 1405-1418.e17, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31130379

RESUMO

How do genes modify cellular growth to create morphological diversity? We study this problem in two related plants with differently shaped leaves: Arabidopsis thaliana (simple leaf shape) and Cardamine hirsuta (complex shape with leaflets). We use live imaging, modeling, and genetics to deconstruct these organ-level differences into their cell-level constituents: growth amount, direction, and differentiation. We show that leaf shape depends on the interplay of two growth modes: a conserved organ-wide growth mode that reflects differentiation; and a local, directional mode that involves the patterning of growth foci along the leaf edge. Shape diversity results from the distinct effects of two homeobox genes on these growth modes: SHOOTMERISTEMLESS broadens organ-wide growth relative to edge-patterning, enabling leaflet emergence, while REDUCED COMPLEXITY inhibits growth locally around emerging leaflets, accentuating shape differences created by patterning. We demonstrate the predictivity of our findings by reconstructing key features of C. hirsuta leaf morphology in A. thaliana. VIDEO ABSTRACT.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Cardamine/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Arabidopsis/genética , Cardamine/genética , Linhagem da Célula/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/genética , Proteínas de Plantas/metabolismo
2.
EMBO J ; 40(1): e104273, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33264441

RESUMO

Shade caused by the proximity of neighboring vegetation triggers a set of acclimation responses to either avoid or tolerate shade. Comparative analyses between the shade-avoider Arabidopsis thaliana and the shade-tolerant Cardamine hirsuta revealed a role for the atypical basic-helix-loop-helix LONG HYPOCOTYL IN FR 1 (HFR1) in maintaining the shade tolerance in C. hirsuta, inhibiting hypocotyl elongation in shade and constraining expression profile of shade-induced genes. We showed that C. hirsuta HFR1 protein is more stable than its A. thaliana counterpart, likely due to its lower binding affinity to CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), contributing to enhance its biological activity. The enhanced HFR1 total activity is accompanied by an attenuated PHYTOCHROME INTERACTING FACTOR (PIF) activity in C. hirsuta. As a result, the PIF-HFR1 module is differently balanced, causing a reduced PIF activity and attenuating other PIF-mediated responses such as warm temperature-induced hypocotyl elongation (thermomorphogenesis) and dark-induced senescence. By this mechanism and that of the already-known of phytochrome A photoreceptor, plants might ensure to properly adapt and thrive in habitats with disparate light amounts.


Assuntos
Aclimatação/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Transcrição Gênica/genética , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipocótilo/genética , Fitocromo/genética
3.
Plant Physiol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606947

RESUMO

Natural variation in trichome pattern (amount and distribution) is prominent among populations of many angiosperms. However, the degree of parallelism in the genetic mechanisms underlying this diversity and its environmental drivers in different species remain unclear. To address these questions, we analyzed the genomic and environmental bases of leaf trichome pattern diversity in Cardamine hirsuta, a relative of Arabidopsis (Arabidopsis thaliana). We characterized 123 wild accessions for their genomic diversity, leaf trichome patterns at different temperatures, and environmental adjustments. Nucleotide diversities and biogeographical distribution models identified two major genetic lineages with distinct demographic and adaptive histories. Additionally, C. hirsuta showed substantial variation in trichome pattern and plasticity to temperature. Trichome amount in C. hirsuta correlated positively with spring precipitation but negatively with temperature, which is opposite to climatic patterns in A. thaliana. Contrastingly, genetic analysis of C. hirsuta glabrous accessions indicated that, like for A. thaliana, glabrousness is caused by null mutations in ChGLABRA1 (ChGL1). Phenotypic genome-wide association studies (GWAS) further identified a ChGL1 haplogroup associated with low trichome density and ChGL1 expression. Therefore, a ChGL1 series of null and partial loss-of-function alleles accounts for the parallel evolution of leaf trichome pattern in C. hirsuta and A. thaliana. Finally, GWAS also detected other candidate genes (e.g. ChETC3, ChCLE17) that might affect trichome pattern. Accordingly, the evolution of this trait in C. hirsuta and A. thaliana shows partially conserved genetic mechanisms but is likely involved in adaptation to different environments.

4.
Proc Natl Acad Sci U S A ; 119(24): e2202287119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35666865

RESUMO

Exploding seed pods evolved in the Arabidopsis relative Cardamine hirsuta via morphomechanical innovations that allow the storage and rapid release of elastic energy. Asymmetric lignin deposition within endocarpb cell walls is one such innovation that is required for explosive seed dispersal and evolved in association with the trait. However, the genetic control of this novel lignin pattern is unknown. Here, we identify three lignin-polymerizing laccases, LAC4, 11, and 17, that precisely colocalize with, and are redundantly required for, asymmetric lignification of endocarpb cells. By screening for C. hirsuta mutants with less lignified fruit valves, we found that loss of function of the transcription factor gene SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 7 (SPL7) caused a reduction in endocarpb cell-wall lignification and a consequent reduction in seed dispersal range. SPL7 is a conserved regulator of copper homeostasis and is both necessary and sufficient for copper to accumulate in the fruit. Laccases are copper-requiring enzymes. We discovered that laccase activity in endocarpb cell walls depends on the SPL7 pathway to acclimate to copper deficiency and provide sufficient copper for lignin polymerization. Hence, SPL7 links mineral nutrition to efficient dispersal of the next generation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dispersão de Sementes , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cobre , Proteínas de Ligação a DNA/genética , Lacase/genética , Lignina , Fatores de Transcrição/genética
5.
J Exp Bot ; 75(11): 3220-3232, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38527334

RESUMO

The first TALE homeodomain transcription factor gene to be described in plants was maize knotted1 (kn1). Dominant mutations in kn1 disrupt leaf development, with abnormal knots of tissue forming in the leaf blade. kn1 was found to be expressed in the shoot meristem but not in a peripheral region that gives rise to leaves. Furthermore, KN1 and closely related proteins were excluded from initiating and developing leaves. These findings were a prelude to a large body of work wherein TALE homeodomain proteins have been identified as vital regulators of meristem homeostasis and organ development in plants. KN1 homologues are widely represented across land plant taxa. Thus, studying the regulation and mechanistic action of this gene class has allowed investigations into the evolution of diverse plant morphologies. This review will focus on the function of TALE homeodomain transcription factors in leaf development in eudicots. Here, we discuss how TALE homeodomain proteins contribute to a spectrum of leaf forms, from the simple leaves of Arabidopsis thaliana to the compound leaves of Cardamine hirsuta and species beyond the Brassicaceae.


Assuntos
Proteínas de Homeodomínio , Folhas de Planta , Proteínas de Plantas , Fatores de Transcrição , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo
6.
Genes Dev ; 29(22): 2391-404, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26588991

RESUMO

Two interrelated problems in biology are understanding the regulatory logic and predictability of morphological evolution. Here, we studied these problems by comparing Arabidopsis thaliana, which has simple leaves, and its relative, Cardamine hirsuta, which has dissected leaves comprising leaflets. By transferring genes between the two species, we provide evidence for an inverse relationship between the pleiotropy of SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP) homeobox genes and their ability to modify leaf form. We further show that cis-regulatory divergence of BP results in two alternative configurations of the genetic networks controlling leaf development. In C. hirsuta, ChBP is repressed by the microRNA164A (MIR164A)/ChCUP-SHAPED COTYLEDON (ChCUC) module and ChASYMMETRIC LEAVES1 (ChAS1), thus creating cross-talk between MIR164A/CUC and AS1 that does not occur in A. thaliana. These different genetic architectures lead to divergent interactions of network components and growth regulation in each species. We suggest that certain regulatory genes with low pleiotropy are predisposed to readily integrate into or disengage from conserved genetic networks influencing organ geometry, thus rapidly altering their properties and contributing to morphological divergence.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Cardamine/crescimento & desenvolvimento , Cardamine/genética , Redes Reguladoras de Genes/genética , Proteínas de Homeodomínio/genética , Folhas de Planta , Proteínas de Plantas/genética , Arabidopsis/anatomia & histologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cardamine/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo
7.
Development ; 145(1)2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29158439

RESUMO

A clear example of interspecific variation is the number of root cortical layers in plants. The genetic mechanisms underlying this variability are poorly understood, partly because of the lack of a convenient model. Here, we demonstrate that Cardamine hirsuta, unlike Arabidopsis thaliana, has two cortical layers that are patterned during late embryogenesis. We show that a miR165/6-dependent distribution of the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) transcription factor PHABULOSA (PHB) controls this pattern. Our findings reveal that interspecies variation in miRNA distribution can determine differences in anatomy in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cardamine/metabolismo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/anatomia & histologia , Cardamine/anatomia & histologia , Raízes de Plantas/anatomia & histologia
8.
J Exp Bot ; 71(9): 2472-2478, 2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31970400

RESUMO

The chance to watch floral organs develop live is not to be missed! Here, we outline reasons why quantitative, live-cell imaging is an important approach to study floral morphogenesis, and provide a basic workflow of how to get started. We highlight key advances in morphodynamics of lateral organ development, and discuss recent work that uses live confocal imaging to address the regulation of floral organ number, its robustness, and patterning mechanisms that exploit stochasticity.


Assuntos
Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Morfogênese
9.
Ann Bot ; 126(1): 39-59, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31796954

RESUMO

BACKGROUND AND AIMS: Seeds are dispersed by explosive coiling of the fruit valves in Cardamine hirsuta. This rapid coiling launches the small seeds on ballistic trajectories to spread over a 2 m radius around the parent plant. The seed surface interacts with both the coiling fruit valve during launch and subsequently with the air during flight. We aim to identify features of the seed surface that may contribute to these interactions by characterizing seed coat differentiation. METHODS: Differentiation of the outermost seed coat layers from the outer integuments of the ovule involves dramatic cellular changes that we characterize in detail at the light and electron microscopical level including immunofluorescence and immunogold labelling. KEY RESULTS: We found that the two outer integument (oi) layers of the seed coat contributed differently to the topography of the seed surface in the explosively dispersed seeds of C. hirsuta vs. the related species Arabidopsis thaliana where seed dispersal is non-explosive. The surface of A. thaliana seeds is shaped by the columella and the anticlinal cell walls of the epidermal oi2 layer. In contrast, the surface of C. hirsuta seeds is shaped by a network of prominent ridges formed by the anticlinal walls of asymmetrically thickened cells of the sub-epidermal oi1 layer, especially at the seed margin. Both the oi2 and oi1 cell layers in C. hirsuta seeds are characterized by specialized, pectin-rich cell walls that are deposited asymmetrically in the cell. CONCLUSIONS: The two outermost seed coat layers in C. hirsuta have distinct properties: the sub-epidermal oi1 layer determines the topography of the seed surface, while the epidermal oi2 layer accumulates mucilage. These properties are influenced by polar deposition of distinct pectin polysaccharides in the cell wall. Although the ridged seed surface formed by oi1 cell walls is associated with ballistic dispersal in C. hirsuta, it is not restricted to explosively dispersed seeds in the Brassicaceae.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cardamine , Parede Celular , Sementes
10.
Ann Bot ; 126(1): 1-23, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32271862

RESUMO

BACKGROUND: Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. SCOPE: Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. CONCLUSIONS: Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.


Assuntos
Arabidopsis , Animais , Humanos , Camundongos
11.
Proc Natl Acad Sci U S A ; 112(33): 10539-44, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26243877

RESUMO

A key problem in biology is whether the same processes underlie morphological variation between and within species. Here, by using plant leaves as an example, we show that the causes of diversity at these two evolutionary scales can be divergent. Some species like the model plant Arabidopsis thaliana have simple leaves, whereas others like the A. thaliana relative Cardamine hirsuta bear complex leaves comprising leaflets. Previous work has shown that these interspecific differences result mostly from variation in local tissue growth and patterning. Now, by cloning and characterizing a quantitative trait locus (QTL) for C. hirsuta leaf shape, we find that a different process, age-dependent progression of leaf form, underlies variation in this trait within species. This QTL effect is caused by cis-regulatory variation in the floral repressor ChFLC, such that genotypes with low-expressing ChFLC alleles show both early flowering and accelerated age-dependent changes in leaf form, including faster leaflet production. We provide evidence that this mechanism coordinates leaf development with reproductive timing and may help to optimize resource allocation to the next generation.


Assuntos
Cardamine/genética , Folhas de Planta/anatomia & histologia , Locos de Características Quantitativas , Alelos , Arabidopsis , Sequência de Bases , Biodiversidade , Mapeamento Cromossômico , Clonagem Molecular , Flores , Regulação da Expressão Gênica de Plantas , Genótipo , Luz , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Plantas Geneticamente Modificadas , Polimorfismo Genético , Sementes , Homologia de Sequência do Ácido Nucleico
12.
New Phytol ; 216(2): 549-561, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28098947

RESUMO

A conserved genetic toolkit underlies the development of diverse floral forms among angiosperms. However, the degree of conservation vs divergence in the configuration of these gene regulatory networks is less clear. We addressed this question in a parallel genetic study between the closely related species Arabidopsis thaliana and Cardamine hirsuta. We identified leafy (lfy) and apetala1 (ap1) alleles in a mutant screen for floral regulators in C. hirsuta. C. hirsuta lfy mutants showed a complete homeotic conversion of flowers to leafy shoots, mimicking lfy ap1 double mutants in A. thaliana. Through genetic and molecular experiments, we showed that AP1 activation is fully dependent on LFY in C. hirsuta, by contrast to A. thaliana. Additionally, we found that LFY influences heteroblasty in C. hirsuta, such that loss or gain of LFY function affects its progression. Overexpression of UNUSUAL FLORAL ORGANS also alters C. hirsuta leaf shape in an LFY-dependent manner. We found that LFY and AP1 are conserved floral regulators that act nonredundantly in C. hirsuta, such that LFY has more obvious roles in floral and leaf development in C. hirsuta than in A. thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cardamine/metabolismo , Sequência Conservada , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Cardamine/genética , Cardamine/ultraestrutura , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Mutação/genética , Folhas de Planta/anatomia & histologia , Brotos de Planta/fisiologia , Especificidade da Espécie
13.
Plant J ; 83(4): 732-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26119568

RESUMO

The evolution of plant reproductive strategies has led to a remarkable diversity of structures, especially within the flower, a structure characteristic of the angiosperms. In flowering plants, sexual reproduction depends notably on the development of the gynoecium that produces and protects the ovules. In Arabidopsis thaliana, ovule initiation is promoted by the concerted action of auxin with CUC1 (CUP-SHAPED COTYLEDON1) and CUC2, two genes that encode transcription factors of the NAC family (NAM/ATAF1,2/CUC). Here we highlight an additional role for CUC2 and CUC3 in Arabidopsis thaliana ovule separation. While CUC1 and CUC2 are broadly expressed in the medial tissue of the gynoecium, CUC2 and CUC3 are expressed in the placental tissue between developing ovules. Consistent with the partial overlap between CUC1, CUC2 and CUC3 expression patterns, we show that CUC proteins can physically interact, both in yeast cells and in planta. We found that the cuc2;cuc3 double mutant specifically harbours defects in ovule separation, producing fused seeds that share the seed coat, and suggesting that CUC2 and CUC3 promote ovule separation in a partially redundant manner. Functional analyses show that CUC transcription factors are also involved in ovule development in Cardamine hirsuta. Additionally we show a conserved expression pattern of CUC orthologues between ovule primordia in other phylogenetically distant species with different gynoecium architectures. Taken together these results suggest an ancient role for CUC transcription factors in ovule separation, and shed light on the conservation of mechanisms involved in the development of innovative structures.


Assuntos
Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cardamine/crescimento & desenvolvimento , Cardamine/metabolismo , Regulação da Expressão Gênica de Plantas , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
New Phytol ; 209(1): 395-406, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26268614

RESUMO

Invariant petal number is a characteristic of most flowers and is generally robust to genetic and environmental variation. We took advantage of the natural variation found in Cardamine hirsuta petal number to investigate the genetic basis of this trait in a case where robustness was lost during evolution. We used quantitative trait locus (QTL) analysis to characterize the genetic architecture of petal number. Αverage petal number showed transgressive variation from zero to four petals in five C. hirsuta mapping populations, and this variation was highly heritable. We detected 15 QTL at which allelic variation affected petal number. The effects of these QTL were relatively small in comparison with alleles induced by mutagenesis, suggesting that natural selection may act to maintain petal number within its variable range below four. Petal number showed a temporal trend during plant ageing, as did sepal trichome number, and multi-trait QTL analysis revealed that these age-dependent traits share a common genetic basis. Our results demonstrate that petal number is determined by many genes of small effect, some of which are age-dependent, and suggests a mechanism of trait evolution via the release of cryptic variation.


Assuntos
Cardamine/genética , Flores/genética , Locos de Características Quantitativas/genética , Alelos , Evolução Biológica , Cardamine/anatomia & histologia , Flores/anatomia & histologia , Fenótipo , Seleção Genética
15.
Ann Bot ; 117(5): 881-7, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26346720

RESUMO

BACKGROUND AND AIMS: Floral development is remarkably robust in terms of the identity and number of floral organs in each whorl, whereas vegetative development can be quite plastic. This canalization of flower development prevents the phenotypic expression of cryptic genetic variation, even in fluctuating environments. A cruciform perianth with four petals is a hallmark of the Brassicaceae family, typified in the model species Arabidopsis thaliana However, variable petal loss is found in Cardamine hirsuta, a genetically tractable relative of A. thaliana Cardamine hirsuta petal number varies in response to stochastic, genetic and environmental perturbations, which makes it an interesting model to study mechanisms of decanalization and the expression of cryptic variation. METHODS: Multitrait quantitative trait locus (QTL) analysis in recombinant inbred lines (RILs) was used to identify whether the stochastic variation found in C. hirsuta petal number had a genetic basis. KEY RESULTS: Stochastic variation (standard error of the average petal number) was found to be a heritable phenotype, and four QTL that influenced this trait were identified. The sensitivity to detect these QTL effects was increased by accounting for the effect of ageing on petal number variation. All QTL had significant effects on both average petal number and its standard error, indicating that these two traits share a common genetic basis. However, for some QTL, a degree of independence was found between the age of the flowers where allelic effects were significant for each trait. CONCLUSIONS: Stochastic variation in C. hirsuta petal number has a genetic basis, and common QTL influence both average petal number and its standard error. Allelic variation at these QTL can, therefore, modify petal number in an age-specific manner via effects on the phenotypic mean and stochastic variation. These results are discussed in the context of trait evolution via a loss of robustness.


Assuntos
Cardamine/anatomia & histologia , Cardamine/genética , Flores/genética , Locos de Características Quantitativas , Flores/anatomia & histologia , Variação Genética , Recombinação Genética , Processos Estocásticos
16.
Plant J ; 78(1): 1-15, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24460550

RESUMO

A major goal in biology is to identify the genetic basis for phenotypic diversity. This goal underpins research in areas as diverse as evolutionary biology, plant breeding and human genetics. A limitation for this research is no longer the availability of sequence information but the development of functional genetic tools to understand the link between changes in sequence and phenotype. Here we describe Cardamine hirsuta, a close relative of the reference plant Arabidopsis thaliana, as an experimental system in which genetic and transgenic approaches can be deployed effectively for comparative studies. We present high-resolution genetic and cytogenetic maps for C. hirsuta and show that the genome structure of C. hirsuta closely resembles the eight chromosomes of the ancestral crucifer karyotype and provides a good reference point for comparative genome studies across the Brassicaceae. We compared morphological and physiological traits between C. hirsuta and A. thaliana and analysed natural variation in stamen number in which lateral stamen loss is a species characteristic of C. hirsuta. We constructed a set of recombinant inbred lines and detected eight quantitative trait loci that can explain stamen number variation in this population. We found clear phylogeographic structure to the genetic variation in C. hirsuta, thus providing a context within which to address questions about evolutionary changes that link genotype with phenotype and the environment.


Assuntos
Cardamine/genética , Cromossomos de Plantas/genética , Variação Genética , Genoma de Planta/genética , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Brassicaceae/citologia , Brassicaceae/genética , Brassicaceae/fisiologia , Cardamine/citologia , Cardamine/fisiologia , Meio Ambiente , Evolução Molecular , Genótipo , Cariótipo , Fenótipo , Filogeografia , Componentes Aéreos da Planta/citologia , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Locos de Características Quantitativas , Transcriptoma
17.
Curr Opin Plant Biol ; 79: 102543, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38688200

RESUMO

Adaptations for seed dispersal are found everywhere in nature. However, only a fraction of this diversity is accessible through the study of model organisms. For example, Arabidopsis seeds are released by dehiscent fruit; and although many genes required for dehiscence have been identified, the genetic basis for the vast majority of seed dispersal strategies remains understudied. Explosive fruit generate mechanical forces to launch seeds over a wide area. Recent work indicates that key innovations required for explosive dispersal lie in localised lignin deposition and precise patterns of microtubule-dependent growth in the fruit valves, rather than dehiscence zone structure. These insights come from comparative approaches, which extend the reach of developmental genetics by developing experimental tools in less well-studied species, such as the Arabidopsis relative, Cardamine hirsuta.


Assuntos
Frutas , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/fisiologia , Dispersão de Sementes , Sementes/crescimento & desenvolvimento , Sementes/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Cardamine/genética , Cardamine/metabolismo , Cardamine/fisiologia
18.
Plant Methods ; 20(1): 29, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368430

RESUMO

BACKGROUND: Hairy roots constitute a valuable tissue culture system for species that are difficult to propagate through conventional seed-based methods. Moreover, the generation of transgenic plants derived from hairy roots can be facilitated by employing carefully designed hormone-containing media. RESULTS: We initiated hairy root formation in the rare crucifer species Asperuginoides axillaris via an injection-based protocol using the Agrobacterium strain C58C1 harboring a hairy root-inducing (Ri) plasmid and successfully regenerated plants from established hairy root lines. Our study confirms the genetic stability of both hairy roots and their derived regenerants and highlights their utility as a permanent source of mitotic chromosomes for cytogenetic investigations. Additionally, we have developed an effective embryo rescue protocol to circumvent seed dormancy issues in A. axillaris seeds. By using inflorescence primary stems of Arabidopsis thaliana and Cardamine hirsuta as starting material, we also established hairy root lines that were subsequently used for regeneration studies. CONCLUSION: We developed efficient hairy root transformation and regeneration protocols for various crucifers, namely A. axillaris, A. thaliana, and C. hirsuta. Hairy roots and derived regenerants can serve as a continuous source of plant material for molecular and cytogenetic analyses.

19.
New Phytol ; 216(2): 339-342, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28318011
20.
Front Plant Sci ; 13: 1086004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684738

RESUMO

Trichomes are regularly distributed on the leaves of Arabidopsis thaliana. The gene regulatory network underlying trichome patterning involves more than 15 genes. However, it is possible to explain patterning with only five components. This raises the questions about the function of the additional components and the identification of the core network. In this study, we compare the relative expression of all patterning genes in A. thaliana, A. alpina and C. hirsuta by qPCR analysis and use mathematical modelling to determine the relative importance of patterning genes. As the involved proteins exhibit evolutionary conserved differential complex formation, we reasoned that the genes belonging to the core network should exhibit similar expression ratios in different species. However, we find several striking differences of the relative expression levels. Our analysis of how the network can cope with such differences revealed relevant parameters that we use to predict the relevant molecular adaptations in the three species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA